一种残膜回收机防缠绕挑膜装置的制 一种秧草收获机用电力驱动行走机构

基于小波包分解权值模糊熵与ELM的轴承故障分类方法及装置与流程

2021-12-14 23:40:00 来源:中国专利 TAG:

基于小波包分解权值模糊熵与elm的轴承故障分类方法及装置
技术领域
1.本发明属于机电系统故障诊断技术领域,具体涉及一种基于小波包分解权值模糊熵与elm的轴承故障分类方法及装置。


背景技术:

2.随着工业科技的发展,机械设备在各个生产领域得到广泛的应用。滚动轴承是一种基础部件,在一些机械上起至关重要的作用,滚动轴承在高强度、长时间的工作下不可避免会出现故障,轴承故障会导致整个机械设备的运行受到影响。轴承故障诊断有助于保障机械运行的可靠性、优化机械设备维修方案。
3.传统的轴承故障检测主要采用人工检测方法,利用人的感官观察轴承的温度、声音、油液色泽等的变化,以判断轴承是否运行正常。这类方法大部分依赖操作者的工作经验,因而诊断效率低,且难以及时检测轴承潜在故障。
4.韩燕等对振动信号进行小波分解,提取能谱熵作为故障特征信息,构建了bp_adaboost分类器进行故障识别。王宇等利用混合蛙跳算法优化bp神经网络的网络结构进行故障诊断,并应用于轴承故障识别。崔鹏宇等先对轴承数据的振动信号提取时、频、多尺度排列熵等特征参量,然后采用iba

bp神经网络进行故障诊断。张俊等采用小波包分析,构建频域能量特征向量,运用rbf神经网络识别故障类型。郭伟超等提出一种将小波包能量谱与主成分分析(pca)相结合用于滚动轴承故障诊断的方法。胡勤等利用遗传算法对支持向量机进行参数优化,并应用于滚动轴承故障诊断。覃爱淞等提出基于无量纲指标和改进的加权证据理论的故障诊断方法。这些方法都取得了一定效果,但是由于滚动轴承是一个工作状态比较复杂,工作现场干扰严重的对象,如何快速有效的根据轴承运行数据获得其故障特征仍然是吸引众多学者研究的难题。
5.因此需要设计一种能够收集和快速在线检测滚动轴承故障的方法,能够根据轴承的振动情况,检测轴承的异常。


技术实现要素:

6.发明目的:一种基于小波包分解权值模糊熵与elm的轴承故障分类方法及装置,可以用于多种机器学习的人工智能方法进行故障诊断,拓展性好。
7.技术方案:本发明所述的一种基于小波包分解权值模糊熵与elm的轴承故障分类方法,包括以下步骤:
8.(1)预先获取滚动轴承在正常和故障状态下驱动端加速度的时间序列数据,通过小波包分解得到该时间序列数据各频段在时域上的特征信号;
9.(2)对特征信号进行权值模糊熵计算,得到滚动轴承在正常和故障状态下的各组特征值;
10.(3)将滚动轴承在正常和故障状态下的各组特征值进行分类标记并合并,用于elm
神经网络的训练,使elm神经网络能够识别滚动轴承的正常和故障状态。
11.进一步地,所述步骤(1)包括以下步骤:
12.(11)根据转速信号ω转/分,振动数据采样频率f,计算基准序列数据个数l:
[0013][0014]
其中,round(.)向下取整函数;c在1至5之间取值;
[0015]
(12)以基准序列数据个数l,对滚动轴承振动时间序列数据z(k)进行切分,形成序列组z:
[0016]
z={z1,z2,

,z
i
,

}
ꢀꢀꢀ
(2)
[0017]
其中,每个样本z
i
包括l个数据,其起始数据为原始时间序列的第(i

1)
×
l 1个数据;随着测量的持续,序列组z持续扩展;
[0018]
(14)对各个z
i
用db5小波进行3层分解得到重构后的8个频段在时域上的特征信号。
[0019]
进一步地,所述步骤(2)包括以下步骤:
[0020]
对给定的有限长度时序信号z=[u(1),u(2),...,u(l)],定义相空间维数m(m≤l

2)和相似容限度r,重构空间为x(i)=[u(i),u(i 1),...,u(i m

1)]

u0(i),i=1,2,

,l

m 1;其中,
[0021]
引入模糊隶属函数
[0022]
对于i=1,2,

,l

m 1,计算且i≠j;其中,为窗口向量x(i)和x(j)之间的最大绝对距离;
[0023]
求对每个i的平均值
[0024]
定义
[0025]
则有限长度时序信号的模糊熵为:
[0026]
fe(m,r,l)=lnφ
m
(r)

lnφ
m 1
(r);
[0027]
考虑到模糊熵越大代表对应时间序列的混乱程度越大,即在原滚动轴承时域信号中对应部分的变化越大,对每个样本计算得到的8个模糊熵进行加权;令以样本z
i
计算得到的8个模糊熵为fe
i
(a),a=1,2,

,8;
[0028]
则可令单个模糊熵的权值为
[0029]
由此便得到了各个样本的8个权值模糊熵作为对应样本的特征值。
[0030]
进一步地,所述步骤(3)实现过程如下:
[0031]
将步骤(2)获取的特征值作为输入值,其维数为1
×
8;
[0032]
将正常状态的样本特征值的分类属性标记为1,故障状态的样本特征值的分类属性按种类分别标记为2、3、4
……
n;将分类属性作为对应样本的期望输出;
[0033]
以输入值和期望输出进行elm神经网络的训练,得到使能够识别滚动轴承正常和故障状态的elm神经网络。
[0034]
基于相同的发明构思,本发明还提供一种基于小波包分解权值模糊熵与elm的轴承故障分类装置,包括存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,所述计算机程序被加载至处理器时实现上述的基于小波包分解权值模糊熵与elm的轴承故障分类方法。
[0035]
有益效果:与现有技术相比,本发明的有益效果:本发明将滚动轴承的驱动端加速度时间序列信号进行小波包分解,再进行权值模糊熵值计算,减小了elm神经网络训练的计算量以及训练时间,计算相对方便,且故障分类采用故障标签,显示直观便于观察;本发明计算信号的权值模糊熵值后,可以用于多种机器学习的人工智能方法进行故障诊断,方法拓展性好。
附图说明
[0036]
图1是本发明的流程图;
[0037]
图2是对训练集中滚动轴承各个状态的数据进行小波包分解和模糊熵提取作为特征值进行elm神经网络训练的结果图;
[0038]
图3是将训练完成的elm神经网络用于滚动轴承故障诊断的测试结果图。
具体实施方式
[0039]
下面结合附图对本发明做进一步详细说明。
[0040]
本发明提出一种基于小波包分解权值模糊熵与elm的滚动轴承故障诊断方法,对滚动轴承在正常和各种故障状态下的时间序列数据进行采样,通过小波包分解得到轴承数据各频段在时域上的特征信号,再对特征信号进行权值模糊熵计算得到特征值,最后将特征值用于elm神经网络的训练从而进行滚动轴承的故障诊断,如图1所示,具体包括以下步骤:
[0041]
步骤1:预先获取滚动轴承在正常和故障状态下驱动端加速度的时间序列数据,通过小波包分解得到该时间序列数据各频段在时域上的特征信号。
[0042]
根据转速信号ω转/分,振动数据采样频率f,计算基准序列长度数据个数l:
[0043][0044]
其中,round(.)为向下取整函数;c在1至5之间取值;
[0045]
以基准序列数据个数l,对滚动轴承振动时间序列数据z(k)进行切分,形成序列组z
[0046]
z={z1,z2,

,z
i
,

}
[0047]
其中,每个样本z
i
包括l个数据,其起始数据为原始时间序列的第(i

1)
×
l 1个数据;随着测量的持续,序列组z持续扩展。
[0048]
对各个z
i
用db5小波进行3层分解得到重构后的8个频段在时域上的特征信号。
[0049]
步骤2:对特征信号进行权值模糊熵计算,得到滚动轴承在正常和故障状态下的各组特征值。
[0050]
对每个样本z
i
得到的8个特征信号进行权值模糊熵计算,得到8个特征值,作为对应样本的特征值,其过程如下:
[0051]
对给定的有限长度时序信号z=[u(1),u(2),...,u(l)],定义相空间维数m(m≤l

2)和相似容限度r,重构空间为x(i)=[u(i),u(i 1),...,u(i m

1)]

u0(i),i=1,2,

,l

m 1,其中,
[0052]
引入模糊隶属函数
[0053]
对于i=1,2,

,l

m 1,计算且i≠j。
[0054]
其中,为窗口向量x(i)和x(j)之间的最大绝对距离。
[0055]
求对每个i的平均值
[0056]
定义
[0057]
则有限长度时序信号的模糊熵为fe(m,r,l)=lnφ
m
(r)

lnφ
m 1
(r)。
[0058]
考虑到模糊熵越大代表对应时间序列的混乱程度越大,即在原滚动轴承时域信号中对应部分的变化越大,对每个样本计算得到的8个模糊熵进行加权,从而得到更易训练的特征值。
[0059]
令以样本z
i
计算得到的8个模糊熵为fe
i
(a),a=1,2,

,8。
[0060]
则可令单个模糊熵的权值为
[0061]
由此便得到了各个样本的8个权值模糊熵作为对应样本的特征值。
[0062]
步骤3:将滚动轴承在正常和故障状态下的各组特征值进行分类标记并合并,用于elm神经网络的训练,使elm神经网络能够识别滚动轴承的正常和故障状态。
[0063]
将各个样本的特征值作为输入值,其维数为1
×
8。将正常状态的样本特征值的分类属性标记为1,故障状态的样本特征值的分类属性按种类分别标记为2、3、4
……
n,将分类属性作为对应样本的期望输出。以输入值和期望输出进行elm神经网络的训练,得到滚动轴承故障分类网络。
[0064]
对待检测的数据,进行小波包分解并计算其权值模糊熵,作为输入值输入训练完成的故障分类网络,得到输出结果即故障分类标签,从而判断滚动轴承是否出现故障、出现何种故障。
[0065]
基于相同的发明构思,本发明还提供一种基于小波包分解权值模糊熵与elm的轴承故障分类装置,包括存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,所述计算机程序被加载至处理器时实现上述的基于小波包分解权值模糊熵与elm的轴承故障分类方法。
[0066]
以美国凯斯西储大学的轴承故障测试数据的故障检测为例,对本发明专利的实施作进一步说明。凯斯西储大学制作的轴承测试实验平台包括一个2马力的电机,一个转矩传感器,一个功率计和电子控制设备。被测试轴承支承电机轴。使用电火花加工技术在轴承上布置了单点故障。实验中使用加速度传感器采集振动信号,加速度传感器分别安装在电机壳体的驱动端和风扇端12点钟的位置。振动信号是通过16通道的dat记录器采集的。振动信号采样频率为f=12khz。轴承型号6205

2rs jem skf。
[0067]
选择正常情况无负载时的测试数据集作为正常状态的数据,进行小波包分解并计算模糊熵作为正常状态的特征值。然后选择驱动端故障的测试数据集作为故障状态的数据,分别选取故障直径为0.1778mm、0.3556mm、0.5334mm的内圈故障、外圈故障、滚动体故障共9种故障,进行小波包分解并计算模糊熵作为9种故障状态的特征值。小波包分解和计算模糊熵以及elm神经网络训练与测试的过程如下:
[0068]
根据转速信号ω=1797转/分,f=12khz,取c=1.5,得到基准序列长度l:
[0069][0070]
以基准序列长度l为长度,对滚动轴承振动时间序列数据z(k)进行切分,形成序列组z,每个样本z
i
包括1024个数据,其起始据为原始时间序列的第(i

1)
×
l 1个数;对轴承的每种状态都取满50个样本,包括1种正常状态加9种故障状态共500个样本;对各个z
i
用db5小波进行3层分解得到重构后的8个频段在时域上的特征信号。
[0071]
对每个样本z
i
得到的8个特征信号进行权值模糊熵计算,相空间维数m取2,相似容限度r取0.2,得到8个特征值,作为对应样本的特征值。
[0072]
将滚动轴承在正常和故障状态下的得到的各组特征值进行分类标记并合并。其中,正常状态的分类标签为1,障直径为0.1778mm的内圈故障、外圈故障、滚动体故障的分类标签为2、3、4,障直径为0.3556mm的内圈故障、外圈故障、滚动体故障的分类标签为5、6、7,障直径为0.5334mm的内圈故障、外圈故障、滚动体故障的分类标签为8、9、10。
[0073]
随机选取经过预处理的80%的样本作为训练集,剩余20%的样本作为测试集。进行elm神经网络的训练,隐含层节点数设置为100,激活函数选取sigmoid函数。
[0074]
将训练样本输入网络进行训练,得到训练输出结果与期望输出的对比,从而得到滚动轴承故障分类网络。其结果如图2所示,准确率如表1所示。
[0075]
表1故障分类训练结果准确率
[0076][0077][0078]
对训练完成的滚动轴承故障分类网络进行测试,将测试样本输入网络得到输出结果与期望输出的对比,其结果如图3所示,准确率如表2所示,得到了很好的故障检测与分类效果。
[0079]
表2故障分类测试结果准确率
[0080][0081]
再多了解一些

本文用于企业家、创业者技术爱好者查询,结果仅供参考。

发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表

相关文献