一种残膜回收机防缠绕挑膜装置的制 一种秧草收获机用电力驱动行走机构

基于图像处理的机械零件应力腐蚀检测方法及系统与流程

2021-11-25 02:31:00 来源:中国专利 TAG:


1.本发明涉及人工智能技术领域,具体涉及一种基于图像处理的机械零件应力腐蚀检测方法及系统。


背景技术:

2.应力腐蚀是机械零件或构建在静应力和腐蚀的共同作用下产生的失效现象。一般应力腐蚀都属于脆性断裂,并且存在孕育期、扩展期和瞬断期三部分。为了防止应力腐蚀对机械零件的影响,保障机械零件作业的安全性,需要在孕育期或者扩展期及时的发现应力腐蚀缺陷。
3.目前针对应力腐蚀性能及开裂性能的测试可采用恒载荷裂纹试样方法,通过恒定载荷/位移的加载,跟踪裂纹缺口张开的位移变化,获得应力腐蚀裂纹的扩展速率,但该试样方法耗费时间长,通常要进行数周或者数月,仪器设备的占用率高,并且效率低下。


技术实现要素:

4.为了解决上述技术问题,本发明的目的在于提供一种基于图像处理的机械零件应力腐蚀检测方法及系统,所采用的技术方案具体如下:第一方面,本发明一个实施例提供了一种基于图像处理的机械零件应力腐蚀检测方法,该方法包括以下步骤:获取机械零件表面的初始rgb图像,根据加权平均法对所述初始rgb图像进行灰度化得到初始灰度图像,识别所述初始灰度图像中每个像素点的缺陷概率得到第一检测结果图像;根据所述缺陷概率将所述第一检测结果图像分为正常区域、缺陷区域以及不确定区域;根据所述缺陷概率将所述不确定区域自适应划分为多个第一区域;在所述初始灰度图像中,提取所述第一区域的每个像素点的邻域特征值;在所述初始rgb图像中提取与所述第一区域对应的第二rgb图像,根据加权平均法对所述第二rgb图像进行灰度化得到第二灰度图像;获取所述第二灰度图像中每个像素点的第一梯度,根据所述邻域特征值对所述第一梯度进行优化获取第二梯度,根据所述第二梯度获取统计特征;获取所述缺陷区域的标准统计特征,获取与所述标准统计特征差异最小的最优统计特征,所述最优统计特征对应的所述加权平均法的系数为最优系数;采用所述最优系数的加权平均法对所述第二rgb图像进行灰度化得到最优灰度图像,根据所述最优灰度图像获取第二检测结果图像,根据所述最优灰度图像以及所述缺陷区域中像素点的相似度获取第三检测结果图像,所述第二检测结果图像与所述第三检测结果图像的均值作为最终检测结果图像。
5.优选的,所述根据所述缺陷概率将所述第一检测结果图像分为正常区域、缺陷区域以及不确定区域的步骤,包括:
设定最小概率阈值与最大概率阈值;当所述像素点的缺陷概率小于最小概率阈值时,将该像素点标记为正常点,所述正常点形成的区域为正常区域;当所述像素点的缺陷概率大于最大概率阈值时,将该像素点标记为缺陷点,所述缺陷点形成的区域为缺陷区域;当所述像素点的缺陷概率处于最小概率阈值与最大概率阈值之间时,将该像素点标记为不确定点,所述不确定点形成的区域为不确定区域。
6.优选的,所述根据所述缺陷概率将所述不确定区域自适应划分为多个第一区域的步骤,包括:获取所述不确定区域中每个像素点之间的缺陷概率之差,将所述缺陷概率之差作为距离,根据所述距离自适应划分为多个子区域,将所述子区域的图像作为第一区域。
7.优选的,所述根据所述距离自适应划分为多个子区域的步骤,还包括:根据不同的聚类的类别数量对所述距离进行多次聚类,得到每次聚类的轮廓系数,所述类别数量按照预设梯度依次增加;根据所述轮廓系数得到随类别数量变化的轮廓系数变化曲线,获取所述轮廓系数变化曲线的梯度值,在所述梯度值由大变小时对应的类别数量为最佳类别数量;根据所述最佳类别数量对所述距离进行聚类得到所述多个子区域。
8.优选的,所述在所述初始灰度图像中,提取所述第一区域的每个像素点的邻域特征值的步骤,包括:以每个所述像素点作为目标像素点,获取所述目标像素点与其周围像素点之间的缺陷概率的平均差值,根据所述平均差值获取所述目标像素点的邻域特征值。
9.优选的,所述邻域特征值与所述平均差值呈负相关关系。
10.优选的,所述第二梯度与所述第一梯度呈正相关关系、与所述邻域特征值呈负相关关系。
11.优选的,所述梯度包括梯度大小和方向,则根据所述第二梯度获取统计特征的步骤,包括:将所述第二梯度的梯度方向分为多个角度范围,根据所述角度范围内所有梯度大小的和构成统计向量,根据所述统计向量获取所述统计特征。
12.优选的,所述根据所述最优灰度图像以及所述缺陷区域中像素点的相似度获取第三检测结果图像的步骤,包括:获取所述缺陷区域中每个像素点的第一方向信息,以及所述最优灰度图像中每个像素点的第二方向信息;获取两个像素点对应所述第一方向信息与所述第二方向信息之间的余弦相似度,以及两个像素点之间的距离,根据所述余弦相似度以及所述距离获取对应两个像素点之间的相似度,从而获取第三检测结果图像。
13.第二方面,本发明另一个实施例提供了一种基于图像处理的机械零件应力腐蚀检测系统,该系统包括存储器、处理器以及存储在所述存储器中并可在所述处理器上运行的计算机程序,其特征在于,所述处理器执行所述计算机程序时实现上述方法的步骤。
14.本发明实施例的有益效果在于:通过加权平均法将初始rgb图像转换为初始灰度
图像,对初始灰度图像进行分析获取第一检测结果图像和像素点的缺陷概率,进一步获取第一检测结果图像中的正常区域、缺陷区域以及不确定区域,对不确定区域进行自适应划分得到多个第一区域,利用不同的加权平均系数获取第一区域的第二灰度图像,通过第一区域中每个像素点的邻域特征值对每个像素点的梯度进行修正,从而获取第一区域的统计特征,该统计特征与标准统计特征差异最小时,该特征向量所对应的加权平均系数作为最优系数;通过最优系数获取每个第一rgb图像的最优灰度图像,根据最优灰度图像获取到每个像素点的第二检测缺陷概率,并根据最优灰度图像与缺陷区域图像的相似度获取第三检测缺陷概率,根据第二检测缺陷概率以及第三检测缺陷概率获取最终的检测概率,进一步获取最终的应力腐蚀缺陷区域。通过图像的特征增强,提高了对应力腐蚀区域检测的准确性,并且在提高检测准确度的同时也提升了检测效率。
附图说明
15.为了更清楚地说明本发明实施例或现有技术中的技术方案和优点,下面将对实施例或现有技术描述中所需要使用的附图作简单的介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它附图。
16.图1为本发明一个实施例所提供的一种基于图像处理的机械零件应力腐蚀检测方法流程图;图2为本发明一个实施例所提供的一种机械零件应力腐蚀示意图。
具体实施方式
17.为了更进一步阐述本发明为达成预定发明目的所采取的技术手段及功效,以下结合附图及较佳实施例,对依据本发明提出的一种基于图像处理的机械零件应力腐蚀检测方法及系统,其具体实施方式、结构、特征及其功效,详细说明如下。在下述说明中,不同的“一个实施例”或“另一个实施例”指的不一定是同一实施例。此外,一或多个实施例中的特定特征、结构、或特点可由任何合适形式组合。
18.除非另有定义,本文所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。
19.本发明实施例所适用的具体场景为:在机械零件进行检测维护时,发现零件表面的应力腐蚀缺陷区域。为了解决检测结果不准确的问题,本发明实施例通过加权平均法将初始rgb图像转换为初始灰度图像,对初始灰度图像进行分析获取第一检测结果图像和像素点的缺陷概率,进一步获取第一检测结果图像中的正常区域、缺陷区域以及不确定区域,对不确定区域进行自适应划分得到多个第一区域,利用不同的加权平均系数获取第一区域的第二灰度图像,通过第一区域中每个像素点的邻域特征值对每个像素点的梯度进行修正,从而获取第一区域的统计特征,该统计特征与标准统计特征差异最小时,该统计特征所对应的加权平均系数作为最优系数;通过最优系数获取每个第二rgb图像的最优灰度图像,根据最优灰度图像获取到每个像素点的第二检测缺陷概率,并根据最优灰度图像与缺陷区域图像的相似度获取第三检测缺陷概率,根据第二检测缺陷概率以及第三检测缺陷概率获取最终的检测概率,进一步获取最终的应力腐蚀缺陷区域。通过图像的特征增强,提高了对
应力腐蚀区域检测的准确性,并且在提高检测准确度的同时也提升了检测效率。
20.下面结合附图具体的说明本发明所提供的一种基于图像处理的机械零件应力腐蚀检测方法及系统的具体方案。
21.请参阅图1,其示出了本发明一个实施例提供的一种基于图像处理的机械零件应力腐蚀检测的方法流程图,该方法包括以下步骤:步骤s100,获取机械零件表面的初始rgb图像,根据加权平均法对初始rgb图像进行灰度化得到初始灰度图像,识别初始灰度图像中每个像素点的缺陷概率得到第一检测结果图像;根据缺陷概率将第一检测结果图像分为正常区域、缺陷区域以及不确定区域。
22.具体的,首先,在机械零件检测平台上方安装rgb相机用于采集图像,机械零件的类型可以为齿轮、钢板或者机械装配件,请参阅图2,其对应的应力腐蚀一般为腐蚀裂纹和腐蚀开裂。为了能够完整的采集到机械零件表面的完整图像,rgb相机为高俯视视角拍摄,将采集到的图像作为机械零件表面的初始rgb图像。
23.然后,将采集到的初始rgb图像转换为灰度图像,本发明实施例中采用加权平均法对初始rgb图像进行灰度化,将初始rgb图像的rgb通道值加权求和得到初始灰度图像,具体加权平均法为:其中,表示初始灰度图像;表示初始rgb图像的红色通道值;表示初始rgb图像的绿色通道值;表示初始rgb图像的蓝色通道值,分别为加权平均法的系数。
24.需要说明的是,此处的取经验值,。
25.将获取到的初始灰度图像输入语义分割网络,该语义分割网络的训练过程为:(1)网络的输入为获取到的初始灰度图像;(2)人为的对初始灰度图像进行标记得到标签数据,将初始灰度图像中的应力腐蚀区域标记为1,其余区域标记为0;(3)损失函数采用交叉熵损失函数;(4)网络的输出为第一检测结果图像,该图像中各个像素点的像素值为属于腐蚀区域的缺陷概率。
26.需要说明的是,在本发明实施例中语义分割网络采用现有的unet网络,网络的结构为编码器

解码器结构,在其他实施例中可以采用其他能够实现相同功能的网络,例如deeplabv3等。
27.利用该语义分割网络进行分割后,得到的第一件检测结果图像中可能包含缺陷概率值较低的像素点,该缺陷概率值较低的像素点有可能为语义分割网络的误差判断,因此根据第一检测结果图像在各个像素点的像素值进行进一步的划分。
28.具体的,设定最小概率阈值与最大概率阈值。当像素点的缺陷概率小于最小概率阈值时,将该像素点标记为正常点,正常点形成的区域为正常区域,记为;当像素点的缺陷概率大于最大概率阈值时,将该像素点标记为缺陷点,缺陷点形成的区域为缺陷区域,记为;当像素点的缺陷概率处于最小概率阈值与最大概率阈值之间时,将该像素点标记为不确定点,不确定点形成的区域为不确定区域,记为。
29.需要说明的是,最小概率阈值和最大概率阈值根据实际情况选取,本发明实施例
中取经验值最小概率阈值,最大概率阈值。
30.进一步的,将获取到的缺陷区域中所有像素点的像素值置为1,正常区域以及不确定区域的像素点像素值仍为该像素点的缺陷概率,即可得到应力腐蚀部分区域准确分布图,记为,用于后续的检测结果判断。
31.步骤s200,根据缺陷概率将不确定区域自适应划分为多个第一区域;在初始灰度图像中,提取第一区域的每个像素点的邻域特征值。
32.由于不确定区域内各个像素点的是否为缺陷点并不确定,所以对不确定区域进行进一步的分析。本发明实施例中采用距离聚类的方法得到多个簇,具体的,获取不确定区域中每个像素点之间的缺陷概率之差,将缺陷概率之差作为距离,根据距离自适应划分为多个子区域,将子区域的图像作为第一区域,进而得到自适应划分的不确定区域的多个子区域。
33.根据不同的聚类的类别数量对距离进行多次聚类,得到每次聚类的轮廓系数,类别数量按照预设梯度依次增加;根据轮廓系数得到随类别数量变化的轮廓系数变化曲线,获取轮廓系数变化曲线的梯度值,在梯度值由大变小时对应的类别数量为最佳类别数量;根据最佳类别数量对距离进行聚类得到多个子区域。该距离聚类方法的具体过程为:首先,获取不确定区域内的所有像素点之间的距离,本发明实施例中将各个像素点之间缺陷概率的差异作为像素点之间的距离,即:其中,表示像素点与像素点之间的距离;表示像素点的缺陷概率;表示像素点的缺陷概率。
34.然后,根据定义好的距离公式利用距离聚类算法得到多个簇,设置该距离聚类算法中簇的数目的初始值为2,得到第一聚类结果,获取第一聚类结果的轮廓系数,该轮廓系数为判断聚类算法好坏的有效性指标,轮廓系数的数值越大,表明同一个簇内的像素点的分布越紧凑,分类效果越好。然后将簇的数目增加为3,得到第二聚类结果并获取第二聚类结果的轮廓系数,以此类推,将簇的数目不断增加1进行新的聚类得到新的轮廓系数,根据所有的轮廓系数得到所有聚类结果所对应的轮廓系数变化曲线。
35.需要说明的是,为了避免计算的复杂,本发明实施例中根据不同的图像尺寸对簇的数目设置不同的数值,簇的数目的最大值为图像的面积的八分之一。
36.进一步的,计算获取到的轮廓系数变化曲线的梯度,获得其梯度值首次由大变小时对应的的值,将此时的值作为最终的距离聚类算法中簇的数量。为了便于区分,将此时的簇的数量记为,根据个簇获取到不确定区域自适应划分的个子区域,记为第一区域。
37.需要说明的是,在每个第一区域内,像素点的缺陷概率相近,即每个像素点的应力腐蚀明显程度接近。
38.进一步的,以每个像素点作为目标像素点,获取目标像素点与其周围像素点之间的缺陷概率的平均差值,根据平均差值获取目标像素点的邻域特征值,该邻域特征值与平
均差值呈负相关关系。由于经过距离聚类算法获取到多个第一区域,下面以任意第一区域为例,获取第一区域内所有像素点邻域特征值的具体方法为:以第一区域中的像素点作为目标像素点,本发明实施例中选取目标像素点的八邻域像素点作为一个窗口,获取该窗口中所有像素点的缺陷概率,记为,邻域特征值的具体计算公式为:其中,表示目标像素点的邻域特征值;表示目标像素点第个邻域的像素点的缺陷概率;表示目标像素点的缺陷概率。
39.需要说明的是,邻域特征值的取值范围为,数值越大表示邻域范围内对目标像素点提供的有效辅助信息越多,越容易得到准确的分类结果,当八邻域内所有像素点的缺陷概率与目标像素点的缺陷概率相等时,对应的邻域特征值为1,表示目标像素点八邻域范围内的像素点对目标像素点的检测提供的辅助信息最多,从而表示对目标像素点的检测结果会更准确。
40.基于上述邻域特征值的计算方法,能够得到第一区域内每个像素点的邻域特征值。
41.步骤s300,在初始rgb图像中提取第一区域对应的第二rgb图像,根据加权平均法对第二rgb图像进行灰度化得到第二灰度图像;获取第二灰度图像中每个像素点的第一梯度,根据邻域特征值对第一梯度进行优化获取第二梯度,根据第二梯度获取统计特征。
42.对于不确定区域中的每个第一区域而言,利用步骤s100中加权平均法中的系数并不能很好地得到第一区域中的特征信息,因此需要对加权平均法中的系数进行优化,具体的:获取第一区域在初始rgb图像中的位置区域,将该位置区域图像作为第二rgb图像,利用加权平均法对第二rgb图像进行处理获取第二灰度图像,具体为:其中,表示第二灰度图像;表示第二rgb图像的红色通道值;表示第二rgb图像的绿色通道值;表示第二rgb图像的蓝色通道值;为不同的加权系数组合。
43.需要说明的是,,并且三个系数的取值范围均为。
44.由于应力腐蚀区域主要为腐蚀裂纹和腐蚀开裂,所以应力腐蚀明显的特征主要表现为零件表面的梯度特征。
45.进一步的,本发明实施例中利用sobel算子获取第二灰度图像中每一个像素点的第一梯度,该第一梯度包括梯度的大小和方向,考虑到第二灰度图像中每个像素点的邻域特征值不同,利用每个像素点的邻域特征值对该像素点的梯度进行修正,第二梯度与第一梯度呈正相关关系、与邻域特征值呈负相关关系,具体方法为: 其中,表示对像素点的第一梯度修正后的第二梯度;
表示像素点的第一梯度;表示像素点的邻域特征值。
46.需要说明的是,由于像素点邻域特征值越大,表明该像素点的有效辅助信息越多,所以对应像素点具有较小的第一梯度值时也能具有较为准确地检测结果,对像素点第一梯度进行修正的目的是为了让邻域特征值较小的点能够保留较大的第二梯度,从而使得检测的结果较为准确,对于邻域特征值较大的点在适当降低第一梯度值时也能具有较为准确的分类结果,从而达到整体优化的目的。
47.进一步的,根据获取到的第二梯度的大小和方向获取第一区域的统计特征,将第二梯度的梯度方向分为多个角度范围,根据角度范围内所有梯度大小的和构成统计向量,根据统计向量获取统计特征。
48.具体的,第二梯度方向的取值范围为,将该范围等分为多个角度范围,本发明实施例中将方向范围等分为360个角度范围,统计在每一个角度范围内的第二梯度大小的总和,根据360个角度范围的第二梯度大小的总和构成一行360列的统计向量,计算统计向量中的每一个元素与整体统计向量的模长的比值,进行归一化操作,将归一化之后的统计向量作为第一区域的统计特征,由此可以获取在不同加权系数下的第一区域的统计特征。
49.步骤s400,获取缺陷区域的标准统计特征,获取与标准统计特征差异最小的最优统计特征,最优统计特征对应的加权平均法的系数为最优系数。
50.由于缺陷区域为缺陷概率较高的区域,所以该区域内每个像素点的应力腐蚀特征都较为明显,因此将缺陷区域的统计特征作为标准统计特征,该标准统计特征与缺陷区域的空间位置、面积大小以及特征空间均无关系,只反映明显的应力腐蚀特征。
51.基于步骤s300中获取第一区域统计特征相同的原理,获取缺陷区域的统计特征称为标准统计特征,计算不同加权系数下第一区域的统计特征与标准统计特征的差值,将差值最小的统计特征称为最优统计特征,构建加权系数最优化模型如下:其中,表示最优系数;表示统计特征;表示标准统计特征。
52.进一步的,本发明实施例中利用梯度下降法对加权系数最优化模型进行计算获取最优系数,在其他实施例中还可以利用爬山算法、模拟退火算法等寻优算法进行计算。
53.步骤s500,采用最优系数的加权平均法对第二rgb图像进行灰度化得到最优灰度图像,根据最优灰度图像获取第二检测结果图像,根据最优灰度图像以及缺陷区域中像素点的相似度获取第三检测结果图像,第二检测结果图像与第三检测结果图像的均值作为最终检测结果图像。
54.根据步骤s400中获取到的最优系数的方法,获取每个第二rgb图像的最优系数,利用加权平均法对每个第二rgb图像进行灰度化,从而得到每个第二rgb图像的特征增强后的最优灰度图像,将获取到的最优灰度图像输入步骤s100中的语义分割网络中获取第二检测结果图像及其图像中每个像素点的第二检测缺陷概率。
55.为了对该区域进行更为准确的检测,进一步通过获取缺陷区域中每个像素点的第一方向信息,以及最优灰度图像中每个像素点的第二方向信息;获取两个像素点对应第一
方向信息与第二方向信息之间的余弦相似度,以及两个像素点之间的距离,根据余弦相似度以及距离获取对应两个像素点之间的相似度,从而获取第三检测结果图像。
56.具体的,获取缺陷区域中每个像素点的八邻域范围内质心,质心的计算公式可以利用该八邻域范围内图像的一阶矩和零阶矩来获得,具体手段不做赘述;获取该像素点指向质心的方向向量,将该方向向量作为该像素点的第一方向信息。
57.基于获取第一方向信息相同的原理,获取最优灰度图像中每个像素点的第二方向信息。
58.对于一个机械零件而言,其表面的应力腐蚀分布应该较为集中,并且已经出现应力腐蚀的缺陷区域可能会出现新的裂纹扩展,其扩展的方向沿着裂纹生长延伸的方向,所以基于与准确的应力腐蚀区域的相似度进行进一步的检测。
59.提取步骤s100中获取到的应力腐蚀部分区域准确分布图的应力腐蚀区域,记为,根据最优灰度图像中的像素点以及中的像素点的相似度获取第三检测结果图像中每个像素点第三检测缺陷概率:像中每个像素点第三检测缺陷概率:其中,表示第三检测结果图像中像素点的第三检测缺陷概率;表示像素点的第一方向信息;表示像素点的第二方向信息;表示最优灰度图像中像素点与中的像素点的欧式距离;表示最优灰度图像中像素点与中任意像素点的所有的欧式距离之和;表示第一方向信息与第二方向信息的余弦相似度,用于度量方向的相似性。
60.根据获取到的每个像素点的第二检测缺陷概率以及第三检测缺陷概率获取每个像素点的最终检测概率为:其中,表示像素点最终检测概率;表示像素点的第二检测缺陷概率;表示像素点的第三检测缺陷概率。
61.由此,可以获取到最优灰度图像中每个像素点的最终检测概率,取经验概率阈值0.6,当最终检测概率大于概率阈值0.6时,即为缺陷像素点,得到最优灰度图像中的全部缺陷像素点,根据缺陷像素点获取到最终缺陷区域。
62.根据步骤s100中获取到的缺陷区域以及最终缺陷区域的并集,作为初始rgb图像中的完整缺陷区域。
63.综上所述,本发明实施例中通过加权平均法将初始rgb图像转换为初始灰度图像,
对初始灰度图像进行分析获取第一检测结果图像和像素点的缺陷概率,进一步获取第一检测结果图像中的正常区域、缺陷区域以及不确定区域,对不确定区域进行自适应划分得到多个第一区域,利用不同的加权平均系数获取第一区域的第二灰度图像,通过第一区域中每个像素点的邻域特征值对每个像素点的梯度进行修正,从而获取第一区域的统计特征,该统计特征与标准统计特征差异最小时,该特征向量所对应的加权平均系数作为最优系数;通过最优系数获取每个第一rgb图像的最优灰度图像,根据最优灰度图像获取到每个像素点的第二检测缺陷概率,并根据最优灰度图像与缺陷区域图像的相似度获取第三检测缺陷概率,根据第二检测缺陷概率以及第三检测缺陷概率获取最终的检测概率,进一步获取最终的应力腐蚀缺陷区域。通过图像的特征增强,提高了对应力腐蚀区域检测的准确性,并且在提高检测准确度的同时也提升了检测效率。
64.基于与上述方法实施例相同的发明构思,本发明实施例还提供了一种基于图像处理的机械零件应力腐蚀检测系统,该系统包括:处理器、存储器以及存储在所述存储器中并可在处理器上运行的计算机程序。处理器执行所述计算机程序时实现上述一种基于图像处理的机械零件应力腐蚀检测方法实施例中的步骤,例如图1所示的步骤。该一种基于图像处理的机械零件应力腐蚀检测方法在上述实施例中已经详细说明,不再赘述。
65.需要说明的是:上述本发明实施例先后顺序仅仅为了描述,不代表实施例的优劣。且上述对本说明书特定实施例进行了描述。其它实施例在所附权利要求书的范围内。在一些情况下,在权利要求书中记载的动作或步骤可以按照不同于实施例中的顺序来执行并且仍然可以实现期望的结果。另外,在附图中描绘的过程不一定要求示出的特定顺序或者连续顺序才能实现期望的结果。在某些实施方式中,多任务处理和并行处理也是可以的或者可能是有利的。
66.本说明书中的各个实施例均采用递进的方式描述,各个实施例之间相同相似的部分互相参见即可,每个实施例重点说明的都是与其他实施例的不同之处。
67.以上所述仅为本发明的较佳实施例,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。
再多了解一些

本文用于企业家、创业者技术爱好者查询,结果仅供参考。

发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表

相关文献