一种残膜回收机防缠绕挑膜装置的制 一种秧草收获机用电力驱动行走机构

一种基于反演数据和实测数据融合的水文预报方法及系统与流程

2021-11-18 01:49:00 来源:中国专利 TAG:


1.本发明涉及组合水文预报领域,尤其涉及一种基于反演数据和实测数据融合的水文预报方法及系统。


背景技术:

2.水文预报是指根据前期或现时的水文气象资料,对某一水体、地区或者水文站在未来一定时间内的水文情况做出定性或者定量的预测,按照预报时间的长短,可以划分为实时、短期、中期和长期水文预报,对实际生产生活中的流域旱涝灾害防治、水资源科学分配等问题提供重要决策支撑。在全球气候变化和人类活动的双重影响下,水文过程受到的不确定性因素加大,导致开展准确水文预报的难度急剧增大,利用传统的单一水文模型难以实现现有水文预报相关任务。


技术实现要素:

3.为了解决上述技术问题,本发明的目的是提供一种基于反演数据和实测数据融合的水文预报方法及系统,提高水文预报精度。
4.本发明所采用的第一技术方案是:一种基于反演数据和实测数据融合的水文预报方法,包括以下步骤:
5.采集实测数据并根据实测数据构建mike

she水文模型;
6.基于mike

she水文模型得到反演数据;
7.将实测数据和反演数据融合,得到融合数据;
8.基于融合数据构建多个机器学习模型;
9.基于综合评价法对各机器学习模型赋权,开展实时组合水文预报。
10.进一步,所述采集实测数据并根据实测数据构建mike

she水文模型这一步骤,其具体包括:
11.采集研究区域的降雨、蒸发、流量、水位数据和洪水数据;
12.根据洪水数据中洪水过程线的起涨点和退水终止点划分出洪水场次,并将相关降雨、蒸发、流量和水位数据按照洪水场次划分;
13.将划分好的洪水场次按照7:3划分为训练数据和测试数据;
14.基于训练数据构建mike

she水文模型;
15.基于测试数据验证mike

she水文模型。
16.进一步,所述基于mike

she水文模型得到反演数据这一步骤,其具体还包括:
17.设定不同重现期降雨或干旱条件的特殊工况;
18.将特殊工况下的水文数据作为率定参数输入至mike

she水文模型,得到水位和流量数据;
19.将水位和流量数据按照洪水场次进行数据划分,得到划分后的反演数据。
20.进一步,所述将实测数据和反演数据融合,得到融合数据这一步骤,其具体包括:
21.采用som算法对实测数据和反演数据的所有洪水场次进行分类,得到分类后的数据;
22.利用deep learning算法对分类后的数据进行融合,得到融合数据。
23.进一步,所述基于融合数据构建多个机器学习模型这一步骤,其具体包括:
24.基于融合数据分别训练多层前馈式神经网络机器学习模型、局部回归神经网络机器学习模型和神经网络lstm机器学习模型;
25.输入实测数据并基于多层前馈式神经网络机器学习模型、局部回归神经网络机器学习模型和神经网络lstm机器学习模型得到对应的水文预报结果。
26.进一步,所述基于综合评价法对各机器学习模型赋权,开展实时组合水文预报这一步骤,其具体包括:
27.选择指标对水文预报结果进行评价,得到指标评价结果;
28.基于指标评价结果确定各机器学习模型权重,并开展实时组合水文预报。
29.进一步,所述指标包括:
30.评价对洪峰预报准确相关的洪峰流量相对误差和峰现时间误差指标;
31.评价对洪量预报准确相关的总洪量相对平衡误差指标;
32.评价径流过程预报准确性的纳什系数指标。
33.本发明所采用的第二技术方案是:一种基于反演数据和实测数据融合的水文预报系统,包括:
34.水文模型构建模块,用于采集实测数据并根据实测数据构建mike

she水文模型;
35.数据反演模块,基于mike

she水文模型得到反演数据;
36.数据融合模块,用于将实测数据和反演数据融合,得到融合数据;
37.多机器学习模块构建模块,基于融合数据构建多个机器学习模型;
38.预报模块,基于综合评价法对各机器学习模型赋权,开展实时组合水文预报。
39.本发明方法及系统的有益效果是:本发明通过将实测数据和反演数据进行融合,扩充数据样本容量,利用机器学习算法的高效计算能力实现权重的实时更新,结合多指标综合评价获得合理权重,从而提升预报结果精度。
附图说明
40.图1是本发明一种基于反演数据和实测数据融合的水文预报的步骤流程图;
41.图2是本发明具体实施例流程示意图;
42.图3是本发明一种基于反演数据和实测数据融合的水文预报系统的结构框图。
具体实施方式
43.下面结合附图和具体实施例对本发明做进一步的详细说明。对于以下实施例中的步骤编号,其仅为了便于阐述说明而设置,对步骤之间的顺序不做任何限定,实施例中的各步骤的执行顺序均可根据本领域技术人员的理解来进行适应性调整。
44.参照图1和图2,本发明提供了一种基于反演数据和实测数据融合的水文预报方法,该方法包括以下步骤:
45.采集实测数据并根据实测数据构建mike

she水文模型;
46.基于mike

she水文模型得到反演数据;
47.将实测数据和反演数据融合,得到融合数据;
48.具体地,通过数据融合解决数据的全面性问题。
49.基于融合数据构建多个机器学习模型;
50.具体地,构建多个机器学习模型解决单一传统模型的精度不足的问题。
51.基于综合评价法对各机器学习模型赋权,开展实时组合水文预报。
52.具体地,引入多个评价指标并采用综合评价方法对模型结果进行评估并分配合适的权重,有利于解决权重确定不够严谨的问题,提供高精度实时水文预报。
53.进一步作为本方法的优选实施例,所述采集实测数据并根据实测数据构建mike

she水文模型这一步骤,其具体包括:
54.采集研究区域的降雨、蒸发、流量、水位数据和洪水数据;
55.根据洪水数据中洪水过程线的起涨点和退水终止点划分出洪水场次,并将相关降雨、蒸发、流量和水位数据按照洪水场次划分;
56.将划分好的洪水场次按照7:3划分为训练数据和测试数据;
57.基于训练数据构建mike

she水文模型;
58.基于测试数据验证mike

she水文模型。
59.具体地,训练阶段洪水用来率定参数,测试阶段洪水用来检验参数的率定效果,如果率定阶段表现不好,则需要重新率定参数。
60.进一步作为本方法的优选实施例,所述基于mike

she水文模型得到反演数据这一步骤,其具体还包括:
61.设定不同重现期降雨或干旱条件的特殊工况;
62.将特殊工况下的水文数据作为率定参数输入至mike

she水文模型,得到水位和流量数据;
63.将水位和流量数据按照洪水场次进行数据划分,得到划分后的反演数据。
64.具体地,重现期包括100年、200年、500年、1000年等,将特殊工况中包括降雨、蒸发等数据作为mike

she模型的输入,利用率定好参数的模型进行下游监测断面的特殊工况水位和流量。
65.进一步作为本方法的优选实施例,所述将实测数据和反演数据融合,得到融合数据这一步骤,其具体包括:
66.采用som算法对实测数据和反演数据的所有洪水场次进行分类,得到分类后的数据;
67.利用deep learning算法对分类后的数据进行融合,得到融合数据。
68.进一步作为本方法优选实施例,所述基于融合数据构建多个机器学习模型这一步骤,其具体包括:
69.基于融合数据分别训练多层前馈式神经网络机器学习模型、局部回归神经网络机器学习模型和神经网络lstm机器学习模型;
70.输入实测数据并基于多层前馈式神经网络机器学习模型、局部回归神经网络机器学习模型和神经网络lstm机器学习模型得到对应的水文预报结果。
71.具体地,基于误差逆向传播训练的多层前馈式神经网络bp(backpropagation)算
法;具有局部记忆单元和局部反馈连接的局部回归神经网络elman算法,属于在bp算法上的改进;基于全局记忆模块能很好解决长时依赖问题的神经网络lstm(long short term mermory)算法,属于在elman算法上的改进;所选取的三种机器学习算法在结构上具有传承性,各有优缺点,均在水文预报领域得到广泛应用。
72.进一步作为本方法优选实施例,所述基于综合评价法对各机器学习模型赋权,开展实时组合水文预报这一步骤,其具体包括:
73.选择指标对水文预报结果进行评价,得到指标评价结果;
74.基于指标评价结果确定各机器学习模型权重,并开展实时组合水文预报。
75.进一步作为本方法优选实施例,所述指标包括:
76.评价对洪峰预报准确相关的洪峰流量相对误差和峰现时间误差指标;
77.洪峰相对误差合格率指标:
[0078][0079][0080]
其中,q
e
代表洪峰流量相对误差系数,q
er
代表洪峰相对误差合格率,q
o,m
代表模型预报洪峰流量值,q
m
代表流域实测洪峰流量值,n
q
代表误差合格的洪水场次,取q
e
≤20%为合格洪水场次,n
sum
代表总的洪水场次。
[0081]
峰现时间误差合格率指标:
[0082]
t
e
=|t(q
o,m
)

t(q
m
)|
[0083][0084]
其中,t
e
代表峰现时间误差,t(q
o,m
)代表预报洪峰流量出现时间,t(q
m
)代表流域实测洪峰流量出现时间,t
er
代表峰现时间误差合格率,n
t
代表误差合格的洪水场次,取te≤2为合格洪水场次,n
sum
代表总的洪水场次。
[0085]
评价对洪量预报准确相关的总洪量相对平衡误差指标;
[0086]
总洪量相对平衡误差指标:
[0087][0088]
其中,i
vf
代表洪量平衡相对误差;q
t
代表实时观测流量值;q
o,t
代表模型预报流量值。
[0089]
评价径流过程预报准确性的纳什系数指标;
[0090]
纳什系数指标:
[0091][0092]
其中,nse代表纳什系数,q
t
代表实时观测流量值,q
o,t
代表模型预报流量值,代表实测值均值。
[0093]
如图3所示,一种基于反演数据和实测数据融合的水文预报系统,包括:
[0094]
水文模型构建模块,用于采集实测数据并根据实测数据构建mike

she水文模型;
[0095]
数据反演模块,基于mike

she水文模型得到反演数据;
[0096]
数据融合模块,用于将实测数据和反演数据融合,得到融合数据;
[0097]
多机器学习模块构建模块,基于融合数据构建多个机器学习模型;
[0098]
预报模块,基于综合评价法对各机器学习模型赋权,开展实时组合水文预报。
[0099]
上述方法实施例中的内容均适用于本系统实施例中,本系统实施例所具体实现的功能与上述方法实施例相同,并且达到的有益效果与上述方法实施例所达到的有益效果也相同。
[0100]
以上是对本发明的较佳实施进行了具体说明,但本发明创造并不限于所述实施例,熟悉本领域的技术人员在不违背本发明精神的前提下还可做作出种种的等同变形或替换,这些等同的变形或替换均包含在本技术权利要求所限定的范围内。
再多了解一些

本文用于企业家、创业者技术爱好者查询,结果仅供参考。

发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表

相关文献