一种残膜回收机防缠绕挑膜装置的制 一种秧草收获机用电力驱动行走机构

一种过零脉冲计数缺相检测电路的制作方法

2021-11-22 13:26:00 来源:中国专利 TAG:


1.本发明属于电路缺相检测技术领域,具体涉及一种过零脉冲计数缺相检测电路。


背景技术:

2.三相电路系统的缺相状态是常见故障之一,其现象为三相中的一相不能工作,导致电机出现抖动、转动无力或噪声巨大等异常状况,如果缺少保护装置,极易导致电机、控制器等装置被烧毁。在对缺相故障实施监测时,现有技术常采用三相缺相检测电路中的光耦装置进行实时电压检测,但是,电压式检测缺相电路的方式容易因电压波动而产生误报、不报等情况,例如三相电机在缺相情况下,其电机仍然会继续运转一段时间,此过程中,电机的继续运转会等效为发电机功能并给缺相绕组产生产生感应电动势,从而导致缺相绕组自行发电并输出电压,从而令提电压检测电路受到干扰,并引发漏报事故。因三相缺相电压检测模块的漏报缺陷而引发器件烧毁的事故层出不穷,因此,需要一种新的技术方案加以解决。


技术实现要素:

3.针对上述现有技术中的不足,本发明提供了一种过零脉冲计数缺相检测电路,用以有效克服三相缺相检测的漏报缺陷,提高缺陷检测准确性并保障三相系统使用安全。
4.本发明通过以下技术方案实施:一种过零脉冲计数缺相检测电路,包括三相电源、直流源、三个转换模块、计数模块、报警模块。其中,所述三相电源可输出三相交流电,其每相输出通过导线连接于一个所述转换模块,转换模块具有通过光耦实现电信号转换的功能,三个转换模块的所述光耦的发射极共同连接于所述计数模块的计数端;计数模块的所述计数端通过并联方式分别连接于充电电阻、下拉电阻与一个pnp三极管的基极,所述充电电阻另一端连于所述pnp三极管的发射极,所述下拉电阻另一端与pnp三极管集电极共同接地;pnp三极管发射极还与一个场效应管的栅极相连,并通过一个充电电容接地;所述场效应管的源极接地、漏极通过一个上拉电阻连接于所述直流源正极;所述充电电容的充电端也与pnp三极管的发射极相连,充电电容与充电电阻所组成串联系统的充电时间常数≥20ms;场效应管的漏极与所述上拉电阻之间的线路连有报警模块的触发端,所述报警模块通过触发端的高电平触发报警功能。
5.进一步的,所述三相电源通过三个分压电阻、三个整流二极管构成的三相半桥整流电路对所述转换模块的三个所述光耦的检测端输出三相半波检测信号。
6.进一步的,所述三相电源通过三个分压电阻组成的三相电路对所述转换模块的三个所述光耦的检测端输出三相全部检测信号,此处所用光耦的类型为交流光耦。
7.进一步的,所述报警模块的所述触发端连有一个npn三极管的基极,所述npn三极管的发射极接地,其集电极连有一个报警器的输出端,所述报警器的输入端通过一个限流电阻连接至所述直流源正极。
8.进一步的,所述三相电源为工频电源,同时用于驱动三相负载。
9.进一步的,三个所述光耦的正极分别通过分压电阻各自连接于所述三相电源中的一相,三个光耦的负极互相连接,同时三个所述光耦的集电极均连接于所述直流源正极。
10.进一步的,所述充电电容与所述充电电阻所组成串联系统的充电时间常数处于20~100ms范围内。
11.进一步的,所述充电电容容值(单位μf)与所述充电电阻阻值(单位kω)的乘积大于20。
12.进一步的,所述报警模块的所述触发端还连接于一个反馈模块的检测端,同时所述反馈模块的激励端连接于所述三相电源所连接三相负载的控制开关触点。
13.进一步的,所述报警模块的所述触发端、所述计数模块的所述充电端分别连接于一个反馈模块的异或门的两个输入端,同时所述异或门的输出端连接于信号源,同时还连接于所述三相电源所连接三相负载的控制开关触点。
14.本发明的有益效果是:
15.1.本发明利用充电电阻、充电电容、pnp三极管及场效应管组成的电流驱动式缺相脉冲检测功能,以电流驱动取代传统电压驱动,将光耦电流转换的三相正弦半波输出至计数模块中对充电电容充电,根据三相半波整流滤波公式以确保最小电压不过零点,且根据充电时间常数的参数设计,只有当20ms周期内在计数端连续输出三个正弦半波电流并保持不间断,才能令充电电容保持满电状态并使场效应管导通;若工频三相电源中的某一支发生缺相故障,则计数端缺相电流过零且其充电周期不能达到容阻串联系统所需的充电时间常数,进而令充电电容反向放电并造成三极管发射极与地线导通,从而关断场效应管并使其漏极出现高电位而触发报警模块;此时,即使三相电机的持续运转令其绕组线圈产生感应电动势并造成针对检测电路的干扰电压,也会因感应电动势功率不足而无法形成足够的充电电流令充电电容充满,以此有效防止感应电压干扰检测模块产生误报的可能,保持计数模块对缺相故障的报警触发状态并以此提高缺相检测的准确性,保障三相系统的安全、稳定使用。
16.2.本发明在不受干扰电动势影响而对缺陷电路进行精准检测的同时,其功能部件成本低廉、易于实施、操作方便且故障率低,相较于现有检测模块,具有较好的经济与推广价值。
17.3.本发明的计算模块、反馈模块与三相控制开关形成联动控制功能可确保三相电机的安全运转与及时关断,保障三相负载不被缺相电烧毁;同时以反馈模块异或逻辑门对触发端、充电端的逻辑比较功能进一步降低因元器件故障而引发的误报、漏报概率,并借由报警器与信号源快速排查出相应的故障部位,令三相系统缺相警报的精准度提升为极高水准,在重要设备的三相驱动应用中具有较好的安全实用价值。
附图说明
18.图1是本发明的结构示意图;
19.图2是本发明的功能模块图;
20.图3是本发明的逻辑控制图;
21.图4是本发明中计数端于正常状态的仿真测试图;
22.图5是本发明中计数端于正常状态的示波器波形图;
23.图6是本发明中计数端于缺相状态的仿真测试图;
24.图7是本发明中计数端于缺相状态的示波器波形图;
25.图8是本发明中充电端于缺相状态的仿真测试图。
26.图中:1

三相电源,2

直流源,3

转换模块,u1

光耦,r1

分压电阻,d1

整流二极管,4

计数模块,4a

计数端,4b

充电端,r2

充电电阻,r3

下拉电阻,q1

pnp三极管,m1

场效应管,c1

充电电容,r4

上拉电阻,5

报警模块,5a

触发端,r5

限流电阻,d2

报警器,q2

npn三极管,6

反馈模块,6a

异或门,6b

信号源,7

三相负载,8

控制开关。
具体实施方式
27.下面结合说明书附图及实施例对本发明作进一步的详细描述。
28.实施例一
29.如图1所示,一种过零脉冲计数缺相检测电路,包括三相电源1、直流源2、三个转换模块3、计数模块4、报警模块5。其中,所述三相电源1可输出工频三相交流电,三相电源1通过三个分压电阻r1、三个整流二极管d1构成的三相半桥整流电路对所述转换模块3的检测端输出三相半波检测信号,同时三相电源1还通过支路驱动三相电机;转换模块3的三个光耦u1正极分别通过分压电阻r1各自连接于三相电源1中的一相,三个光耦u1的负极互相连接,同时所有光耦u1的集电极均连接于所述直流源2正极,此外,三个光耦u1的发射极共同连接于所述计数模块4的计数端4a;计数模块4的所述计数端4a通过并联方式分别连接于充电电阻r2、下拉电阻r3与一个pnp三极管q1的基极,所述充电电阻r2另一端连于所述pnp三极管q1的发射极,所述下拉电阻r3另一端与pnp三极管q1集电极共同接地;pnp三极管q1发射极还与一个场效应管m1的栅极相连,并通过一个充电电容c1接地;所述场效应管m1的源极接地、漏极通过一个上拉电阻r4连接于所述直流源2正极;所述充电电容c1的充电端4b也与pnp三极管q1的发射极相连,充电电容c1容值(单位μf)与充电电阻r2阻值(单位kω)的乘积大于20,从而令两者所组成串联系统的充电时间常数处于20~100ms范围内;场效应管m1的漏极与所述上拉电阻r4之间的线路连有报警模块5的触发端5a,所述报警模块5的所述触发端5a连有一个npn三极管q2的基极,所述npn三极管q2的发射极接地,其集电极连有一个声光报警器d2的输出端,所述报警器d2的输入端通过一个限流电阻r5连接至所述直流源2正极。
30.本实施例的工作原理如下:
31.s1:开启三相电源1及其连接的三相电机实施电机传动作业,此时触发转换模块3、计数模块4的电信号转变功能,三相交流电经图1所示的多个分压电阻r1、整流二极管d1所组成的三相半桥整流电路形成三相半波,并分别输送至三个光耦u1的正极,光耦u1经电压输入后将转换成的光电流输出汇集至计数模块4的计数端4a,此时,若三相电为完整无损波段,,根据三相半波整流滤波公式:
32.umin=up
·
sin[1/2(180
°‑
120
°
)]=1/2up
[0033]
得出最小电压umin为输入电压up的1/2,因此可确保umin不过零点。通过仿真软件ltspiceiv得到此时计数端4a波形图如图4所示,或通过示波器ds1104z检测得出计数端4a波形图如图5所示,两图检测结果与计算结果一致,并显示:三相电经半桥、光耦u1转换及汇聚作用形成每20ms周期内含有三个相同半波脉冲,与工频(50hz)周期一致,且最低电压约
为4.75v,因此整个半波脉冲皆处于高电平位置。由于充电电阻r2、充电电容c1的设计参数参照公式t=rc≥20,令两者组成串联系统的充电时间常数≥20ms,因此每20ms周期内出现交替连续的三相半波可将其充至满电状态,此时充电端4b与场效应管m1栅极电平被拉高,致使场效应管m1漏极导通接地,触发端5a电平被拉低,从而令报警模块5中的npn三极管q2关断,使报警器d2处于关闭状态。
[0034]
s2:当三相电源1中的其中一相出现缺相故障,并借由三相电机持续运转所引起线圈绕组的感应电动势而在缺相支路上产生干扰电压时,此时各相电压照常输入光耦u1产生光电转换,并将三个光耦u1所激发的光电流汇集至计数端4a,由于电机绕组感应电动势的功率损耗,以致缺相支路干扰电压的功率不足,其于光耦u1内激发的光信号及光电流强度较弱,因此在计数端4a重新汇集的三相电信号会重新出现缺相现象,此时可通过仿真软件ltspiceiv得到此时计数端4a波形图如图6所示,或通过示波器ds1104z检测得出计数端4a波形图如图7所示,两图检测结果一致显示:每20ms周期内计数端4a仅出现二个半波脉冲,且缺相处波谷附近电压接近或达到零电平,因此将导致充电端4b电压高于计数端4a,从而按照充电端4b、pnp三极管q1发射极、pnp三极管q1基极、计数端4a的顺序形成放电电流,此时在pnp三极管q1内形成开启条件并触发导通,充电电容c1的全部电荷经pnp三极管q1发射极、集电极释放至地线(此时充电端4b电压波形如图8所示),充电端4b于每个缺相周期的过零放电以致场效应管m1栅极电平被持续拉低并使其内部关断,从而将触发端5a电位抬高并激活开启报警模块5的npn三极管q2,直流源2电流经npn三极管q2进入地线形成回路并在报警器d2处产生驱动电流,进而触发其声光报警功能令操作人员及时采取缺相维护措施。
[0035]
实施例二
[0036]
本实施例与实施例一的不同在于取消了整流二极管d1,并将光耦u1类型限定为交流光耦u1,从而直接对三相全波信号实施精确检测并以此扩展实施类型。
[0037]
本实施例电路仅需将图1所示整流二极管d1取消,而后光耦u1类型限定为交流光耦u1,从而直接将三相全波信号输入至三个交流光耦u1的检测端,此时由光耦u1自身的受光器将全波信号转换为光电流脉冲,与实施例一同理,当三相电源1出现缺相故障时,即使出现负载干扰电势也可令计数端4a脉冲过零,并通过放电电容放电触发报警模块5的触发端5a,进而激活报警器d2的声光报警功能。
[0038]
对比例一
[0039]
本对比例描述了充电电容c1、充电电阻r2在错误的参数设计下,得到不适宜的充电时间常数并引发技术模块故障,进而与实施例的正确参数形成对比。
[0040]
当充电电阻r2、充电电容c1设计参数令充电时间常数t=rc≤20ms时,由于无需超过20ms周期即可将充电电容c1充满,即使计数端4a即使因缺相而仅存二个周期内的半波,依然能将充电电容c1充满而无法触发场效应管m1及后续报警模块5,从而引发三相电源1缺相的漏报现象,导致三相负载7被烧毁。
[0041]
实施例三
[0042]
本实施例与实施例一的不同在于增加了反馈模块6,从而对三相负载7实现缺相关断的自动维护功能。
[0043]
如图2所示,所述报警模块5的触发端5a还连接于一个反馈模块6的检测端,同时所述反馈模块6的激励端连接于所述三相电源1所连接三相负载7的控制开关8触点,所述三相
负载7为三相电机,并通过三相四线接法与三相电源1连接,所述控制开关8为电子继电器。
[0044]
本实施例工作原理如下:
[0045]
当三相电源1正常运作时,报警模块5触发端5a的低电平使反馈模块6处于待机状态;当三相电源1出现缺相故障,与实施例一同理,触发端5a跳变为高电平,反馈模块6检测端检测到高电位信号,从而对控制开关8输出控制信号并使其电子继电器关断,从而令三相电机及时与缺相电源切断连结,防止电机被缺相脉冲驱动烧毁,保障三相负载7及功能部件的完整性。
[0046]
实施例四
[0047]
本实施例与实施例三的不同在于对反馈模块6进行了逻辑功能设定,从而预防检测元器件自身故障而引发的报警错误,进一步提升重要设备三相驱动缺相检测的精确性。
[0048]
如图3所示,报警模块5的触发端5a、计数模块4的充电端4b分别连接于一个反馈模块6的异或门6a的两个输入端,同时所述异或门6a的输出端连接于所述三相电源1所连接三相负载7的控制开关8触点。此时根据异或门6a功能,仅有当触发端5a与充电端4b电平相异时,异或门6a才输出高电平。此时与实施例一同理,三相电源1处于正常状态时,计数端4a的半波脉冲不过零,充电端4b持续充电至高电平,因而场效应管m1导通致使触发端5a接地;三相电源1缺相时,计数端4a脉冲过零,充电端4b被接地放电,导致场效应管m1关断而使触发端5a变为高电平。因此,在功能部件完整的情况下,无论三相电源1是否缺相,触发端5a与充电端4b电平始终相异;而检测元器件自身引起故障则会导致异或门6a两输入端电平相同,如下表所示:
[0049][0050]
当报警器d2被触发声光报警,则据实施例一原理分析为三相电源1缺陷导致,操作人员可对三相系统进行故障排查,若三相电源1无故障问题,则说明计数端4a所连接的功能部件被击穿而导致接地,因此可对npn三极管q2进行排查。
[0051]
当信号源6b被触发声光报警,则根据上表分析,可能为场效应管m1烧毁导致异常关断、或击穿而导致异常导通,以致充电端4b与触发端5a同时出现高电平或低电平,从而触发异或门6a输出低电平(此时可根据信号源6b及控制开关8触发信号所需的电平类型选择在其前端电路增加反相器),从而启动信号源6b报警,此时操作人员可对场效应管m1进行故障排查。
[0052]
如图2

3所示,由于反馈模块6的激励端、异或门6a的输出端皆连接至控制开关8触点,因此报警器d2、信号源6b其中任何一个发出报警信号,皆可有效触发控制开关8及时关断,保障电流负载安全并以便于人为排查。
[0053]
以上所述仅为本发明的优选实施例,并不用于对本发明作出形式上的限定。对于本领域内的技术人员来说,在不脱离本发明特征及构思的前提下,还可作出其他修改、变更与替换,这些都应涵盖于本发明的保护范围之内。
再多了解一些

本文用于企业家、创业者技术爱好者查询,结果仅供参考。

发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表

相关文献