一种残膜回收机防缠绕挑膜装置的制 一种秧草收获机用电力驱动行走机构

一种质子交换膜燃料电池的膜干故障诊断方法与流程

2021-11-05 23:16:00 来源:中国专利 TAG:

:
1.本发明属于质子交换膜燃料电池故障诊断领域,涉及一种质子交换膜燃料电池的膜干故 障诊断方法。


背景技术:
:
2.随着新能源不断的加强重视,燃料电池技术的不断进步,以及国内政策的大力扶持,对 燃料电池的耐久性和可持续性提出更高的要求,其中实时的故障诊断可以有效提高燃料电池 的寿命。目前为止比较常见的故障诊断方法是基于模型的故障诊断方法。它们能很好的从机 理出发识别故障的类型,以及采取相应的措施。但是在处理pemfc时,由于无法研发出十 分准确的面向诊断的模型,因此基于模型的方法被国内外学者认为是一项十分艰巨的任务; 第二点是残差总是受测量和计算不确定性的影响,而导致故障诊断往往不是那么准确;第三 点就算在满足上述要求后,但燃料电池由于其复杂的系统以及物理模型的高度复杂性,对于 实时的在线故障检测又是一大难题。
[0003][0004]
因此,本发明在基于燃料电池内阻特性模型基础上,同时引入基于数据驱动的故障诊断 方法(支持向量机)。通过分析实验数据获得故障诊断结果,而无需了解系统的精确模型, 同时也满足了故障诊断的实时性。


技术实现要素:

[0005]
在实际的燃料电池工作时,由于人员操作不当或设备老化而导致燃料电池出现膜干故障, 如果燃料电池长时间处于膜干故障状态时,质子交换膜就会有孔洞、裂纹的出现。所以故障 诊断和修复对燃料电池的正常运行来说是十分重要的一环。
[0006]
本发明采用的是基于模型和数据驱动相结合的故障诊断方法,首先通过分析质子交换膜 燃料电池的内部机理,建立质子交换膜燃料电池的内阻特性模型。基于电堆内阻特性模型, 利用模型中特定参数作为特征数据,并将已知分类的400组训练集数据运用r软件构建支持 向量机模型,可于不同电流密度与不同操作条件下,判断出电堆是否处于膜干故障。该方法 无需测量整条奈奎斯特曲线,也不用测量整条u

i曲线,因而更具有实用价值,有较好的工 程应用前景,使质子交换膜燃料电池的寿命得到显著地提高。
[0007]
为达到上述目的,本发明所叙述的方法有以下步骤:
[0008]
步骤一:燃料电池内部机理分析。燃料电池在实际的工作过程中,因为极化现象的存在, 电池的实际输出电压略低于理论电压。根据极化现象产生的原因及特点不同,可将电阻分为 活化内阻r
f
、欧姆内阻r
m
、浓差内阻r
d
。根据燃料电池内部机理,建立燃料电池等效内阻模 型,求解出活化内阻r
f
、欧姆内阻r
m
、浓差内阻r
d
的表达式。
[0009]
其中电堆总内阻r
stack
如式(1):
[0010]
r
stack
=r
f
r
m
r
d (1)
[0011]
交流阻抗表达式如式(2):
[0012][0013]
步骤二:利用eis法测出欧姆内阻和电堆总内阻。利用电化学阻抗谱法(eis法),给 燃料电池系统施加一组频率不同的小振幅的交流电势波信号,在阻抗谱测试仪上可读出欧姆 内阻r
m
和总内阻r
stack
。实际采用的阻抗仪的频率为0.1hz

20khz,所以分别取0.1hz测电堆 总内阻r
stack
,20khz测欧姆内阻r
m

[0014]
步骤三:确定膜干故障指标参数。膜干是由于燃料电池内部温度过高或膜上湿度不足而 引起的故障,常发生在中低电流密度下。当燃料电池电堆处于膜干故障状态时,质子交换膜 因干燥而导致电极水合作用受阻,它将显著增加质子交换膜的欧姆极化,而且降低电导率从 而阻碍质子进入催化剂表面,随着时间的流逝,输出性能持续降低。
[0015]
基于对膜干故障原理的分析,确定定义膜干故障的指标参数,最终将电流密度i,膜含水 量λ
m
和欧姆内阻r
m
作为支持向量机模型的特征数据。当燃料电池系统处于工作状态时,其工 作电流可通过在电路中串联电流表测出,燃料电池的堆内温度可由在燃料电池内部双极板处 安装的三个热电偶测出;膜含水量λ
m
和欧姆内阻r
m
有关,当欧姆内阻r
m
已知时,可以反推 出膜含水量λ
m
,如下式(3);
[0016][0017]
步骤四:构建支持向量机分类器。通过已知分类400组训练集数据运用r软件构建可用 的支持向量机分类器。选择80%的经过预处理的数据作为训练集,并将训练集数据运用r软 件构建支持向量机分类器,将剩余20%经过预处理的数据作为测试集,用测试集来检验训练 集数据构建的支持向量机分类器;当剩余的20%数据均能得到正确检验时,说明该模型有效、 可靠;
[0018]
步骤五:实验数据提取及故障判别。用步骤一到步骤三的方法得到未知工作状态的电堆 的三个特征数据:电流密度i、膜含水量λ
m
以及欧姆内阻r
m
,将不同操作条件下的新数据归 一化处理后代入模型中进行状态的判别。
[0019]
步骤六:电堆状态的判别方法。采用支持向量机分类器对未知状态下的电堆进行故障诊 断。通过上述构建的支持向量机分类器判断此时的电堆是处于正常状态还是膜干状态,若处 于正常状态,则判定为正常状态,诊断结束;若处于膜干状态,则判定为模干状态,诊断结 束;若两者状态均没有被判定,则默认为其他故障状态,诊断结束。
附图说明:
[0020]
图1燃料电池的u

i曲线
[0021]
图2燃料电池的二阶等效电路模型
具体实施方式:
[0022]
下面结合附图对一种燃料电池的膜干故障诊断方法具体实施方式进行说明。本发明的实 施过程包括如下步骤:
[0023]
步骤一:燃料电池内部机理分析。质子交换膜燃料电池是依靠电化学原理将化学
能转换 为电能的能量转换装置,当电池处于工作状态时,因为极化现象的存在,电池的实际输出电 压略低于理论电压。在燃料电池的不同反应阶段均会出现极化现象,根据极化现象产生的原 因及特点不同,可将电池电阻分为活化内阻r
f
,欧姆内阻r
m
,浓差内阻r
d

[0024]
图1所示的是燃料电池的u

i特性曲线,该曲线将燃料电池分为活化段、欧姆段和浓差 段,每一段中分别是活化内阻r
f
,欧姆内阻r
m
,浓差内阻r
d
占主要成分,r
f
、r
m
、r
d
和 r
stack
的表达式如式(1)~(4)所示:
[0025][0026]
式中,r理想气体常数;a电化学反应速率参数;u转移电子数;f法拉第常数;t0和t
stack
为参考温度和电堆工作温度,k;i0和i为交换电流密度和输出电流密度,a/cm2;
[0027][0028]
式中,t
m
质子膜厚度,μm;α1~α6为模型经验参数;a电化学反应面积,cm2;λ
m
膜含水 量;
[0029][0030]
式中,δ扩散层厚度,μm;v
a
和v
c
为阳极和阴极进气流量,m3/s;ρ
h2
和ρ
air
为氢气密度和 空气密度,kg/m3;m
h2
和m
air
为氢气摩尔质量和空气摩尔质量,g/mol;β为电导率系数;τ转 移离子摩尔数,mol;rh
stack
为电堆湿度;d
λ
为初始状态的的水迁移系数,d
eff
为运行状态的 水迁移系数,j/(k
·
mol);β1~β4和γ1~γ4为模型经验参数;
[0031]
电堆直流总内阻r
stack
如式:
[0032]
r
stack
=r
f
r
m
r
d (4)
[0033]
图2所示的是燃料电池的二阶等效电路模型,利用该模型可以求出燃料电池的交流阻抗;
[0034][0035]
步骤二:利用eis法测出欧姆内阻和电堆总内阻。对燃料电池的交流阻抗公式进行分析 可知,当频率ω趋向于正无穷时,奈奎斯特曲线实部是趋向于r
m
,而虚部是趋向于0;当ω趋 向于0时,奈奎斯特曲线实部时趋向于r
stack
,虚部也是趋向于0;正因为有这样的特性,我 们利用电化学阻抗谱法(eis法)可以先测试出电堆的欧姆内阻r
m
和总内阻r
stack
,电化学阻 抗谱法通过测量阻抗随正弦波频率的变化,进而分析电极材料,固态电解质等,它是研究燃 料电池电化学系统常用的方法。由于实际阻抗谱测试时是达不到0和正无穷的,实际采用的 阻抗仪的频率为0.1hz

20khz,所以分别取0.1hz测电堆总内阻,20khz测欧姆内阻;
[0036]
步骤三:确定膜干故障指标参数。膜干故障原理及表现:pemfc电堆在运行的过程中, 电堆内部的水主要源于阴阳极气体增湿水及阴极侧电化学反应生成的水。电池内部复杂的电 化学反应、传质传热过程都受水的影响,比如质子必须通过水分子为载体才能顺利通过质子 交换膜,因此电堆的水管理对燃料电池的输出性能至关重要。膜干是由于燃料电池内部温度 过高或膜上湿度不足而引起的故障,常发生在中低电流密度下。当燃料电池电堆处于膜干故 障状态时,质子交换膜因干燥而导致电极水合作用受阻,它将显著增加质子交换膜的欧姆极 化,而且降低电导率从而阻碍质子进入催化剂表面,随着时间的流逝,输出性能持续降低。
[0037]
从燃料电池膜干故障原理及表现着手,可以发现电流密度i、膜含水量λ
m
以及欧姆内阻 r
m
对于质子交换膜膜干故障的诊断至关重要,但燃料电池处于工作状态下时,很难通过内部 装置测出质子交换膜上的含水量,这制约了燃料电池膜干故障检测的精确性。鉴于上述情况, 提出关于膜含水量λ
m
的计算方法。当燃料电池处于工作状态下时,其工作电流可通过串联电 流表测出,燃料电池的堆内温度t
stack
可由在双极板处安装的三个热电偶测出。最后可以由欧 姆内阻公式(2)计算出膜含水量λ
m

[0038][0039]
最后,我们通过电流密度i、膜含水量λ
m
和欧姆内阻值r
m
来定义膜干故障指标参数;
[0040]
步骤四:构建支持向量机分类器。首先采取训练集数据,训练集数据包括400组燃料电 池在膜干故障和正常状态下运行的样本数据。然后对收集到的样本数据进行无效数据的清除 来提高样本质量,再进行归一化处理,选择80%在的数据作为训练集,并将训练集数据运用 r软件构建支持向量机分类器,将剩余20%数据作为测试集,用测试集来检验训练集数据构 建的支持向量机分类器。当剩余的20%数据均能得到正确检验时,说明该模型有效、可靠。
[0041]
步骤五:实验数据提取及故障判别。对未知状态的燃料电池工作电堆,利用步骤一到步 骤三的方法可以得到不同操作条件下电流密度i、膜含水量λ
m
以及欧姆内阻r
m
,将不同操作 条件下的新数据归一化处理后代入模型中进行电堆状态的判别。
[0042]
步骤六:电堆状态的判别方法。采用支持向量机分类器对未知状态下的电堆进行故障诊 断。通过上述构建的支持向量机分类器判断此时的电堆是处于正常状态还是膜干状态,若处 于正常状态,则判定为正常状态,诊断结束;若处于膜干状态,则判定为模干状态,诊断结 束;若两者状态均没有被判定,则默认为其他故障状态,诊断结束。
[0043]
本发明所述一种燃料电池的膜干故障诊断方法,其特征在于:这种方法相比于传统方法, 无需测量整条奈奎斯特曲线,也不用测量整条u

i曲线,计算量小,仅需要计算出λ
m
即可。 节省了大量时间,这对pemfc电堆实时故障诊断是至关重要的。
[0044]
其次,通过对膜干原理及表现的认真研究,最终挑选出定义膜干故障的三个指标参数, 这三个指标参数非常具有代表性,同时关于难以求解的膜含水量问题,提出了膜含水量λ
m
的 计算方法。
[0045]
最后,经过400组数据训练后的支持向量机分类器具有较高的模型识别能力,能够精确 的判断出未知状态的电堆是否处于膜干故障状态。
[0046]
该方法能有效的通过三个特征参数来判断燃料电池是否处于膜干故障状态,在一定程度 上能防止质子交换膜出现孔洞、裂纹,能显著提高燃料电池的工作寿命,具有良好的工程经 济性和应用前景。
再多了解一些

本文用于企业家、创业者技术爱好者查询,结果仅供参考。

发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表

相关文献