一种残膜回收机防缠绕挑膜装置的制 一种秧草收获机用电力驱动行走机构

再生模组、烘干模组和洗烘一体机的制作方法

2023-04-02 15:47:18 来源:中国专利 TAG:


1.本实用新型涉及智能家居的技术领域,特别涉及一种再生模组、烘干模组和洗烘一体机。


背景技术:

2.在人们对健康品质生活的追求愈加高涨、城市居民生活节奏不断加快等因素的助推下,洗烘一体机横空出世并深受广大消费者的喜爱,洗烘一体机尤其适合梅雨季节时期的南方家庭、空气质量差不适合户外晒衣的北方家庭,以及想要衣物即洗即穿或追求衣物更加蓬松舒适的使用人群。
3.现有的洗烘一体机的烘干系统利用蒸发器对洗烘机内筒的潮湿空气进行加热吸湿,得到高温空气之后,再重新进入洗烘机内筒,从而使衣物中的水分得以蒸发。但是,蒸发器的整体温度一致,在潮湿空气蒸发的过程中,蒸发器对潮湿空气的吸湿能力下降,导致吸湿效率低、烘干时间长,功耗高。


技术实现要素:

4.(一)发明目的
5.本实用新型的目的是提供一种再生模组、烘干模组和洗烘一体机,通过转盘在旋转的过程中,循环经过除湿区和再生区,不断地进行吸附水分和脱附水分;这样可持续得到干燥循环气流进入滚筒内,与衣物充分接触,提高烘干效率,降低能耗。
6.(二)技术方案
7.本实用新型的第一方面提供了一种再生模组,包括:再生模组上壳体,再生模组上壳体具有加热构件容纳腔;加热构件,其安装于加热构件容纳腔内,加热构件临近转盘设置,且加热构件容纳腔与转盘连通;加热构件用于对再生气流进行加热,以对转盘吸附的水分进行脱附。
8.进一步地,加热构件包括层叠设置的均风件和加热器,加热器相对转盘临近或间隔设置;再生气流进入加热构件容纳腔内,依次经由均风件/加热器、加热器/均风件和转盘。
9.进一步地,再生模组上壳体呈扇形体结构;再生模组上壳体的外弧侧面设有加热器进风口。
10.进一步地,均风件与再生模组上壳体的顶壁具有间隙,以形成第三气流通道;第三气流通道与加热器进风口连通。
11.进一步地,均风件包括均风板和突出于均风板四周的侧板,均风板和侧板围合成加热器容纳区,加热器设于加热器容纳区内;均风板呈扇形,均风板上设有间隔分布的风孔。
12.进一步地,加热器包括多根首尾连接的加热管,加热管沿扇形的半径方向间隔分布;加热管的长度垂直于扇形的半径方向设置。
13.进一步地,风孔成排设置,每排风孔的设置位置与加热管的位置相对应;风孔的直径沿扇形的半径方向从外弧向圆心呈减小趋势。
14.进一步地,加热管位于风孔的下方;且加热管的轴线与相对应每排风孔的中心线设置为偏移,每排风孔的中心线比加热管的轴线更靠近于加热器进风口。
15.进一步地,再生模组上壳体呈扇形体结构;再生模组上壳体侧壁设有加热器进风口,侧壁设为沿扇形的径向布置;其中,再生气流进入加热构件容纳腔的方向与转盘的旋转方向相对或同向设置。
16.进一步地,加热器包括多根首尾连接的加热管,加热管沿扇形的径向间隔分布;加热管的长度平行于与加热器进风口相对的侧壁设置。
17.进一步地再生模组还包括:导热件,其安装于第二空间内,第二空间与加热器容纳区连通;温度检测模块,其用于检测所述加热器容纳区的温度;所述温度检测模块安装于第三空间内,第三空间为导热件所包覆形成的空间,第三空间与第二空间通过导热件物理隔离。
18.本实用新型的第二方面提供了一种烘干模组,包括上述的再生模组。
19.本实用新型的第三方面提供了一种洗烘一体机,包括上述的烘干模组。
20.(三)有益效果
21.本实用新型的上述技术方案具有如下有益的技术效果:
22.本实用新型的技术方案通过对来自于滚筒内的湿循环气流在除湿区由下至上穿过转盘,转盘吸附湿循环气流中的水分,使湿循环气流变为干燥循环气流;加热后的再生气流由上至下穿过转盘,以对再生区内的转盘部分进行脱水烘干,转盘在旋转的过程中,循环经过除湿区和再生区,是不断地进行吸附水分和脱附水分;这样可持续得到干燥循环气流进入滚筒内,与衣物充分接触,提高烘干效率,降低能耗,可以避免采用蒸发器带来的对潮湿空气的吸湿能力下降。
附图说明
23.图1是根据本实用新型第一实施方式的烘干模组的立体结构示意图;
24.图2是根据本实用新型第二实施方式的烘干模组的部分结构示意图;
25.图3是根据本实用新型第三实施方式的烘干模组的部分结构示意图;
26.图4是根据本实用新型第四实施方式的烘干模组的部分结构分解示意图;
27.图5是根据本实用新型第五实施方式的烘干模组的部分结构示意图;
28.图6是根据本实用新型第六实施方式的烘干模组的部分结构分解示意图;
29.图7是根据本实用新型第七实施方式的再生模组的结构示意图;
30.图8是根据本实用新型第八实施方式的再生模组的结构示意图;
31.图9是根据本实用新型第九实施方式的均风件的结构示意图;
32.附图标记:
33.10-循环模组;20-除湿模组;30-再生模组;40-冷凝模组;200-转盘;210-转盘上壳体;220-转盘下壳体;221-第一分隔件;301-再生风机;310-再生模组上壳体;311-加热器进风口;312-第一顶壁;313-第一侧壁;314-底座;318-安装座;320-再生风机安装部;321-再生风机上壳体;322-再生风机下壳体;330-均风板;331-风孔;340-加热管;350-导热件;
410-冷凝模组上壳体;420-冷凝模组下壳体;401-冷凝器;
34.3013-第一连接件;3014-第二连接件。
具体实施方式
35.为使本实用新型的目的、技术方案和优点更加清楚明了,下面结合具体实施方式并参照附图,对本实用新型进一步详细说明。应该理解,这些描述只是示例性的,而并非要限制本实用新型的范围。此外,在以下说明中,省略了对公知结构和技术的描述,以避免不必要地混淆本实用新型的概念。
36.本实用新型的第一方面提供了一种再生模组,如图7-图9所示,包括:再生模组上壳体310,再生模组上壳体具有加热构件容纳腔;加热构件,其安装于加热构件容纳腔内,加热构件位于转盘的上方,且加热构件容纳腔与转盘连通;加热构件用于对再生气流进行加热,以对转盘吸附的水分进行脱附。一些实施例中,转盘构件可包括转盘200和驱动组件,驱动组件可以包括电机,电机可驱动转盘200旋转。转盘200可选用吸湿性能好的材料制作,例如可以是沸石、氯化锂、硅胶、改性硅胶或13x(钠x型)分子筛等。滚筒内排出的湿循环气流进入转盘容纳腔的底部,在除湿区的湿循环气流由下至上穿过转盘200,转盘200吸附湿循环气流中的水分,使湿循环气流可变为干燥循环气流,干燥循环气流通过滚筒进气口进入滚筒内,与衣物充分接触,提高烘干效率,降低能耗;再生构件可包括加热器,用于对再生气流进行加热,加热后的再生气流经加热构件容纳腔并由上至下穿过转盘200,以对再生区内的转盘200部分进行脱水烘干,转盘200在旋转的过程中,循环经过除湿区和再生区,是不断地进行吸附水分和脱附水分的过程;这样可持续得到干燥循环气流进入滚筒内,与衣物充分接触,提高烘干效率,降低能耗。
37.具体地,再生模组上壳体310可包括:第一顶壁312和突出于第一顶壁312四周的第一侧壁313以形成加热构件容纳腔,以及沿第一侧壁313向外侧突出设置的底座314,底座314上可设有安装孔,通过安装孔可与转盘上壳体210连接固定。
38.一些实施例中,为了使送入的再生气流更均匀地受热,并对转盘200进行更均匀地脱水烘干,优选的方案为加热构件包括层叠设置的均风件和加热器,加热器位于均风件和转盘200之间;再生气流进入加热构件容纳腔内,依次经由均风件、加热器和转盘200。均风件可以设置于加热器上游或下游,当然上游是较佳的选择,均风件将流入加热器容纳空间的气流进行导向以使再生气流能够充分地将加热器的热量传送至转盘200,此时加热器更靠近转盘,而均风件相对转盘间隔设置;也可以在加热器下游设置均风件,此时益处是再生气流首先充分与加热器接触,使再生气流均衡地升温,然后再通过均风件的导向使热气流流向转盘200,在这种情况下,均风件与转盘相邻设置,而加热器与转盘间隔设置,均风件除了均匀气流和导向之外,还能从某种程度上保护加热器的加热管;也可以略去均风件,再生气流流经加热器之后直接流向转盘,此时可以节省成本,降低机构复杂性。
39.一些实施例中,再生模组上壳体310呈扇形体结构;再生模组上壳体310的外弧侧面设有加热器进风口311。本实用新型实施例中,优选的方案为再生模组上壳体310呈扇形体结构;再生模组上壳体310也可以为不规则的结构,在此处不做过多限定;再生模组上壳体310,其与转盘上壳体210配合连接,使得除湿区和再生区分隔开,即除湿区内的湿循环气流与再生区内的再生气流能保持很大程度上的隔离。
40.一些实施例中,均风件与再生模组上壳体310的顶壁具有间隙,以形成第三气流通道;第三气流通道与加热器进风口311连通。转盘200的底面与转盘下壳体220的再生区内壁之间具有间隙,以形成第四气流通道。再生气流经由加热器进风口311进入第三气流通道,均风件可使再生气流更均匀地与加热器接触,受热均匀的再生气流对再生区内的转盘200部分上的水分进行脱附。
41.一些实施例中,均风件包括均风板330和突出于均风板330四周的侧板,均风板330和侧板围合成加热器容纳区,加热器设于加热器容纳区内;均风板330呈扇形,均风板330上设有间隔分布的风孔331。通过风孔的设置可使再生气流更均匀地进入到下方的加热器。
42.一些实施例中,加热器包括多根首尾连接的加热管340,加热管340沿扇形的半径方向间隔分布;加热管340的长度大致垂直于扇形的半径方向设置。加热管340呈s形分布,可使加热管340在加热器容纳区的长度分布更长,以增加与再生气流接触面积,从而与再生气流热交换的效率更高。
43.一些实施例中,风孔成排设置,每排风孔的设置位置与加热管340的位置大致相对应;风孔的直径沿扇形的半径方向从外弧向圆心有减小的趋势。加热器进风口311位于再生模组上壳体310的外弧侧面,风孔的直径设置在靠近加热器进风口311处相对大些,远离加热器进风口311处的风孔的直径要相对小些。
44.一些实施例中,加热管340位于风孔的下方;且加热管340的轴线与相对应每排风孔的中心线设置为偏移,每排风孔的中心线比加热管340的轴线更靠近于加热器进风口311。加热管340位于风孔的下方,加热管340临近均风板330,或者说紧邻均风板330,以不会对再生气流穿过风孔形成较大的阻力;可用管夹将加热管340固定于均风板330上,加热管340与均风板330之间可设有一定的间隙,以使再生气流通过。当再生气流从加热器进风口311吹入,沿扇形的半径方向向里吹,会有沿再生气流流动方向的速度,因此将每排风孔的中心线设置一点点的偏移量,可以让穿过风孔的再生气流能正对着加热管340,以实现再生气流与加热管340的更高热交换效率。
45.一些实施例中,再生模组上壳体310呈扇形体结构;再生模组上壳体310侧壁设有加热器进风口311,侧壁设为沿扇形的径向布置;其中,再生气流进入加热构件容纳腔的方向与转盘200的旋转方向相对设置。即再生气流沿着或逆着转盘的旋转方向,从扇形体再生模组的大致垂直于半径的方向吹入到加热器容纳空间,能够使得气流能更均匀地被加热器升温。
46.一些实施例中,加热器包括多根首尾连接的加热管340,加热管340沿扇形的径向间隔分布;加热管340的长度平行于与加热器进风口311相对的侧壁设置。当然加热管340也可以布置为大致沿加热膜组的径向方向,此时采用垂直于半径方向的进风风向,以期达到更好的均匀气流和加热的作用。
47.一些实施例中,再生模组还包括:导热件350,其安装于第二空间内,第二空间与加热器容纳区连通;温度检测模块,其用于检测所述加热器容纳区的温度;所述温度检测模块安装于第三空间内,第三空间为导热件350所包覆形成的空间,第三空间与第二空间通过导热件350物理隔离。再生气流在加热器容纳区内经加热器加热变成高温再生气流,由于第二空间与加热器容纳区连通,高温再生气流在第二空间扩散,因此检测第二空间的温度即可以知晓加热器容纳区内温度。温度检测模块安装于第三空间内,导热件350包覆温度检测模
块,导热件350将接收到的第二空间的热量传递给第三空间内空气,温度检测模块检测第三空间内的空气温度,进而测得与第二空间连通的加热器容纳区内的再生气流的温度。导热件350可选用易传导热的金属材料制作,例如可以是铜或铝等;导热件350在第二空间内,接收高温再生气流的热量并传导至第三空间的温度检测模块,能够匀化热量的传导,使温度检测模块检测到的温度趋于稳定,从而可提高检测结果的准确性;这样可避免温度检测模块直接检测加热器容纳区内的再生气流,加热器容纳区内的再生气流可能存在紊流或/乱流情况,致使检测结果频繁跳动。
48.底座314向背离加热器容纳区的外侧延伸;底座314的至少一部分的底面设有凹槽,凹槽形成第二空间。导热件350安装于凹槽内,并且导热件350包覆温度检测模块。底座314包括第一侧边,第一侧边沿扇形的径向延伸,所述凹槽位于第一侧边。当然为了检测更准确,可以在于第一侧边相对的第二侧边设置同样的凹槽,并在其中布置温度检测模块。凹槽位于第一侧边,凹槽与加热器容纳区连通,加热后的高温再生气流扩散到凹槽,导热件350受热,传导给温度检测模块,以避免温度检测模块受到加热器容纳区内流通的再生气流直吹,减小紊流/乱流引起检测结果的跳动。
49.再生模组上壳体310设有安装座318,所述安装座318与第一侧边连接固定,且所述安装座318位于第一侧边背离所述凹槽的另一侧面;所述安装座318上设有贯穿的安装孔、形成具有一面开口的大致六面体形状,温度检测模块设置于安装孔内部,导热件350包覆安装孔座318的开口面所形成的空间为第三空间;安装孔与所述温度检测模块适配。具体地,温度检测模块安装于安装孔内,并由导热件350包覆,使温度检测模块与第二空间隔绝,以避免再生气流的泄漏。安装座318上可设置固定件,固定件可用于固定与温度检测模块连接的电缆。
50.进一步地,所述导热件350与所述温度检测模块的触点接触。加热器容纳区内流通的再生气流可能存在紊流/乱流的情况,局部范围内再生气流温度不稳定,可选地,在导热件350朝向第二空间的一面设置突棱结构,增大与高温再生气流接触面积和延长传导路径,使传导至温度检测模块的温度趋于稳定的均值。导热件350可设为导热片,易于成型,以包覆使温度检测模块。例如可以在导热件350朝向第二空间的一面设有突出部,相对应的另一面则具有凹陷部,温度检测模块可嵌入凹陷部,温度检测模块的触点接触凹陷部,这样通过突出部增大了导热件350与再生气流的接触面积。
51.一些实施例中,所述导热件350的表面具有耐热防腐镀层,以提高导热件350的使用寿命,可避免导热件350在高温潮湿的环境中生锈。
52.下面结合再生气流的流向对本实用新型实施例提供的再生模组进行详细的阐述。
53.实施例1
54.加热器进风口311位于再生模组上壳体310的外弧侧面,再生模组上壳体310呈扇形结构,再生气流由加热器进风口311沿径向进入第三气流通道,经由均风板330上的风孔进入加热器容纳区,与加热管340进行热交换,受热后的高温再生气流穿过转盘200,对再生区内的转盘200部分进行脱水烘干。风孔的直径沿扇形的半径方向从外弧向圆心有减小的趋势,加热管340呈s形分布,加热管340沿扇形的半径方向间隔分布且加热管340的长度垂直于扇形的半径方向设置,由于均风板330上的风孔与加热管340相对应设置,因此风孔的直径设置在靠近加热器进风口311处相对大些,远离加热器进风口311处的风孔的直径要相
对小些,即转盘200在再生区内接受到的受热后的高温再生气流流量沿扇形的半径方向从外弧向圆心均匀或不均匀地减小,从而可实现对转盘200更均匀地加热烘干。
55.实施例2
56.实施例2与实施例1的相同之处不再赘述,其与实施例1的不同之处在于:
57.加热器进风口311位于再生模组上壳体310的侧壁,侧壁设为沿扇形的径向布置,再生气流的流动方向与转盘的旋转方向相对或同向设置;再生气流由加热器进风口311进入第三气流通道,经由均风板330上的风孔进入加热器容纳区,与加热管340进行热交换,受热后的高温再生气流由上至下穿过转盘200,对再生区内的转盘200部分进行脱水烘干。加热管340呈s形分布,加热管340的长度平行于与加热器进风口311相对的侧壁设置,且加热管340沿扇形的径向间隔分布,由于均风板330上的风孔与加热管340相对应设置,因此均风板330上的风孔远离加热器进风口311的一侧设置相对要密集且风孔的直径也要大些,通过风孔的设置来控制受热后的高温再生气流的流量。当转盘200经由除湿区吸附湿循环气流的水分,旋转至再生区时,先以较大流量的高温再生气流对转盘200部分进行脱水烘干,然后在旋转经过再生区时,逐渐地减少高温再生气流的流量,从而可实现对转盘200更均匀地加热烘干。
58.本实用新型的第二方面提供了一种烘干模组,包括上述的再生模组。
59.一些实施例中,烘干模组还包括:转盘上壳体210,转盘上壳体210上形成有大致扇形的再生模组容纳部;再生模组30安装于再生模组容纳部,再生模组30位于转盘200的上方,再生模组例如用于对再生气流进行加热,以对转盘200吸附的水分进行脱附;其中,再生模组的内侧具有气流空间,以形成第三气流通道;部分转盘200的底面与转盘下壳体220的再生区内壁之间具有间隙,以形成第四气流通道。再生模组可包括加热器,用于对再生气流进行加热,加热后的再生气流经由第三气流通道由上至下穿过转盘200到达第四气流通道,对再生区内的转盘200部分进行脱水,转盘200在旋转的过程中,经过除湿区和再生区,是不断地进行吸附水分和脱附水分的循环过程。
60.示例性实施例中,转盘下壳体220可设有第一转盘容纳区,转盘下壳体220可包括底板和突出于底板的环周侧壁,形成的凹陷部为第一转盘容纳区。同理,转盘上壳体210可设有第二转盘容纳区,第二转盘容纳区至少包括了除湿区,但并不包括再生区,第二转盘容纳区的径向边缘设置有再生模组容纳部。第二转盘容纳区和部分第一转盘容纳区至少共同形成除湿区,再生模组容纳部和另外部分第一转盘容纳区共同形成再生区。由于转盘容纳腔内有气流通过,所以转盘上壳体210与转盘下壳体220之间可设为密封连接。例如是转盘上壳体210或转盘下壳体220上分别设有凹槽或凸缘,凹槽内设置密封条,转盘上壳体210与转盘下壳体220扣合连接时凸缘顶住凹槽内的密封条以实现密封。
61.一些实施例中,烘干模组还包括:转盘下壳体220,转盘下壳体220设有第一转盘容纳区,第一转盘容纳区内设有第一分隔件221,以将第一转盘容纳区分隔为除湿区和再生区;循环风机的出风口与除湿区连通。转盘200的底面与转盘下壳体的除湿区内底壁之间具有间隙,可形成第二气流通道;转盘200工作时位于除湿区的部分,可将进入第二气流通道内的湿循环气流中的水分吸附;转盘200在旋转的过程中,已在除湿区吸附水分的部分旋转至再生区时,进行脱水再生。
62.一些实施例中,所述第一分隔件221设为沿转盘下壳体220的径向设置,且在第一
转盘容纳区的中心位置形成转盘安装区,大致径向设置的第一分隔件221使除湿区和再生区均为大致扇形;其中,除湿区的面积可设为再生区的面积2-3倍。除湿区的面积可设为大于再生区的面积,这样转盘200的大部分均处于除湿区,从而进一步提高转盘200的吸湿效率及吸湿效果。为了防止滚筒内排出的湿循环气流与再生气流互相窜通,第一分隔件221与转盘200之间可形成一定动态密封的效果。当转盘200旋转至再生区时,再生气流对该部分的转盘200进行加热,使该部分的水分快速蒸发脱离,由再生气流带走进入冷凝器;从而使转盘200一直具有良好的吸水能力,从而提高了吸湿的效率及效果。
63.一些实施例中,一种烘干模组,如图1-图6所示,具体地可包括:循环模组10、除湿模组20和再生模组30。循环模组10,其具有第一循环通路,第一循环通路与滚筒出气口连通,以使滚筒内的湿循环气流进入第一循环通路;除湿模组,其具有第二循环通路,除湿模组位于循环模组的下游或上游;滚筒出气口、第一循环通路、第二循环通路和滚筒进气口依次连通,以形成循环通路;除湿模组包括吸湿排湿构件,至少部分吸湿排湿构件设置于第二循环通路上,吸湿排湿构件用于吸附来自于滚筒内的湿循环气流中的水分;再生模组30,其包括再生构件,再生构件与至少另一部分吸湿排湿构件紧邻设置,再生构件用于将所述至少另一部分吸湿排湿构件上吸附的水分至少部分地排出。循环模组10可包括循环风机,循环风机的设置可为湿循环气流提供动力,有利于气流的循环,循环风机的进风口与滚筒出气口连通,循环风机的出风口与第二循环通路连通,吸湿排湿构件设置于第二循环通路上,吸湿排湿构件可先吸附来自于滚筒内的湿循环气流中的水分,使湿循环气流变为相对干燥的循环气流,干燥循环气流通过滚筒进气口进入滚筒内,与衣物充分接触,提高烘干效率,降低能耗。为了使得吸湿排湿构件可连续且重复使用,通过再生构件将所述吸湿排湿构件上吸附的水分排出,再生构件例如可以是加热构件或超声波构件等,通过加热或超声波除湿等方式将吸湿排湿构件上吸附的水分去除。
64.一些实施例中,吸湿排湿构件包括转盘200;再生构件为加热构件;再生模组具有再生通路,加热构件与转盘的部分依次设置于再生通路上,以使再生通路内的再生气流依次流经加热构件与转盘的部分,变成湿热的再生气流。具体地,吸湿排湿构件可包括转盘200和驱动组件,驱动组件可以包括电机,电机可驱动转盘200旋转。转盘200可选用吸湿性能好的材料制作,例如可以是沸石、氯化锂、硅胶、改性硅胶或13x(钠x型)分子筛等。加热构件设置于再生通路上,例如加热构件可包括加热器,因此再生通路内的再生气流经加热器加热后变成高温的再生气流,为了更高效地对转盘进行脱水,可使高温的再生气流穿过转盘200位于再生通路的部分,这样转盘200在旋转的过程中,当旋转至再生通路时,将吸附的水分不断地进行脱附,以保持转盘200可连续且重复使用。
65.一些实施例中,烘干模组还可包括转盘上壳体210和转盘下壳体220,转盘上壳体210和转盘下壳体220配合连接形成转盘容纳腔;转盘200安装于转盘容纳腔内,转盘200的顶面与转盘上壳体的部分内壁之间具有间隙,以形成第一气流通道;转盘200的底面与下壳体的部分内壁之间具有间隙,以形成第二气流通道;第二气流通道与滚筒出气口连通,第一气流通道与滚筒进气口连通;滚筒内的湿循环气流经由第二气流通道并由下至上穿过转盘200到达第一气流通道,以形成干燥循环气流。其中,第二气流通道、转盘200和第一气流通道可形成第二循环通路。
66.一些实施例中,再生通路与循环通路相对隔离,以使再生气流和湿循环气流互不
相通。由于转盘200的一部分位于再生通路内,另一部分位于循环通路内,转盘200在持续旋转的过程中,是不断地经过再生通路和循环通路;示例性实施例中,当转盘200的一部分旋转至再生通路内时,高温的再生气流可由上至下穿过转盘200,以实现高效地对转盘进行脱水,当转盘200的另一部分旋转至循环通路内时,湿循环气流可由下至上穿过转盘200,转盘200可充分地吸附湿循环气流中的水分;再生气流和湿循环气流两股气流同时作用在转盘200上,为了保持转盘200旋转的平稳性,可将再生气流和湿循环气流两股气流的流动方向设为相对。通过在转盘上壳体210和转盘下壳体220上设置分隔件和密封件,以实现转盘200在旋转的过程中实现动态密封的效果,尽可能地减小湿循环气流与再生气流互相窜通,因此有利于转盘200在旋转的过程中,不断地进行吸附水分和脱水烘干,从而使转盘200一直具有良好的吸水能力,从而提高了吸湿的效率及效果。
67.一些实施例中,再生模组还包括再生风机301,再生风机301设置于再生通路上,且再生风机301位于加热构件的上游。再生风机301的设置可为再生气流提供动力,有利于气流的循环和提高效率。
68.一些实施例中,烘干模组还包括冷凝模组40,冷凝模组40具体地可包括冷凝器401,冷凝器401设置于再生通路上,冷凝器位于转盘200的下游,且冷凝器位于再生风机301的上游,以使再生通路内的湿热的再生气流进入冷凝器401,变成干冷的再生气流进入再生风机301,并以使再生气流形成闭路循环。当转盘200旋转至再生通路时,再生气流对该部分的转盘200进行加热,使该部分的水分快速蒸发脱离,由再生气流带走,此时再生气流变为湿热的再生气流进入冷凝器401;从而使转盘200一直具有良好的吸水能力,进一步提高了转盘200吸湿的效率及效果。示例性实施例中,湿热的再生气流进入冷凝器401进行热交换并降温,再生气流中的水蒸汽经冷却形成冷凝水由冷凝器401排出,干燥的低温再生气流进入再生风机301进行下一次循环。可选的实施例中,湿热的再生气流进入冷凝器401进行热交换并降温,再生气流中的水蒸汽经冷却形成冷凝水由冷凝器401排出,干燥的低温再生气流可通过冷凝器401出风口排放至大气中,以避免对洗烘一体机所处空间的大气温度和湿度造成不良影响;因此再生气流可形成开放循环。
69.一些实施例中,再生模组还包括再生模组上壳体310,再生模组上壳体310具有加热构件容纳腔;加热构件安装于加热构件容纳腔内,加热构件位于转盘的上方,且加热构件容纳腔与转盘连通;加热构件用于对再生气流进行加热,以对转盘200吸附的水分进行至少部分蒸发。
70.一些实施例中,为了使送入的再生气流更均匀地受热,并对转盘200进行更均匀地脱水烘干,优选的方案为加热构件包括层叠设置的均风件和加热器,加热器位于均风件和转盘200之间;再生气流进入加热构件容纳腔内,依次经由均风件、加热器和转盘200。
71.一些实施例中,再生模组上壳体310呈扇形体结构;再生模组上壳体310的外弧侧面设有加热器进风口311;均风件与再生模组上壳体310的顶壁具有间隙,以形成第三气流通道;转盘200的底面与转盘下壳体220的再生区内壁之间具有间隙,以形成第四气流通道;第三气流通道与加热器进风口311连通,以使再生气流经由加热器进风口进入第三气流通道,经过均风件、加热器和由上至下穿过转盘到达第四气流通道,变成湿热的再生气流。再生气流经由加热器进风口311进入第三气流通道,均风件可使再生气流更均匀地与加热器接触,受热均匀的再生气流对再生区内的转盘200部分进行脱水烘干。
72.冷凝模组40具体地还可包括冷凝模组上壳体410和冷凝模组下壳体420,冷凝模组上壳体410和冷凝模组下壳体420配合连接可形成冷凝器容纳腔,冷凝器401安装于冷凝器容纳腔内。图4中所示的箭头为再生气流的流向,再生气流由上至下穿过转盘到达第四气流通道,变成湿热的再生气流后流入冷凝模组下壳体420,进入冷凝器401进行热交换并降温。
73.一些实施例中,烘干模组还包括第一连接件3013,其两端分别与冷凝器和再生风机连通,以使再生气流经由冷凝器401进入所述再生风机301;第二连接件3014,其两端分别与所述再生风机和加热器进风口连通,以使再生气流经由所述再生风机进入第三气流通道。由于冷凝器401与再生风机301的距离很近,可以采用如图5-图6所示的硬管接头,不仅可以对再生风机301起到支撑的作用,而且可以使得烘干模组的整体结构紧凑,占用空间小;当然,第一连接件3013也可以是柔性件,可以方便地对接至冷凝器和再生风机进风口这两处硬质结构上。
74.一些实施例中,再生模组还可包括再生风机安装部320,再生风机安装部320具体地可包括再生风机上壳体321和再生风机下壳体322,再生风机上壳体321和再生风机下壳体322构成再生风机容纳腔。再生风机下壳体322与第一连接件3013通过法兰连接固定,可以对再生风机301支撑牢靠;也可以通过柔性第一连接件3013连接,第一连接件3013一端可通过变形置入下壳体322的开口中,由于其是柔性的,也能够助于形成良好的密封。
75.一些实施例中,所述第一连接件3013包括第一进风口和第一出风口,所述第一进风口与冷凝器出风口适配且连通,所述第一出风口与再生风机进风口适配且连通;所述第一进风口为大致矩形开口,所述第一出风口为大致圆形开口,所述第一进风口所在的平面与所述第一出风口所在的平面大致垂直设置,以调整再生气流的流动方向。第一连接件3013的第一进风口端面设有矩形的连接法兰或者为柔性边界以致其变形置入冷凝器出风口,与冷凝模组上壳体410和冷凝模组下壳体420连接固定,第一连接件3013的壳体结构为异形,第一连接件3013内的风道由第一进风口处的横截面为矩形向第一出风口处的横截面为圆形逐渐过渡,保证了第一连接件3013可以导风通畅。
76.一些实施例中,所述第二连接件3014包括第二进风口和第二出风口,所述第二进风口与所述再生风机出风口适配且连通,所述第二出风口与加热器进风口适配且连通;所述第二进风口为大致矩形开口,第二出风口为弧形开口,所述第二进风口所在的平面与所述第二出风口所在的平面大致平行设置,且第二出风口的面积大于所述第二进风口。第二连接件3014内的风道由第二进风口向第二出风口处逐渐扩张,从而进一步地将气流的动压能转化为静压能,提高了动压能的转化能力,提高了风机的工作性能,尽可能地避免形成紊流。
77.一些实施例中,所述再生构件为超声波构件。超声波构件可包括超声波发生器,超声波发生器工作时产生超声波能量,以使转盘200发生高频率振动,不断破坏转盘200外表面的水膜和气膜,以达到增强转盘200与再生气流的热质交换系数,通过热质交换由再生气流带走转盘200所吸附的水分,提高在较低温度情况下转盘200的再生效率。
78.本实用新型的第三方面提供了一种洗烘一体机,包括上述的烘干模组。
79.洗烘一体机,还包括滚筒,其设有滚筒进气口和滚筒出气口,滚筒进气口和滚筒出气口可分别设置于滚筒旋转轴的两端,以使得进入滚筒的干燥高温气流能够充分与滚筒内的衣物进行热交换;滚筒进气口位于前部或后部,滚筒出气口位于后部或前部;滚筒进气口
和滚筒出气口分别连通滚筒外筒与内筒之间的空间。例如滚筒进气口和滚筒出气口分别位于滚筒旋转轴的两端,以使得气流能与滚筒内衣物充分接触,提高烘干效率。
80.当然滚筒进气口和出气口的具体位置本公开不做具体限定,也可同时位于滚筒同一端,或交错设置在滚筒上。
81.应当理解的是,本实用新型的上述具体实施方式仅仅用于示例性说明或解释本实用新型的原理,而不构成对本实用新型的限制。因此,在不偏离本实用新型的精神和范围的情况下所做的任何修改、等同替换、改进等,均应包含在本实用新型的保护范围之内。此外,本实用新型所附权利要求旨在涵盖落入所附权利要求范围和边界、或者这种范围和边界的等同形式内的全部变化和修改例。
再多了解一些

本文用于创业者技术爱好者查询,仅供学习研究,如用于商业用途,请联系技术所有人。

发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表

相关文献