一种残膜回收机防缠绕挑膜装置的制 一种秧草收获机用电力驱动行走机构

高压电脉冲原位致裂煤层裂隙并实时无损观测的试验方法与流程

2022-02-24 20:02:11 来源:中国专利 TAG:


1.本发明涉及用于煤层气(矿井瓦斯)开采领域,具体涉及一种高压电脉冲原位致裂煤层裂隙并进行实时无损观测的试验方法。


背景技术:

2.高压电脉冲破碎岩石技术,作为新兴的储层开采技术,近几十年内迅速在油气开采和矿物加工、煤层气开采等领域得到广泛的应用。高压电脉冲的致裂作用是利用放电过程中产生的冲击波以及等离子体通道中产生的高温引起的力学效应对固体进行破碎。在煤层气(矿井瓦斯)开采技术领域,高压电脉冲致裂煤层裂隙技术相较于以往的致裂煤层裂隙技术具有耗能少、效率高等一系列的优势。目前,高压电脉冲技术在致裂煤层裂隙方面的现场应用中取得了一定的效果,但基础理论研究仍处于探索阶段。
3.ct扫描作为近年来热门的检测手段,具有无损检测和三维可视的特点,ct成像主要利用射线衰减的原理,x射线经由射线源发射,在穿透不同厚度、不同密度的材料时后衰减程度产生差异。不同射线量的x射线在探测器产生不同明暗程度的图像,经由计算机处理后形成可视化图像,能够获取试件内部细观结构,同时在显示器上直观显现检测对象的内部结构。
4.现有的电脉冲致裂煤层裂隙系统,虽然在一定程度上实现了对高压电脉冲致裂煤体的研究,但无法对试验过程中的受载试件进行原位实时无损可视信息捕获,试验过程中的信息获取量较少,限制了电脉冲致裂煤体过程中作用响应机理的研究,同时难以模拟深部开采的煤岩体的地应力环境。


技术实现要素:

5.本发明致力于提供一种能够实现原位观测、模拟范围更广,操作简单且试验数据精确的高压电脉冲原位致裂煤层裂隙并实时无损观测的试验方法。
6.为此,本发明所采用的技术方案为:一种高压电脉冲原位致裂煤层裂隙并实时无损观测的试验方法,包括以下步骤:
7.步骤a:圆柱形的试件制作;
8.步骤b:将试件安装到圆管状的压力室内,并连接各系统间管道,包括围压加载模块和轴压加载模块;
9.步骤c:先后操作轴压加载模块、围压加载模块,为试件施加轴压和围压;
10.步骤d:操作高压电脉冲致裂操作系统进行高压脉冲放电,致裂试件;
11.步骤e:操作原位ct扫描系统,对试件进行原位扫描,监测试件内部变化;
12.其中,步骤e可任意选择在步骤b、步骤c、步骤d的某一个或多个步骤之后进行,通过在试验过程中多次操作步骤e,实现对同一试件的原位实时无损扫描监测。
13.作为上述方案的优选,步骤c分为:步骤c1:使用轴压泵输出液压油,由轴压泵流出的液压油流经两根不同的轴压管道到达各自对应的油缸,到达油缸的液压油推动多级滑杆
进行轴压传递到试件上,从而实现对试件上下端同时加载相等应力;
14.步骤c2:使用围压泵输出液压油,由围压泵流出的液压油流经两根不同的围压管道到达压力室,液压油充满压力室后关闭围压通道,具有压力的液压油在压力室内对试件四周施加围压;
15.进一步优选为,步骤d分为:步骤d1:将高压脉冲电源与高压电容器正极通过第一导线节段相连通;
16.步骤d2:将高压电容器正极通过第二导线节段与试件上端的电极针相连的导电螺栓相连,将高压电容器负极通过第三导线节段与试件下端的电极针相连的导电螺栓相连;
17.步骤d3:根据需求调整电路中的电压、电流输入值控制输入能量,从而产生不同能量的高压电脉冲对试件进行致裂;
18.步骤d4:操作高压电脉冲信号监测模块记录高压电脉冲放电过程中第二导线节段的脉冲电压和电流的曲线;
19.步骤d5:待高压电脉冲发生模块脉冲放电结束后,操作接地放电棒依次接触高压电容器的正负极,将残余在电路中的残余电能释放。
20.进一步优选为,步骤e分为:步骤e1:使射线管抽真空,待射线管的真空度小于0.002pa时对射线管进行预热;
21.步骤e2:调整绝缘固定器的位置从而调整压力室的位置,使试件的成像位于平板探测器正中央;
22.步骤e3:根据试件尺寸大小与实际情况选择合适的射线管电压和电流值,根据实验需要调节ct成像曝光时间、重叠图片数量、敏感度、采集图片数量等参数;
23.步骤e4:使射线管开启,压力室开始旋转,每旋转一定角度压力室停下采集一次数据,每次旋转角度与设置的采集图片数量呈负相关,当压力室旋转360
°
后结束扫描。
24.进一步优选为,高压电脉冲原位致裂煤层裂隙并实时无损观测的试验方法,基于一种高压电脉冲原位致裂煤层裂隙实时无损观测装置,包括应力加载系统、高压电脉冲致裂操作系统和原位ct扫描系统;
25.所述应力加载系统包括压力室、轴压加载模块和围压加载模块;所述压力室采用圆管结构,在压力室内居中安装有试件;所述轴压加载模块包含轴压泵,以及在试件的上下两端对称设置并依次相连的第一滑杆、第二滑杆、第三滑杆、第四滑杆、第五滑杆、油缸、轴压管道,第二滑杆与压力室滑动配合,第一滑杆、第三滑杆、第四滑杆的直径均小于第二滑杆的直径,第五滑杆伸入各自对应的油缸内,所述油缸的侧壁上开设有轴压通道,所述轴压管道的一端与轴压泵相连,另一端通过轴压通道接入对应油缸内,并通过所有滑杆为试件提供上下相等的轴压;所述围压加载模块包含围压泵、隔离胶套和两个围压管道,所述压力室侧壁上上下对称地开设有两个围压通道,围压管道的一端与围压泵相连,另一端通过对应的围压通道接入试件内腔为试件四周提供围压,隔离胶套包裹在两个第一滑杆与试件外,且隔离胶套与第一滑杆之间设置有密封圈,以防止液压油通过隔离胶套上下端浸入试件中;
26.所述高压电脉冲致裂操作系统包括高压电脉冲发生模块、高压电脉冲信号监测模块和保护模块;所述高压电脉冲发生模块包含高压脉冲电源、高压电容器、高压电脉冲开关、第一导线节段、第二导线节段、第三导线节段、电极针和导电螺栓;高压脉冲电源通过第
一导线节段为高压电容器充电,所述试件的上下两端均配备有电极针和导电螺栓,电极针的一端抵在试件上,另一端依次同轴穿过第一滑杆、第二滑杆、第三滑杆后,插入第四滑杆的盲孔中,所述导电螺栓的一端与电极针相连,另一端横向穿到第四滑杆外,其中一个导电螺栓的外侧端通过第二导线节段与高压电容器的正极相连,另一个导电螺栓的外侧端通过第三导线节段与高压电容器的负极相连,所述第二导线节段上串联有高压电脉冲开关;所述高压电脉冲信号监测模块包括罗氏线圈、高压探头和示波器,罗氏线圈套在第三导线节段上,高压探头串联在第三导线节段上,罗氏线圈与高压探头的监测信号通过信号传输线连接到示波器;所述保护模块包括电磁屏蔽场,用于将高压电脉冲致裂操作系统产生的高能量静电、原位ct扫描系统产生的x射线隔绝在电磁屏蔽场中;
27.所述原位ct扫描系统包括射线源、平板探测器、ct扫描检测机构,所述射线源和平板探测器分别布置在压力室的两侧,压力室可360
°
水平旋转地安装在绝缘固定底座上,压力室采用满足ct扫描要求的材料制作而成,平板探测器与ct扫描检测机构通过数据传输线相连。
28.上述的高压电脉冲原位致裂煤层裂隙实时无损观测装置,具有以下技术特点:
29.(1)应力加载系统包括压力室、轴压加载模块和围压加载模块,除轴压泵、围压泵、轴压管道和轴压管道外,其余部分构成一个岩心夹持器整体,将整个岩心夹持器整体置于绝缘固定底座上,并能进行360
°
水平旋转,在此基础上结合高压电脉冲致裂操作系统和原位ct扫描系统,能进行保压状态下、加载过程中的高压电脉冲后的原位ct实时扫描,避免了应力卸下以及拆装试件过程中对试件造成的影响干扰试验结果,便于更精准地对煤体进行宏微观分析,研究结果可为高压电脉冲煤层致裂技术乃至煤层气开采的基础研究提供先进可靠的支撑;
30.(2)岩心夹持器可拆卸地安装在绝缘固定底座上,可在保压状态下转移或进行诸如核磁共振检测等,为多方面对试件进行分析提供了基础,从而具备为高压电脉冲煤层增透技术提供更完善的基础理论分析的条件;
31.(3)采用多级滑杆结合油缸为试件提供上下相等的轴压加载,通过直径较大的滑杆确保与压力室滑动配合,直径较小的滑杆能减小管壁摩擦对轴压加载的影响,采用油缸侧壁开孔并通过多级滑杆实现轴压的传递,既便于单个滑杆的加工和更换,又能方便试验过程试件的拆装;采用在压力室上下间隔开孔作为围压供给通道,并结合隔离胶套、密封圈,以防止液压油通过隔离胶套上下端浸入试件中,结构简单、加载可靠;轴压加载巧妙利用了油缸的侧壁开孔,围压加载巧妙利用了压力室的侧壁开孔,使整个布局合理紧凑、简洁易控,同时加载的围压和轴压高,能够进行深部应力环境下高压电脉冲致裂煤岩体的研究,最大100kv的高压电脉冲输出,最大围压为60mpa,远远高出目前仅能满足25kv高压电脉冲输出,最大围压在10mpa以下的情况;
32.(4)试件的上下两端均配备有电极针和导电螺栓,从而将高压电脉冲引入试件中,且电极针和导电螺栓均利用多级传递滑杆安装,考虑到绝缘问题,将安装电极针的所有滑杆采用高密度绝缘杆;除此之外,整个系统关键部分设置在电磁屏蔽场内,用于隔绝高压电脉冲致裂操作系统产生的高能量静电、原位ct扫描系统产生的x射线,系统安全可靠。
33.进一步优选为,所述第一滑杆、第二滑杆、第三滑杆、第四滑杆为高密度绝缘杆,轴压泵采用具有伺服控制系统的位移精密注射泵。
34.为确保试验过程中的用电安全,所述第一导线节段、第二导线节段、第三导线节段采用符合100kv绝缘标准的绝缘材料包裹,在第二导线节段、第三导线节段与导电螺栓连接处采用符合100kv绝缘标准的绝缘胶带完全缠裹。
35.进一步优选为,所述电极针与试件接触的端部设计成圆台状,电极针的另一端通过安装在第四滑杆盲孔内的压缩弹簧抵紧,确保电极针的试件始终紧密贴合。
36.进一步优选为,所述射线源选用配备有高功率微米焦点和高分辨率纳米焦点的x双射线管,射线源倾斜安装在射线管支架的下部,射线管支架的上端悬吊在电磁屏蔽场的顶部,所述平板探测器安装在电磁屏蔽场的侧壁上,射线源的射线穿透压力室被平板探测器接收后在ct扫描检测机构上形成扫描图像。
37.进一步优选为,所述绝缘固定底座的顶部居中位置处设置有定位圆台,位于下端的所述油缸的底部居中位置处设置有正好供定位圆台插入的定位凹槽。
38.进一步优选为,所述电极针上开设有平台,供导电螺栓插入进行面贴合导电,导电螺栓与第四滑杆之间通过不锈钢密封套隔开。若导电螺栓与电极针点接触,接触点位置处在电脉冲过程中会产生放电,采用面贴合安装,有效避免点接触产生电弧影响放电效果。
39.进一步优选为,所述第四滑杆与第五滑杆的接触位置处通过定位圆台、定位凹槽配合安装。
40.进一步优选为,加载前,所述第二滑杆的远端与压力室的端头齐平,围压通道正对第二滑杆的近端,轴压通道正对第五滑杆的远端,第五滑杆的近端伸到油缸外。
41.进一步优选为,所述不锈钢密封套的外径在远端位置处加大作为翻边,且该翻边正好盖在第四滑杆外壁上,方便按入安装,通过翻边控制按入到位;不锈钢密封套的内径近端小、远端大,且在长度的中间位置处形成台阶面;相应的,所述导电螺栓位于第四滑杆内的段也为近端小、远端大;所述导电螺栓位于第四滑杆外的段上设置有环向凹槽,用于缠绕连接对应的第二导线节段或第三导线节段。
42.本发明的有益效果:通过模拟不同地应力、不同电压等条件下的电脉冲作用煤体试验,模拟多物理场耦合作用下的高压电脉冲致裂煤体物理试验,并结合工业ct进行原位实时扫描分析。对含瓦斯煤高压电脉冲技术作用后的孔裂隙发展规律、物相响应特征进行精确深入研究,揭示作用过程中电场、应力场等多场耦合的内在机制与实质,为使用高压电脉冲致裂煤体,为提高煤层气的开采效率提供理论支持和工程参数指导。
附图说明
43.图1为高压电脉冲原位致裂煤层裂隙实时无损观测装置的结构示意图。
44.图2为高压电脉冲原位致裂煤层裂隙实时无损观测装置的压力室剖视图。
45.图3是图2中a的局部放大图。
46.其中,包括1试件、2压力室、3轴压泵、4油缸、5轴压管道、6第一滑杆、7第二滑杆、8第三滑杆、9第四滑杆、10第五滑杆、11围压泵、12隔离胶套、13围压管道、14密封圈、15高压脉冲电源、16高压电容器、17高压电脉冲开关、18第一导线节段、19第二导线节段、20第三导线节段、21电极针、22导电螺栓、23不锈钢密封套、24罗氏线圈、25高压探头、26示波器、27电磁屏蔽场、28射线源、29平板探测器、30ct扫描检测机构、31绝缘固定底座、32射线管支架、33压缩弹簧。
具体实施方式
47.下面通过实施例并结合附图,对本发明作进一步说明:
48.结合图1—图3所示,一种高压电脉冲原位致裂煤层裂隙实时无损观测装置,主要由应力加载系统、高压电脉冲致裂操作系统和原位ct扫描系统三大部分组成。
49.应力加载系统主要由压力室2、轴压加载模块和围压加载模块组成。
50.压力室2采用圆管结构,在压力室2内居中安装有试件1。
51.轴压加载模块由轴压泵3,以及在试件1的上下两端对称设置并依次相连的第一滑杆6、第二滑杆7、第三滑杆8、第四滑杆9、第五滑杆10、油缸4、轴压管道5组成。第二滑杆7与压力室2滑动配合,第一滑杆6、第三滑杆8、第四滑杆9的直径均小于第二滑杆7的直径,第五滑杆10伸入各自对应的油缸4内滑动配合。油缸4的侧壁上开设有轴压通道4a,轴压管道5的一端与轴压泵3相连,另一端通过轴压通道4a接入对应油缸4内,并通过所有滑杆(第一滑杆6、第二滑杆7、第三滑杆8、第四滑杆9、第五滑杆10依次传递轴压)为试件1提供上下相等的轴压。
52.为防止高压电能逸散,第一滑杆6、第二滑杆7、第三滑杆8、第四滑杆9为高密度绝缘杆。为了实现轴压加载精确控制,轴压泵3采用具有伺服控制系统的位移精密注射泵。另外,第四滑杆9与第五滑杆10的接触位置处通过定位圆台、定位凹槽配合安装。
53.加载轴压时,由轴压泵流出的液压油流经轴压管道到达油缸,到达油缸的液压油推动多级滑杆依次传递到试件,达到加载轴压效果。
54.围压加载模块由围压泵11、隔离胶套12和两个围压管道13等组成。压力室2侧壁上上下对称地开设有两个围压通道2a,围压管道13的一端与围压泵11相连,另一端通过对应的围压通道2a接入试件1内腔为试件1四周提供围压。为了增强密封效果、确保试验的顺利进行,隔离胶套12包裹在两个第一滑杆6与试件1外,且隔离胶套12与第一滑杆6之间设置有密封圈14,以防止液压油通过隔离胶套12上下端浸入试件1中,导致高压电脉冲对试件放电失败。
55.加载围压时,液压油经由围压泵流经围压管道到达压力室,液压油充满压力室后关闭围压通道,具有压力的液压油在压力室内对试件四周施加围压。
56.最好是,加载前,第二滑杆7的远端与压力室2的端头齐平,围压通道2a正对第二滑杆7的近端,轴压通道4a正对第五滑杆10的远端,第五滑杆10的近端伸到油缸4外,便于安装控制。
57.高压电脉冲致裂操作系主要由高压电脉冲发生模块、高压电脉冲信号监测模块和保护模块组成。
58.高压电脉冲发生模块由高压脉冲电源15、高压电容器16、高压电脉冲开关17、第一导线节段18、第二导线节段19、第三导线节段20、电极针21和导电螺栓22组成。高压脉冲电源15通过第一导线节段18为高压电容器16充电。试件1的上下两端均配备有电极针21和导电螺栓22。电极针21的一端抵在试件1上,另一端依次同轴穿过第一滑杆6、第二滑杆7、第三滑杆8后,插入第四滑杆9的盲孔中。第四滑杆9内开有盲孔,第一滑杆6、第二滑杆7、第三滑杆8内开有通孔供电极针21穿过。导电螺栓22的一端与电极针21相连,另一端横向穿到第四滑杆9外,其中一个导电螺栓22的外侧端通过第二导线节段19与高压电容器16的正极相连,另一个导电螺栓22的外侧端通过第三导线节段20与高压电容器16的负极相连。第二导线节
段19上串联有高压电脉冲开关17。
59.最好是,第一导线节段18、第二导线节段19、第三导线节段20采用符合100kv绝缘标准的绝缘材料包裹,在第二导线节段19、第三导线节段20与导电螺栓22连接处采用符合100kv绝缘标准的绝缘胶带完全缠裹。
60.另外,电极针21与试件1接触的端部设计成圆台状,电极针21的另一端通过安装在第四滑杆9盲孔内的压缩弹簧33抵紧,保证电极针与试件紧密接触,集中放电的同时避免在轴压加载过程中电极针对试件端部造成破坏。试件上、下两端的电极针需选用具有良好导电性能的金属材料制成。
61.电极针21上开设有平台,供导电螺栓22插入进行面贴合导电,导电螺栓22与第四滑杆9之间通过不锈钢密封套23隔开。不锈钢密封套23的外径在远端位置处加大作为翻边23a,且该翻边23a正好盖在第四滑杆9外壁上;不锈钢密封套23的内径近端小、远端大,且在长度的中间位置处形成台阶面;相应的,导电螺栓22位于第四滑杆9内的段也为近端小、远端大;导电螺栓22位于第四滑杆9外的段上设置有环向凹槽22a,用于缠绕连接对应的第二导线节段19或第三导线节段20。
62.高压电脉冲信号监测模块由罗氏线圈24、高压探头25和示波器26组成。罗氏线圈24套在第三导线节段20上,高压探头25串联在第三导线节段20上,测试高压电脉冲放电过程中的电路电压变化信号。罗氏线圈24与高压探头25的监测信号通过信号传输线连接到示波器26。罗氏线圈与高压探头监测信号通过信号传输线传输到示波器中,在示波器屏幕上显示脉冲电流和电压的波形并储存成数据文件,方便进行对历史脉冲电流和电压数据进行对比分析,确定最优的高压电脉冲致裂试件的脉冲电流和电压波形。后续通过调节高压电脉冲发生模块的放电形式还原最优脉冲电流和电压波形,实现对试件最优高压电脉冲致裂效果进行参数还原。
63.由于罗氏线圈的感应较敏感,罗氏线圈的摆放位置尽量选择试验过程中不易触碰的地方,同时罗氏线圈与第二导线节段保持一定距离,减小脉冲电流信号数据采集过程中的电磁干扰。
64.保护模块主体为电磁屏蔽场27,由于高压电脉冲致裂操作系统产生的高能量静电、原位ct扫描系统产生的x射线均会对人体造成生命威胁,需建立电磁屏蔽场,将试验过程产生的高压电脉冲致裂操作系统产生的高能量静电、原位ct扫描系统产生的x射线隔绝在电磁屏蔽场中,保障试验过程中操作人员的健康安全。
65.原位ct扫描系统主要由射线源28、平板探测器29、ct扫描检测机构30组成。射线源28和平板探测器29分别布置在压力室2的两侧,平板探测器29作为接收器。压力室2可360
°
水平旋转地安装在绝缘固定底座31上。为了得到更清晰的扫描图像数据,压力室2采用满足ct扫描要求的材料制作而成,同时为了满足应力加载系统对试件的加载要求,该材料还需要具备高力学强度的性质。平板探测器29与ct扫描检测机构30通过数据传输线相连。
66.最好是,射线源28选用配备有高功率微米焦点和高分辨率纳米焦点的x双射线管,射线源28倾斜安装在射线管支架32的下部。射线管支架32的上端悬吊在电磁屏蔽场27的顶部,平板探测器29安装在电磁屏蔽场27的侧壁上。射线源28的射线穿透压力室2被平板探测器29接收后在ct扫描检测机构30上形成扫描图像。
67.射线管可进行0.5μm以下微小细节的观测,不仅能够对小尺试件进行扫描,还可以
完成大尺寸或者不规则试件的扫描成像。扫描过程中关闭压力室轴压通道、围压通道,使压力室内的试件维持稳定的应力环境,控制绝缘固定底座带动压力室进行360
°
水平旋转,每旋转一个角度则采集一次数据,完成旋转后扫描数据采集同时完成。
68.原位ct扫描系统中接收器为平板探测器,从射线管发射的x射线穿透压力室后能量衰减,衰减后的x射线被平板探测器接收后在平板探测器底片上留下明暗不同的图像,该数据经过数据传输线传输到ct扫描检测机构,经过数据处理后直观显示成试件扫描图片。
69.另外,绝缘固定底座31的顶部居中位置处设置有定位圆台,位于下端的油缸4的底部居中位置处设置有正好供定位圆台插入的定位凹槽。
70.高压脉冲电源通过第一导线节段连接高压电容器,实验时可根据需求调整输入电路中的电压、电流输入值控制对高压电脉冲电路系统的输入能量,从而产生不同能量的高压电脉冲对试件进行脉冲放电致裂,通过对比不同高压脉冲输入能量对试件的致裂效果,实现对含瓦斯煤层的最优致裂参数的确定。在向高压电容器充电的过程中,可以远程操作调节充电电流和电压,确保试验过程的安全可靠。
71.高压电容器采用组合电容并联的方式,采用可选择容量的方法,通过更换不同接入电容的数量来改变高压电脉冲电路中的电容参数。
72.高压电脉冲开关与第二导线节段串联,通过控制高压电脉冲开关的闭合实现高压电脉冲对试件能量的释放。当高压脉冲电源对高压电容器充入满足试验要求的电压后将高压电脉冲开关闭合,使得高压电容器释放特定的高压脉冲能量短时间内作用在试件上。通过控制高压电脉冲开关的闭合次数可以控制高压脉冲能量对试件的脉冲放电作用次数,从而实现特定频率的高压脉冲能量对试件致裂效果研究。
73.一种高压电脉冲原位致裂煤层裂隙并实时无损观测的试验方法,基于上述的高压电脉冲原位致裂煤层裂隙实时无损观测装置,包括以下步骤:
74.步骤a:圆柱形的试件制作;
75.步骤b:将试件安装到圆管状的压力室内,并连接各系统间管道,包括围压加载模块和轴压加载模块;
76.步骤c:先后操作轴压加载模块、围压加载模块,为试件施加轴压和围压;
77.步骤d:操作高压电脉冲致裂操作系统进行高压脉冲放电,致裂试件;
78.步骤e:操作原位ct扫描系统,对试件进行原位扫描,监测试件内部变化;
79.其中,步骤e可任意选择在步骤b、步骤c、步骤d的某一个或多个步骤之后进行,通过在试验过程中多次操作步骤e,实现对同一试件的原位实时无损扫描监测。
80.步骤c分为:
81.步骤c1:使用轴压泵输出液压油,由轴压泵流出的液压油流经两根不同的轴压管道到达各自对应的油缸,到达油缸的液压油推动多级滑杆进行轴压传递到试件上,从而实现对试件上下端同时加载相等应力;
82.步骤c2:使用围压泵输出液压油,由围压泵流出的液压油流经两根不同的围压管道到达压力室,液压油充满压力室后关闭围压通道,具有压力的液压油在压力室内对试件四周施加围压;
83.步骤d分为:
84.步骤d1:将高压脉冲电源与高压电容器正极通过第一导线节段相连通;
85.步骤d2:将高压电容器正极通过第二导线节段与试件上端的电极针相连的导电螺栓相连,将高压电容器负极通过第三导线节段与试件下端的电极针相连的导电螺栓相连;
86.步骤d3:根据需求调整电路中的电压、电流输入值控制输入能量,从而产生不同能量的高压电脉冲对试件进行致裂;高压电脉冲电压监测信号显示电路中电压低于0.4kv标志着高压电脉冲放电的结束,可以进行下一步操作。
87.步骤d4:操作高压电脉冲信号监测模块记录高压电脉冲放电过程中第二导线节段的脉冲电压和电流的曲线;由于电脉冲击穿过程中的电流能够达到数千安,普通的仪表无法满足测量要求,必需采用特定的高压设备,因此采用高压探头监测高压电脉冲放电回路的脉冲电压曲线,采用罗氏线圈监测高压电脉冲放电回路的电流曲线,通过数据传输线在示波器保存并在示波器的屏幕中显示。后续通过调节高压电脉冲发生模块的放电形式还原最优脉冲电流和电压波形,实现对试件1最优高压电脉冲致裂效果进行参数还原。
88.步骤d5:待高压电脉冲发生模块脉冲放电结束后,操作接地放电棒依次接触高压电容器的正负极,将残余在电路中的残余电能释放。
89.步骤e分为:
90.步骤e1:使射线管抽真空,待射线管的真空度小于0.002pa时对射线管进行预热;
91.步骤e2:调整绝缘固定器的位置从而调整压力室的位置,使试件的成像位于平板探测器正中央;
92.步骤e3:根据试件尺寸大小与实际情况选择合适的射线管电压和电流值,根据实验需要调节ct成像曝光时间、重叠图片数量、敏感度、采集图片数量等参数;
93.步骤e4:使射线管开启,压力室开始旋转,每旋转一定角度压力室停下采集一次数据,每次旋转角度与设置的采集图片数量呈负相关,当压力室旋转360
°
后结束扫描。射线管的电压设置越高x射线的穿透能力越强;射线管的电流设置越大图像的对比度越高;曝光时间越大成像越清晰,但采集时间增加;重叠图片数量越多图像噪点越少,但采集时间越长;敏感度越大平板探测器感受强度越大;采集图片数量越大检测越精细,但采集时间增加;各参数的设置需要相互匹配以达到较优的组合形式。
94.上述方案中,轴压加载模块、围压加载模块、高压电脉冲发生模块、高压电脉冲信号监测模块、射线源和平板探测器均需进行接地措施,确保装置内部由于高压电脉冲放电产生的静电完全通到地下。
95.高压电脉冲致裂试件的瞬间,由于第二导线节段、第三导线节段、电极针、试件、高压电容器与高压电脉冲开关构成闭合电路,在高压电脉冲开关的闭合触点会产生明亮的电弧,属于正常现象。
再多了解一些

本文用于企业家、创业者技术爱好者查询,结果仅供参考。

发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表

相关文献