一种残膜回收机防缠绕挑膜装置的制 一种秧草收获机用电力驱动行走机构

一种方形铝壳低温倍率型锂离子电池及其制备方法与流程

2021-11-05 23:01:00 来源:中国专利 TAG:


1.本发明属于锂离子电池技术领域,具体属于一种方形铝壳低温倍率型锂离子电池及其制备方法。


背景技术:

2.磷酸铁锂电池因具有高安全性和长循环寿命成为动力电池能源首选,但其低温下电池电解液的电导率降低,界面阻抗增大和sei膜变差,导致电池整体阻抗增大,加之材料自身导电性较差,使其在高寒地区及特种工况下的应用受限,提高低温性能是扩展磷酸铁锂电池应用的关键因素。
3.现有的低温电池正极材料基本都是钴酸锂或者三元材料,而且电池结构以软包叠片和圆柱居多,圆柱的容量和倍率有限,散热也不好,软包叠片结构不稳定,这两者都不利于大规模pack成组;材料体系采用正负极材料改性及优化电解液组成可以明显提高磷酸铁锂低温性能,但改善空间有限;还有通过添加成膜添加剂等改善sei膜性能进而提高电池低温性能,但可能会带来其它性能折扣;还有通过设计自加热装置改善电池低温性能,但也并不能从根本上解决电池低温差的问题。


技术实现要素:

4.为了解决现有技术中存在的问题,本发明提供一种方形铝壳低温倍率型锂离子电池及其制备方法,为提高磷酸铁锂电池的低温性能,以简单工艺,通过正负极材料的选型优化,采用涂胶陶瓷隔膜和非晶态电解液,将化成后电池高温搁置随即快速冷却处理,有效制备出一种兼具低温和倍率性能的长寿命方形铝壳低温倍率型锂离子电池。
5.为实现上述目的,本发明提供如下技术方案:一种方形铝壳低温倍率型锂离子电池的制备方法,具体步骤如下:
6.s1将正极活性物质、导电炭黑、碳纳米管导电浆料、聚偏氟乙烯粘结剂和分散剂混合得到第一前驱体,在第一前驱体中加入氮甲基吡咯烷酮调节粘度得到正极浆料,将正极浆料涂覆在铝箔上面,经涂布、辊压、分切,形成侧边留箔正极极片;
7.s2、将负极活性材料、导电炭黑、羧甲基纤维素纳和增稠剂丁苯橡胶混合得到第二前驱体,在第二前驱体中加入水调节粘度得到负极浆料,将负极浆料涂覆在铜箔上面,经辊压、分切,形成侧边留箔负极极片;
8.s3、将步骤s1和s2所得正极极片和负极极片以锂离子电池隔膜隔开,经卷绕超声焊接入方形铝壳,制成全极耳方形极组,在极组中注入锂离子电池电解液,预化成排气后,封口清洗得到方形铝壳锂离子电池;
9.s4、将步骤s3所得方形铝壳锂离子电池在高温老化后进行化成,化成电池常温满电后置于45~50℃环境下搁置2~4h随即在0℃~5℃冷却,常温放电后制得方形铝壳低温倍率型锂离子电池。
10.进一步的,步骤s1中,以重量分数计,将93wt%~96wt%的正极活性物质、1.2wt%
~2.5wt%的导电炭黑sp、0.4wt%~1.6wt%的碳纳米管导电浆料、1.0wt%~3.5wt%的pvdf聚偏氟乙烯粘结剂、0.1wt%~0.2wt%的分散剂混合得到第一前驱体。
11.进一步的,步骤s1中,所述正极活性材料采用水热法碳包覆纳米lfp材料制备,所述正极活性材料的粒径为3μm~8μm,比表面积10m2/g~14m2/g,所述正极活性材料为纳米磷酸铁锂或铁锂复合物。
12.进一步的,步骤s1中,所述碳纳米管导电浆料为cnt或cnt和石墨烯的混合物;所述分散剂为苯乙烯和丙烯酸酯类共聚物;以重量分数计,所述氮甲基吡咯烷酮的用量为正极浆料的45wt%~50wt%。
13.进一步的,步骤s2中,以重量分数计,将94wt%~96wt%的负极活性材料、1.0wt%~2.5wt%的导电炭黑、1.0wt%~1.5wt%羧甲基纤维素纳和1.5wt%~2.5wt%增稠剂丁苯橡胶混合得到第二前驱体。
14.进一步的,步骤s2中,以重量分数计,所述水的用量占负极浆料的47%wt%~50wt%。
15.进一步的,步骤s2中,所述负极活性材料的粒径为7μm~13μm,所述负极活性材料为硬碳包覆的纳米小粒径石墨或改性人造石墨。
16.进一步的,步骤s3中,所述锂离子电池隔膜为水性或油性涂胶陶瓷隔膜,所述锂离子电池隔膜的厚度为12μm~20μm;所述锂离子电池电解液为六氟磷酸锂的非晶态电解液,浓度为1.0mol/l

1.5mol/l。
17.进一步的,步骤s3中,所述六氟磷酸锂的非晶态电解液的溶剂为ec和链状羧酸酯类溶剂混合物,所述链状羧酸酯类溶剂包含聚(乙二醇)二甲醚、乙酸乙酯,丙酸乙酯、乙酸甲酯和丁酸甲酯中至少一种。
18.本发明还提供一种方形铝壳低温倍率型锂离子电池,根据上述制备方法制得。
19.与现有技术相比,本发明至少具有以下有益效果:
20.本发明提供一种方形铝壳低温倍率型锂离子电池,通过doe实验对适合低温倍率的材料体系验证优化,优选出纳米磷酸铁锂/硬碳包覆石墨/非晶态电解液体系,通过材料的合理选型搭配制备出兼具低温倍率型磷酸铁锂方形锂离子电池;
21.本发明中电池化成采用高温处理后快速冷却的方法,有利于sei膜的快速稳定,无需额外添加成膜剂,可确保sei膜品质,提高锂离子电池的循环稳定性能,制得的方形铝壳低温倍率型锂离子电池具有较低电池内阻和优异的低温、倍率放电性能(

40℃/3c容量保持>88%@2.0v;25℃/10c容量保持>98%),良好的循环寿命(25℃1c 100%dod 500周>97%)。进一步的,本发明正极活性物质采用水热法制备,粒径均一,材料比表面积较大,导电性好,同时加入极少量分散剂匀浆可获得低电阻率的稳定均一浆料,确保电池容量发挥和电池一致性良好;本发明采用简单工艺制备的方形铝壳低温倍率型锂离子电池具有整体内阻小,散热好,低温倍率性能优异,电池性能稳定,可制造性强,电池结构稳定,安全性更高、容易实现大规模pack成组的优点,适合工业生产。
附图说明
22.图1为本发明的低温倍率型电池

40℃低温放电曲线示意图;
23.图2为本发明的低温倍率型电池常温倍率放电曲线示意图;
24.图3为本发明的低温倍率型电池常温1c循环曲线示意图;
具体实施方式
25.下面结合附图和具体实施方式对本发明作进一步的说明。
26.本发明提供一种方形铝壳低温倍率型锂离子电池及制备方法,包括以下步骤:s1、将正极活性物质93~96wt%、导电炭黑sp1.2~2.5wt%、碳纳米管导电浆料0.4~1.6wt%、pvdf聚偏氟乙烯粘结剂1.0~3.5wt%、分散剂0.1~0.2wt%混合,得到第一前驱体,在第一前驱体中加入氮甲基吡咯烷酮(nmp)得到正极浆料,其中,氮甲基吡咯烷酮(nmp)的用量为正极浆料的45~50wt%,将正极浆料涂覆在铝箔上面,经涂布、辊压、分切,形成侧边留箔正极极片;
27.s2、将负极活性材料94~96wt%、导电炭黑sp1.0~2.5wt%、羧甲基纤维素纳cmc1.0~1.5wt%、增稠剂丁苯橡胶sbr1.5~2.5wt%混合得到第二前驱体,在第二前驱体中加入水得到负极浆料,其中,水的用量占负极浆料的47%~50wt%,将负极浆料涂覆在铜箔上面,经辊压、分切,形成侧边留箔负极极片;
28.s3、将步骤s1和s2所得正负极片之间以锂离子电池隔膜隔开,经卷绕超声焊接入壳,制成全极耳方形极组;
29.s4、将上述s3步骤所得极组经烘烤水分测试合格后(正极片含水量≤200ppm、负极片含水量≤250ppm)注入浓度为1.0

1.5mol/l锂离子电池电解液,预化成排气后,封口清洗,得到方形铝壳锂离子电池;
30.s5、将步骤s4所得方形铝壳锂离子电池在高温老化后进行化成,化成电池常温满电后置于45~50℃环境下搁置2~4h随即在0℃~5℃冷却,常温放电后制得方形铝壳低温倍率型锂离子电池;
31.步骤s1中,正极活性材料采用水热法碳包覆纳米lfp材料制备,粒径为3~8μm,比表面积10~14m2/g,正极活性材料为纳米磷酸铁锂或铁锂复合物。
32.步骤s1中,铝箔为涂炭铝箔;
33.步骤s1中,碳纳米管导电浆料为cnt(碳纳米管)或cnt和石墨烯的混合物。
34.步骤s1中,分散剂为苯乙烯和丙烯酸酯类共聚物,可有效改善高比表面材料的分散稳定性;
35.步骤s2中,负极活性材料为硬碳包覆的纳米小粒径石墨或改性人造石墨,负极活性材料的粒径为7~13μm;
36.步骤s3中,锂离子电池隔膜为水性/油性的涂胶陶瓷隔膜,厚度为12~20μm,涂胶隔膜可以有效减少全极耳电池界面褶皱,确保电池界面良好,锂离子迁移通道顺畅;
37.步骤s4中,锂离子电池电解液为六氟磷酸锂的非晶态电解液,溶剂为ec(碳酸乙烯酯)和链状羧酸酯类溶剂混合物,链状羧酸酯类溶剂包含聚(乙二醇)二甲醚、乙酸乙酯,丙酸乙酯、乙酸甲酯、丁酸甲酯中至少一种。非晶态电解液在低温下具有较低黏度,良好的电导率,与正负极材料间的相容性较好,可有效提高电池低温性能;
38.步骤s5中,化成后,采用高温处理后快速冷却的方法有利于sei膜(solid electrolyte interface,固体电解质界面(膜))的快速稳定,无需额外添加成膜剂,可确保sei膜品质,提高锂离子电池的循环稳定性能。
39.本发明的一种方形铝壳低温倍率型锂离子电池具有较低电池内阻和优异的低温、倍率放电性能(

40℃/3c;25℃/10c),良好的循环寿命(25℃1c 100%dod 500周>97%)。
40.实施例1
41.s1、将纳米磷酸铁锂94.5wt%、导电炭黑sp1.5wt%、碳纳米管导电浆料(cnt)1.3wt%、pvdf聚偏氟乙烯粘结剂2.5wt%、分散剂按照0.2wt%混合得到第一前驱体,将第一前驱体与氮甲基吡咯烷酮(nmp)混合配制成正极浆料,氮甲基吡咯烷酮(nmp)的用量为正极浆料的47wt%,将正极浆料涂覆在涂炭铝箔上面,经涂布、辊压、分切,形成侧边留箔正极极片;
42.s2、将硬碳包覆纳米小粒径石墨95.2wt%、导电炭黑sp1.5wt%、羧甲基纤维素纳cmc1.3wt%、增稠剂丁苯橡胶sbr2.0wt%混合得到第二前驱体,将第二前驱体与水混合后配制成负极浆料,水的用量为负极浆料的48wt%,将负极浆料涂覆在涂炭铜箔上面,经辊压、分切,形成侧边留箔负极极片;
43.s3、将步骤s1和s2所得正负极片之间以20μm水性涂胶陶瓷隔膜隔开,经卷绕超声焊接入壳,制成全极耳方形极组;
44.s4、将上述s3步骤所得极组经烘烤水分测试合格后注入浓度为1.0mol/l六氟磷酸锂(ec和聚(乙二醇)二甲醚共溶剂)非晶态电解液,预化成排气后,封口清洗,得到方形铝壳锂离子电池;
45.s5、将步骤s4所得方形铝壳锂离子电池在高温40
±
5℃老化24h后进行化成,化成电池常温满电后置于45℃环境下搁置4h随及转入0℃低温环境中冷却,常温恢复放电后制得方形铝壳低温倍率型锂离子电池;
46.如图1所示,为本发明实施例1制得的方形铝壳低温倍率型锂离子电池在

40℃低温放电曲线示意图,从图中可以看出当放电截止2.0v时,

40℃/1c放电容量保持大于76%,下拉电压大于2.5v;电池

40℃/3c放电容量保持大于88%,下拉电压大于2.1v,平台电压>2.5v,说明本发明电池低温启动性能良好。
47.如图2所示,为本发明实施例1制得的方形铝壳低温倍率型锂离子电池的常温倍率放电曲线示意图,测试数据表明电池常温10c放电容量保持率大于98%,电池温升≤27℃,说明电池导电性良好,倍率放电极化较小,大倍率放电性能良好。
48.如图3所示,为本发明实施例1制得的方形铝壳低温倍率型锂离子电池的常温1c循环曲线示意图,由图看出电池常温下满电充放循环,500周容量保持大于97%,预计电池循环寿命在2000次以上,此低温电池具有优异的循环性能。
49.实施例2
50.s1、将纳米磷酸铁锂94.6wt%、导电炭黑sp1.5wt%、碳纳米管导电浆料(cnt 石墨烯)1.3wt%、pvdf聚偏氟乙烯粘结剂2.5wt%、分散剂0.1wt%混合得到第一前驱体,将第一前驱体与氮甲基吡咯烷酮(nmp)混合配制成正极浆料,氮甲基吡咯烷酮(nmp)的用量为正极浆料上的48wt%,将正极浆料涂覆在涂炭铝箔上面,经涂布、辊压、分切,形成侧边留箔正极极片;
51.s2、将改性人造石墨94wt%、导电炭黑sp2.2wt%、羧甲基纤维素纳cmc1.5wt%、增稠剂丁苯橡胶sbr2.0wt%混合得到第二前驱体,将第二前驱体与混合后配制成负极浆料,水的用量为负极浆料的47wt%,将负极浆料涂覆在铜箔上面,经辊压、分切,形成侧边留箔
负极极片;
52.s3、将步骤s1和s2所得正负极片之间以20μm油性涂胶陶瓷隔膜隔开,经卷绕超声焊接入壳,制成全极耳方形极组;
53.s4、将上述s3步骤所得极组经烘烤水分测试合格后注入浓度为1.5mol/l六氟磷酸锂(ec、聚(乙二醇)二甲醚和乙酸乙酯共溶剂)非晶态电解液,预化成排气后,封口清洗,得到方形铝壳锂离子电池;
54.s5、将步骤s4所得方形铝壳锂离子电池在高温40
±
5℃老化24h后进行化成,化成电池常温满电后置于50℃环境下搁置2h随及转入0℃低温环境中冷却,常温恢复后放电制得方形铝壳低温倍率型锂离子电池,经电池性能测试,电池性能数据表1所示,当放电截止2.0v时,电池

40℃/1c放电容量保持大于76%,下拉电压大于2.4v,电池常温满电充放循环,500周容量保持大于94%;与实施例1相比,实施例2在体系配比相近的情况下改变化成处理工艺,将化成后电池由45℃/4h高温搁置调整为50℃/2h高温处理,电池低温性能影响不大,但循环性能下降3个点,说明高温短时间搁置不利于sei膜的稳定,因此循环性能有所下降。
55.实施例3
56.s1、将纳米磷酸铁锂93wt%、导电炭黑sp2.5wt%、碳纳米管导电浆料(cnt)1.6wt%、pvdf聚偏氟乙烯粘结剂2.6wt%、分散剂0.2wt%混合得到第一前驱体,将第一前驱体与氮甲基吡咯烷酮(nmp)混合配制成正极浆料,氮甲基吡咯烷酮(nmp)的用量为正极浆料上的50wt%,将正极浆料涂覆在涂炭铝箔上面,经涂布、辊压、分切,形成侧边留箔正极极片;
57.s2、将硬碳包覆纳米小粒径石墨96wt%、导电炭黑sp1.2wt%、羧甲基纤维素纳cmc1.1wt%、增稠剂丁苯橡胶sbr1.7wt%混合得到第二前驱体,将第二前驱体与混合后配制成负极浆料,水的用量为负极浆料的50wt%,将负极浆料涂覆在涂炭铜箔上面,经辊压、分切,形成侧边留箔负极极片;
58.s3、将步骤s1和s2所得正负极片之间以20μm水性涂胶陶瓷隔膜隔开,经卷绕超声焊接入壳,制成全极耳方形极组;
59.s4、将上述s3步骤所得极组经烘烤水分测试合格后注入浓度为1.2mol/l六氟磷酸锂(ec、聚(乙二醇)二甲醚、丙酸乙酯和乙酸甲酯共溶剂)非晶态电解液,预化成排气后,封口清洗,方形铝壳锂离子电池;
60.s5、将步骤s4所得电池在高温40
±
5℃老化24h后进行化成,化成电池常温满电后置于45℃环境下搁置4h随及转入5℃低温环境中冷却,常温恢复放电后制得方形铝壳低温倍率型锂离子电池,经电池性能测试,电池性能数据表1所示,当放电截止2.0v时,电池

40℃/1c放电容量保持大于77%,下拉电压大于2.5v,电池常温满电充放循环,500周容量保持大于97%;与实施例1和实施例2相比,实施例3增加了总导电浆料含量,电池的低温性能有所提高,说明导电剂含量提高有助于电池整体内阻减小,同时也说明高温短时间搁置不利于sei膜的稳定,影响电池循环性能。
61.实施例4
62.s1、将铁锂复合物93.6wt%、导电炭黑sp1.2wt%、碳纳米管导电浆料(cnt)1.6wt%、pvdf聚偏氟乙烯粘结剂3.5wt%、分散剂按照0.1wt%混合得到第一前驱体,将第
一前驱体与氮甲基吡咯烷酮(nmp)混合配制成正极浆料,氮甲基吡咯烷酮(nmp)的用量为正极浆料上的45wt%,将正极浆料涂覆在涂炭铝箔上面,经涂布、辊压、分切,形成侧边留箔正极极片;
63.s2、将硬碳包覆纳米小粒径石墨94wt%、导电炭黑sp2.5wt%、羧甲基纤维素纳cmc1.0wt%、增稠剂丁苯橡胶sbr2.5wt%混合得到第二前驱体,将第二前驱体与混合后配制成负极浆料,水的用量为负极浆料的48wt%,将负极浆料涂覆在涂炭铜箔上面,经辊压、分切,形成侧边留箔负极极片;
64.s3、将步骤s1和s2所得正负极片之间以16μm油性涂胶陶瓷隔膜隔开,经卷绕超声焊接入壳,制成全极耳方形极组;
65.s4、将上述s3步骤所得极组经烘烤水分测试合格后注入浓度为1.0mol/l六氟磷酸锂(ec、聚(乙二醇)二甲醚和丁酸甲酯共溶剂)非晶态电解液,预化成排气后,封口清洗,得到方形铝壳锂离子电池;
66.s5、将步骤s4所得方形铝壳锂离子电池在高温40
±
5℃老化24h后进行化成,化成电池常温满电后置于45℃环境下搁置4h随及转入0℃低温环境中冷却,常温恢复放电后制得方形铝壳低温倍率型锂离子电池,经电池性能测试,电池性能数据表1所示,当放电截止2.0v时,电池

40℃/1c放电容量保持大于74%,下拉电压大于2.2v,电池常温满电充放循环,500周容量保持大于95%;与实施例1和实施例3相比,实施例4采用16μm厚度隔膜,隔膜厚度降低,电池低温性能和循环性能都有所下降,隔膜厚度可能影响电池低温容量保持和下拉电压。
67.实施例5
68.s1、将铁锂复合物96wt%、导电炭黑sp2.4wt%、碳纳米管导电浆料(cnt 石墨烯)0.4wt%、pvdf聚偏氟乙烯粘结剂1.0wt%、分散剂0.2wt%混合得到第一前驱体,将第一前驱体与氮甲基吡咯烷酮(nmp)混合配制成正极浆料,氮甲基吡咯烷酮(nmp)的用量为正极浆料上的50wt%,将正极浆料涂覆在涂炭铝箔上面,经涂布、辊压、分切,形成侧边留箔正极极片;
69.s2、将改性人造石墨96wt%、导电炭黑sp1wt%、羧甲基纤维素纳cmc1.5wt%、增稠剂丁苯橡胶sbr1.5wt%混合得到第二前驱体,将第二前驱体与混合后配制成负极浆料,水的用量为负极浆料的47wt%,将负极浆料涂覆在铜箔上面,经辊压、分切,形成侧边留箔负极极片;
70.s3、将步骤s1和s2所得正负极片之间以12μm水性涂胶陶瓷隔膜隔开,经卷绕超声焊接入壳,制成全极耳方形极组;
71.s4、将上述s3步骤所得极组经烘烤水分测试合格后注入浓度为1.5mol/l六氟磷酸锂(ec、乙酸甲酯和乙酸乙酯共溶剂)非晶态电解液,预化成排气后,封口清洗,得到方形铝壳锂离子电池;
72.s5、将步骤s4所得方形铝壳锂离子电池在高温40
±
5℃老化24h后进行化成,化成电池常温满电后置于45℃环境下搁置4h随及转入3℃低温环境中冷却,常温恢复后放电后制得方形铝壳低温倍率型锂离子电池,经电池性能测试,电池性能数据表1所示,当放电截止2.0v时,电池

40℃/1c放电容量保持大于75%,下拉电压大于2.7v,电池常温满电充放循环,500周容量保持大于96%;与实施例4相比,实施例5采用12μm厚隔膜,电池低温和循环性
能各增加1个百分点,对比实施例1和3(20μm隔膜)以及实施例4(16μm隔膜),分析电池低温性能和循环性能数据,实施例1和3(20μm隔膜)>实施例5(12μm隔膜)>实施例4(16μm隔膜)电池性能,说明隔膜厚度并不是真正影响电池低温性能的因素,进一步对比三种隔膜的理化参数发现,隔膜的透气率和孔隙率是影响电池性能的主要因素,综合来看,20μm隔膜孔隙率大,有利于电解液浸润,因此低温放电容量保持率较好,而12μm隔膜透气率较低,导电性更好,电池极化小,因此电池低温放电下拉电压更高些。
73.鉴于本发明的低温倍率型锂离子电池性能稳定,实施例2

5材料体系可获得相近的电池性能效果,因此不对其它实施例进行具体的曲线图展示,只对关键性能数据做对比分析。
74.对比例1
75.取市售某电池厂家26650

3.35ah圆柱低温电池与本发明电池定容后在同样条件下测试低温

40℃/1c放电和常温1c循环性能,测得数据如表1所示:低温圆柱电池

40℃/1c放电容量保持>64%,下拉电压>2.5,电池常温1c满电充放循环500周,容量保持>94%,性能较本发明电池偏差,说明本发明的低温倍率型方形铝壳电池性能优于低温圆柱型电池。
76.对比例2
77.取市售某电池厂家磷酸铁锂3613065

20ah方形铝壳低温电池与本发明电池定容后在同样条件下测试低温

40℃/1c放电和常温1c循环性能,测得数据如表1所示:20ah方形电池

40℃/1c放电容量保持>69%,下拉电压>2.2,电池常温1c满电充放循环500周,容量保持>95%,性能较本发明电池偏差,说明本发明的低温倍率型方形铝壳电池性能优于市面同结构方形铝壳电池。
78.表1各实施例和对比例电池的性能数据表
79.
再多了解一些

本文用于企业家、创业者技术爱好者查询,结果仅供参考。

发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表

相关文献