一种残膜回收机防缠绕挑膜装置的制 一种秧草收获机用电力驱动行走机构

光热诱导气泡辅助固体表面上液滴运动装置及使用方法与流程

2021-11-29 13:43:00 来源:中国专利 TAG:


1.本发明涉及微流控领域,特别是涉及一种光热诱导气泡辅助固体表面上液滴运动装置及使用方法。


背景技术:

2.开放式液滴微流控技术是指通过在开放式微流控芯片上操控具有微小体积的离散态液滴实现某些特定功能的新技术。其作为反应基元的液滴在开放环境中进行传输、分离、混合及化学反应,使得开放式液滴微流控技术不仅具有传统微流控技术的优点,如试剂量小、操控精确、比表面积大、传质效率高、高度集成化等,同时具有便于线上分析、与各类传感、检测、控制技术的兼容性好、重构性好、避免试剂交叉污染等独特优点,在抗体检测、蛋白质分析、化学物合成、微胶囊及微反应器构造、药物释放、光子晶体制备等领域日益展现出其巨大的应用前景和发展潜力。
3.近年来,许多学者基于液滴微流控展开研究,尤其是针对光热转换材料的研究和通过表面改性来实现液滴行为的操控。yang等人利用非对称光源形成的梯度光照射用光敏材料修饰过的芯片上的液滴,形成润湿性梯度并诱导液滴运动。baigl等[41]使用可见光或紫外光照射含有光敏感剂(azotab)的液滴边缘,使光敏感剂分子结构变化引起marangoni流动并诱导液滴运动;同时利用同轴光形成表面张力梯度陷阱捕获并驱动液滴。jinhua zeng等设计了一种利用ti2o3的光热转换特性特异性杀死癌细胞以治疗癌症的方法。关于通过表面改性来操控液滴行为的研究,h mertaniemi等人利用轨道式超疏水表面实现了液滴定向操控;jie wang等人用光热的方式使石蜡相变从而将表面特异性改性为滑移表面操控液滴定向迁移;chunlei gao等利用fe3o4光热转换诱导液滴内部马兰戈尼流动驱使液滴在滑移表面迁移。
[0004]
利用外部刺激与表面改性相结合实现固体基底上液滴运动操控的研究很多,但是基于基底光热转换诱导液滴内气泡自生成,利用气泡动态行为产生液滴不均衡力的产生,实现液滴运动的研究相对较为匮乏。


技术实现要素:

[0005]
本发明所要解决的技术问题在于提供一种光热诱导气泡辅助固体表面上液滴运动装置及使用方法。
[0006]
为了解决上述技术问题,本发明的技术方案是:光热诱导气泡辅助固体表面上液滴运动装置,包括基底、激光器及聚焦镜头,所述基底内添加有光热转换材料;其特征在于:所述基底表面具有微柱结构,激光器及聚焦镜头设置在基底上方且偏离基底的中心点,激光器及聚焦镜头发出的聚焦激光照射到基底与液滴的固

液界面上,基底内部光热转换材料将光能转化为热能并在基底内传导,基底表面微柱结构中残留的气化核心受热膨胀,并在激光光斑处产生微气泡;聚焦激光对固

液界面的偏心加热,同时聚焦激光偏心加热液滴,液滴受热蒸发,微气泡体积膨胀,微气泡体积膨胀对液滴产生的反作用力和液滴外缘


液界面上由于温度梯度诱导的表面张力共同克服了基底对液滴的粘滞阻力,驱动液滴向远离激光一测运动,呈现聚焦激光推动液滴进行定向运动。
[0007]
根据本发明所述的光热诱导气泡辅助固体表面上液滴运动装置的优选方案,所述基底由聚二甲基硅氧烷和光热转换材料三氧化二钛粉末按一定合理的比例混合而成。
[0008]
本发明的第二个技术方案是,光热诱导气泡辅助固体表面上液滴运动装置的使用方法,其特征在于:将激光器及聚焦镜头发出的聚焦激光照射到基底与液滴的固

液界面上,基底内部的光热转换材料将光能转化为热能并在基底内传导,基底表面微柱结构中残留的气化核心受热膨胀,并在激光光斑处产生微气泡;聚焦激光对固

液界面偏心加热,同时聚焦激光偏心加热液滴,液滴受热蒸发,微气泡体积膨胀,微气泡体积膨胀对液滴产生的反作用力和液滴外缘气

液界面上由于温度梯度诱导的表面张力共同克服了基底对液滴的粘滞阻力,驱动液滴向远离激光一测运动。
[0009]
本发明所述的光热诱导气泡辅助固体表面上液滴运动装置及使用方法的有益效果是:本发明利用基于基底光热转换诱导液滴内气泡自生成,利用气泡动态行为产生液滴不均衡力,实现了微流控操控,具有液滴的迁移操控功能,液滴无需进行化学和物理修饰,降低了对液滴的污染,本发明结构简单,使用方便,控制成本低,便于集成化,可广泛应用于化学物合成、流体输运、生化分析检测等领域。
附图说明
[0010]
图1是本发明所述的光热诱导气泡辅助固体表面上液滴运动装置的结构示意图。
[0011]
图2是本发明所述的光热诱导气泡辅助固体表面上液滴运动装置的工作原理示意图。
具体实施方式
[0012]
下面结合试验例及具体实施方式对本发明作进一步的详细描述。但不应将此理解为本发明上述主题的范围仅限于以下的实施例,凡基于本发明内容所实现的技术均属于本发明的范围。
[0013]
参见图1至图2,光热诱导气泡辅助固体表面上液滴运动装置,包括基底1、激光器及聚焦镜头3,所述基底1内添加有光热转换材料;所述基底1表面具有微柱结构6,激光器及聚焦镜头3设置在基底1上方且偏离基底1的中心点,激光器及聚焦镜头3发出的聚焦激光4照射到基底1与液滴2的固

液界面上,基底1内部光热转换材料将光能转化为热能并在基底1内传导,基底1表面微柱结构6中残留的气化核心受热膨胀,并在激光光斑处产生微气泡5;并且聚焦激光4对固

液界面的偏心加热使微气泡所在位置的两侧液体高度不同,h1>h2,气泡两侧受到不均匀液相压力,微气泡靠近液滴中心一侧所受压力大于靠近液滴边缘一侧所受的压力;随着液滴受热蒸发,微气泡体积膨胀,相应的,气泡体积膨胀对液滴产生反作用力,净压力朝向液滴中心;同时,聚焦激光偏心加热液滴,使液滴外缘的气

液界面温度分布不均,由温度梯度诱导的表面张力梯度方向为由激光加热一侧指向远离激光一侧;因此,微气泡给与液滴朝向液滴中心一侧的压力和液滴气

液界面上朝向远离激光一侧的表面张力两个作用力方向相同克服了基底对液滴的粘滞阻力,驱动液滴向远离激光一测运动,呈现聚焦激光4推动液滴2进行定向运动。
[0014]
在具体实施例中,所述基底1由聚二甲基硅氧烷和光热转换材料三氧化二钛粉末按一定合理的比例混合而成。具体可选择聚二甲基硅氧烷、固化剂和吸热材料三氧化二钛粉末按100:10:10的比例混合。
[0015]
基底表面微结构由微柱阳膜复刻的方式实现,微柱阳膜由传统光刻工艺实现。由pdms和三氧化二钛颗粒混合的浊液搅拌均匀并浇筑在光刻制作的微柱阳膜上,然后静置20分钟待其排净气泡,然后将模具放置在温度为100℃
±
10℃的加热板上加热15

20分钟使其固化,得到基底1。
[0016]
激光器及聚焦镜头3发出的聚焦激光4照射到基底1与液滴2的固

液界面上,基底1内部光热转换材料将光能转化为热能并在基底1内传导,基底1表面微柱结构6中残留的气化核心受热膨胀,并在激光光斑处产生微气泡5;随着液滴受热并在液滴内部气

液界面蒸发,微气泡体积不断增大,并且由于聚焦激光4对固

液界面的偏心加热使产生的微气泡的两侧液体高度不同h1>h2,微气泡两侧受到不均匀液相压力;微气泡靠近液滴中心一侧所受压力大于靠近液滴边缘一侧所受的压力,相应的,气泡体积膨胀对液滴产生反作用力,净压力朝向液滴中心;同时,激光偏心加热液滴,液滴外缘气

液界面温度分布不均,由温度梯度诱导的表面张力梯度方向为从激光加热一侧指向远离激光一侧;因此,微气泡给与液滴朝向液滴中心一侧的压力和液滴气液

界面上远离激光一侧的表面张力,两个力作用方向相同,共同克服了基底对液滴的粘滞阻力,驱动液滴向远离激光一测运动,比如激光对液滴加热位于液滴中心偏右侧如图1,则远离激光一测为左侧,即驱动液滴向左侧运动,呈现聚焦激光4推动液滴2的定向运动。
[0017]
图2中固液界面偏心处产生的气泡,由于两侧液滴界面高度不同,微气泡靠近液滴中心一侧的高度h1>靠近液滴边缘一侧的高度h2,所受液相压力不同,h1侧>h2侧,气泡两侧受到不均匀液相压力。微气泡靠近液滴中心一侧所受压力大于靠近液滴边缘一侧,相应的,气泡体积膨胀对液滴产生反作用力,净压力朝向液滴中心。同时,激光偏心加热液滴,液滴外缘气

液界面温度分布不均,靠近激光一侧温度高于远离激光一侧,温度较高时,水的表面张力较小,流体在界面处由低表面张力区域流向高表面张力区域即马兰戈尼流动,由温度梯度诱导的表面张力梯度方向由激光加热一侧指向远离激光一侧。比如图1中激光对液滴加热位于液滴中心偏右侧,则表面张力梯度方向向左。
[0018]
以上所述仅为本发明的优选实施例,并不用于限制本发明,尽管参照前述实施例对本发明进行了详细的说明,对于本领域的技术人员依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。
再多了解一些

本文用于企业家、创业者技术爱好者查询,结果仅供参考。

发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表

相关文献