一种残膜回收机防缠绕挑膜装置的制 一种秧草收获机用电力驱动行走机构

基于近红外波段双峰PCF浓度与应力双参量传感系统的制作方法

2022-02-20 23:00:16 来源:中国专利 TAG:

基于近红外波段双峰pcf浓度与应力双参量传感系统
技术领域
1.本发明属于光纤传感技术领域,具体涉及基于近红外波段双峰pcf浓度与应力双参量传感系统。


背景技术:

2.表面等离子体共振(spr)存在于金属和介质(或空气)之间,利用全反射倏逝波激发表面等离子体极化激元(spp);spr传感技术因其灵敏度高、无背景干扰、样品无标签、无需进一步纯化、实时快速检测等特点,已经成为监测分析物的折射率、过滤特定频率的光和检测纳米生物膜的形成的多功能工具。近年来,spr传感器的概念已被提出。光子晶体光纤的特点是其设计的灵活性,因此可以通过不同的气孔布置来定制色散、双折射、非线性等。这些方面使得光子晶体光纤在许多领域特别引人注目,并在基于气体的非线性光学、原子和粒子制导、超高非线性、掺稀土激光和传感等领域有广泛的应用。pcf-spr传感器可以实现等离子体模式和基模模式的完美匹配,因为基模的有效折射率可以设计为零到核心材料的折射率之间,在折射率检测方面具有很高的灵敏度和分辨率。克服了基于棱镜和传统光纤的spr传感器体积大、传输损耗高、灵敏度低的缺点。目前pcf-spr传感器的结构很多。
3.n.chen等人(n.chen,m.chang,x.l.lu,j.zhou and x.d.zhang,numerical analysis of midinfrared d-shapedphotonic-crystal-fiber sensor based on surface-plasmon-resonance effect for environmental monitoring,applied sciences,2020,10(11):3897)提出一种工作在近红外波段(2.9-3.6μm)、用于环境监测的基于spr效应的d型pcf折射率传感器,分析物与金层直接接触,而且环绕整个d型pcf,而不是只接触抛光面,包层材料是硅,包层中的三层气孔按照六边形晶格排列;m.n.sakib等人(m.n.sakib,m.b.hossain,k.f.al-tabatabaie,i.m.mehedi,m.t.hasan,m.a.hossain,i.s.amiri,high performance dual core d-shape pcf-spr sensor modeling employing gold coat,results in physics,2019,15:102788)提出采用金涂层、固体双芯的d型pcf-spr传感器,分析物折射率范围为1.45-1.48,两个固体纤芯与y轴对称,双芯能量与金属层能量耦合较困难,适用的探测范围较窄;s.singh等人(s.singh,y.k.prajapati,highly sensitive refractive index sensor based on d-shaped pcf with gold-graphene layers on the polished surface,applied physics a,2019,125:437)提出一种在抛光表面涂有金和石墨烯层的d型pcf折射率传感器,在固体纤芯x方向放置两个大空气孔,研究x方向偏振光发生耦合时的限制损耗谱;沈涛等人(沈涛,王韶峰,张智文,梁涵,杨添宇,宋明歆,王东兴,一种基于spr的d型光子晶体光纤温度传感系统公开了一种可检测温度的d型pcf传感装置,涂覆ag和ta2o5薄膜,通过波长漂移来检测灵敏度。
4.以上已公开pcf-spr的检测方法都是基于某种耦合模式,检测单一损耗峰的共振波长与其漂移变化。但pcf-spr传感器是同时拥有多个耦合存在,只检测一个耦合模式的峰值是困难,不稳定的。因为在实际使用中存在无法区分具体耦合模式所对应的约束损耗峰和约束损耗峰的共振波长波动不稳定导致无法检测的问题,ying guo等人提出(ying guo,
jianshe li,xinyu wang,shuhuan zhang,yundong liu,jie wang,shun wang,xiaojian meng,rui hao,shuguang li,highly sensitive sensor based on d-shaped microstructure fiber with hollow core,optics and laser technology 123(2020)105922)了双峰检测光子晶体光纤传感器,分别检测两个峰的波长漂移量,同时拥有两个灵敏度,但是与上述单峰光子晶体光纤传感器在检测方法上没有区别。go ngli xiao等人提出(gongli xiao,zetao ou,hongyan yang,yanping xu,jianyun chen,haiou li,qi li,lizhen zeng,yanron den and jianqing li,an integrated detection based on a multi-parameter plasmonic optical fiber sensor,sensors 2021,21,803)双峰检测双参量光子晶体光纤传感器,通过两个耦合模式下的损耗峰同时检测两种参量,同样依据单峰的共振波长与共振波长漂移量来判断检测物的折射率与灵敏度,稳定性较低。以上pcf-spr传感器与本发明在对分析物状态的判别与灵敏度计算方法上有本质区别,且目前提出的高灵敏度传感器同样受限于光谱仪的性能,所以目前大多数pcf-spr传感器只存在于仿真理论,实际制造效果较差。所以提出一种新的切实可行的工作在近红外波段的pcf结构及检测方法是十分重要的。


技术实现要素:

5.针对上述问题,本发明要解决的技术问题是提出基于近红外波段双峰pcf浓度与应力双参量传感系统,并提出一种新的分析物状态(包括折射率、应力或浓度)判定方法与稳定的灵敏度计算方法。
6.本发明为解决其技术问题所采用的技术方案如下:
7.技术方案:基于近红外波段双峰pcf浓度与应力双参量传感系统,其特征在于:由光源(1)、单模光纤(2)、传感单元(3)、光谱分析仪(4)、光电转化器(5)、信号处理模块(6)和计算机(7)组成;
8.进一步地,所述传感单元(3)为光子晶体光纤(3-2);由包层(3-1)、16个圆形空气孔(3-3)、7个圆形空气孔(3-5)、2个较小椭圆形空气孔(3-4)、两个较大椭圆空气孔(3-6)、银膜(3-7)、二氧化硅层(3-8)和分析液(3-9)构成;其特征在于:空气孔(3-3)、空气孔(3-5)、较小椭圆空气孔(3-4)、较大椭圆空气孔(3-6)都关于光纤y轴对称排列;银膜(3-7)在包层(3-1)与二氧化硅层(3-8)交界处;分析液(3-9)用来添加各种待测液;
9.进一步地,所述的传感单元(3),其特征在于:包层(3-1)内空气孔间距λ为2μm,包层(3-1)直径为15μm,空气孔(3-3)直径为1.6μm,空气孔(3-5)直径为2.4μm,较小椭圆空气孔(3-4)长轴直径为2μm,短轴直径为0.8μm;较大椭圆空气孔(3-6)长轴直径为3μm,短轴直径为2.4μm;银膜(3-7)厚度为40nm;包层材料为熔融石英,其折射率由sellmeier公式定义;
[0010][0011]
其中λ是光波的波长,参数a1=0.6961663,a2=0.4079426,a3=0.8974794,b1=0.0684043um,b2=0.1162414um,b3=9.896161um,因此可以计算pcf传输模式的色散;
[0012]
进一步地,采用堆叠-拉丝技术制备光子晶体光纤(3-2),光子晶体光纤(3-2)长度为20mm,所述的银膜(3-7)利用射频磁控溅射方法可以得到;
[0013]
所述的堆叠-拉丝技术为:首先对石英套管进行预处理,在超净环境下按照参数拉
制毛细管,拉制温度为1900℃-2000℃,之后对毛细管两端用氢氧焰进行拉锥封孔,在石英套管中将毛细管按照设计要求堆积形成所需的结构,用纯石英棒对空隙进行填充,利用氧炔火焰将石英套管与毛细管烧结在一起,在拉丝塔上使用两次拉丝技术制成光子晶体光纤;
[0014]
进一步地,所述分析液(3-9)为待测液,待测液浓度的变化会改变待测液的折射率,从而影响共振峰的偏移量,达到双参量测量的目的;
[0015]
进一步地,所述的基于近红外波段双峰pcf浓度与应力双参量传感系统,其特征在于:光源(1)发射光信号经过单模光纤(2)传输到传感单元(3),传感单元(3)输出至光谱分析仪(4)与光电转化器(5),光电转化器(5)将光信号转化为电信号输出到信号处理模块(6),最终在计算机(7)中显示;
[0016]
进一步地,所述光源(1)输出750-2000nm波段的光信号;
[0017]
进一步地,所述的光信号经过单模光纤(2)传输到传感单元(3),其特征在于:银膜(3-7)表面激发的等离子体波波矢与入射光场的波矢在特定的波长范围内达到相位匹配,发生两次耦合,出现两个共振损耗峰;表面等离子体共振(spr)对介质环境十分敏感,分析液(3-9)或包层(3-1)折射率ri变化会使共振条件发生变化,导致两个共振损耗峰发生明显变化,可以实现高灵敏度、实时性探测;
[0018]
进一步地,所述的基于近红外波段双峰pcf浓度与应力双参量传感系统,其特征在于:由光源(1)发出光信号,经单模光纤(2)传输至传感单元(3),当分析液(3-9)折射率改变时,光子晶体光纤(3-2)等离子体共振现象的条件发生改变,两种耦合模式发生变化,在光谱分析仪(4)中显示的两个峰的距离δλ
peak
发生明显的改变,当分析液(3-9)或包层(3-1)的折射率增大时,两个峰的距离减少,当分析液(3-9)或包层(3-1)的折射率减少时,两个峰的距离增加。经双峰灵敏度公式计算灵敏度。
[0019]
所述双峰灵敏度公式为:
[0020]
s=(δλ
peak2-δλ
peak1
)/δnaꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ
(2)
[0021]
式中δλ
peak
为同一折射率下的两个损耗峰的波长差值,δna为浓度/应力变化量,δλ
peak2-δλ
peak1
为两种不同浓度和应力状态下的两个峰的波长距离的差值。其中δλ
peak
的大小与传感单元(3)所处的浓度和应力状态对应;传感单元(3)将携带δλ
peak
数值的光信号传输至光电转化器(5),光电转化器(5)将光信号转化为电信号输出至信号处理模块(6),最终在计算机(7)中显示分析液(3-9)的信息;
[0022]
进一步地,所述的基于近红外波段双峰pcf浓度与磁场双参量传感系统,其特征在于:在同时测量应力与浓度时需要用以下公式进行计算:
[0023][0024][0025]
式(3)中δλ1为浓度改变后两峰间距的变化量,δλ2为浓度改变后两峰间距的变化量,sn和sn分别为浓度与应力的灵敏度,δn与δn分别为浓度与应力的变化量,进而从公式
(4)可得出浓度与应力的变化量。
[0026]
结构发明:基于近红外波段双峰pcf浓度与磁场双参量传感系统。
[0027]
与已公开技术相比,本发明专利的有益效果是:
[0028]
1.本发明所述的基于近红外波段双峰pcf浓度与应力双参量传感系统结构特殊,极大地增加了双折射特性以及色散特性,有利于偏振态的保持,可广泛应用于偏振控制、精密光纤传感等领域。
[0029]
2.本发明所述的基于近红外波段双峰pcf浓度与应力双参量传感系统拥有两个约束损耗峰,通过本发明所提出的双峰灵敏度公式计算,解决了传统pcf-spr传感器灵敏度测量精度差,实际测试效果差的问题,增加了测量系统的稳定性。
[0030]
3.本发明所述的基于近红外波段双峰pcf浓度与应力双参量传感系统工作波长位于近红外波段,可忽略外界环境光对传感器的干扰。
[0031]
4.本发明所述的基于近红外波段双峰pcf浓度与应力双参量传感系统,采用银作为spr激发材料,采用待测液作为分析液,可以实现应力和浓度双参量测量,达到最大的应力灵敏度-6000nm/pa,可广泛应用于样品检测,如生命科学研究、生物化学、环境监测等领域。
附图说明
[0032]
图1为本发明提供基于近红外波段双峰pcf浓度与应力双参量传感系统的装置图。
[0033]
图2为本发明提供基于近红外波段双峰pcf浓度与应力双参量传感系统的传感单元横截面图。
[0034]
图3为本发明提供基于近红外波段双峰pcf浓度与应力双参量传感系统的耦合图。
[0035]
图4为本发明提供基于近红外波段双峰pcf浓度与应力双参量传感系统相同应力不同浓度下的损耗谱图。
具体实施方式
[0036]
下面结合附图对本发明提出的基于近红外波段双峰pcf浓度与应力双参量传感系统的具体实施方式加以说明。
[0037]
如图1所示,本发明提供基于近红外波段双耦合光子晶体光纤折射率传感方法的装置图,光源(1)发射光信号经过单模光纤(2)传输到传感单元(3),当光传输至银膜(3-7),由于分析液(3-9)与包层(3-1)的折射率不一致,光在银膜(3-7)处发生表面等离子体基元现象,出现两个约束损耗峰。传感单元(3)输出至光谱分析仪(4)与光电转化器(5),光电转化器(5)将光信号转化为电信号输出到信号处理模块(6),最终在计算机(7)中显示;
[0038]
如图2所示,为本发明提供基于近红外波段双耦合光子晶体光纤折射率传感方法的传感单元横截面图,传感单元(3)为光子晶体光纤(3-2);由包层(3-1)、16个圆形空气孔(3-3)、7个圆形空气孔(3-5)、2个较小椭圆形空气孔(3-4)、两个较大椭圆空气孔(3-6)、银膜(3-7)、二氧化硅层(3-8)和分析液(3-9)构成;其特征在于:空气孔(3-3)、空气孔(3-5)、较小椭圆空气孔(3-4)、较大椭圆空气孔(3-6)都关于光纤y轴对称排列;分析液(3-9)用来添加各种待测液;空气孔影响模式性质,可以把光控制在纤芯内,银膜(3-7)在包层(3-1)与二氧化硅层(3-8)交界处,当光信号传输至光子晶体光纤(3-2),银膜(3-7)的存在导致表面
等离子共振现象的发生,从而实现高灵敏度检测;
[0039]
如图3所示,为本发明提供双耦合光子晶体光纤两次耦合图,当工作波长为1200-2000nm时,本传感系统可以检测到两个约束损耗峰,发生两次纤芯与银膜(3-7)的耦合。
[0040]
如图4所示,当工作波长为1100nm-2000nm时,本传感系统在相同应力不同浓度条件下共振损耗峰发生显著的偏移,从而达到测量不同浓度和应力双参量的目的。
[0041]
具体实施方法一:
[0042]
近红外波段双耦合光子晶体光纤折射率传感方法及测量系统对海水浓度和应力的检测;传感单元放入海水中,海水的浓度和应力影响传感单元的折射率,基于表面等离子共振原理,本装置会出现两个共振损耗峰,通过两个损耗峰之间的距离δλ
peak
以及公式(2)、(3)、(4)计算,可以计算出海水的应力与浓度,最终在计算机处显示。
再多了解一些

本文用于企业家、创业者技术爱好者查询,结果仅供参考。

发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表

相关文献