一种残膜回收机防缠绕挑膜装置的制 一种秧草收获机用电力驱动行走机构

基于深度学习的雷达回波检测方法、系统、设备及介质

2023-01-02 13:57:23 来源:中国专利 TAG:


1.本发明涉及雷达回波检测领域,特别是涉及一种基于深度学习的雷达回波检测方法、系统、设备及介质。


背景技术:

2.雷达作为重要的无线电定位与测距设备,具有全天时、全天候、作用距离远、参数估计精度高、响应速度快等特点,能够有效探测感知波束内的目标以及场景,其通过相应的信号与信息处理获取目标的位置、速度、运动态势等信息,广泛应用于侦察监视、态势感知、探测制导、目标检测等军民领域。但是随着近些年来电子信息技术、航空技术等各项相关领域对抗技术水平提高,使得雷达目标检测任务场景更加复杂化。尤其是对于以无人机为代表的低空弱小、速度慢目标的检测任务。无人机因其低成本和多功能性而被广泛使用,其在行人捕捉、航空摄影和遥感等各种应用中的使用迅速增加,但也带来了安全和隐私威胁。同时,由于“低小慢”目标往往存在于低空强杂波环境下,其目标回波信噪比低,对其的检测识别存在一定困难。因此,通过目标的雷达回波对其进行可靠和稳健的识别具有重要意义。
3.现阶段中国内外针对雷达回波数据的常用检测方法主要是通过传统信号处理方法对目标雷达回波序列进行一系列处理,包括匹配滤波器、杂波抑制、多普勒处理、恒虚警率检测等。但基于恒虚警率的目标检测方法主要依赖于统计假设,根据纽曼-皮尔逊准则,恒虚警方法在虚警率0.000001、检测概率90%条件下,可检测的目标信噪比需大于12.8db。也就造成了在实际的雷达目标检测中,只有特定背景下的特定类型目标具有较好的检测性能。这是因为检测器的预定义参数,将决定检测精度,然而,雷达的工作场景总是不断变换的。此外,传统方法计算量大且不灵活,因为它们逐个单元地处理输入,并且需要手动更改窗口大小以适应不同分辨率的目标。最重要的是,在大多数情况下,目标和环境(噪声、杂波、干扰)随机性强,很难找到合适的参数来设计雷达探测器。
4.随着人工智能深度学习技术发展,在图像处理、自然语言处理等多个领域深度学习技术都给人们解决技术难题带来巨大突破。近年来,有研究人员对原始雷达回波数据进行处理,转换为图像格式数据,作为卷积神经网络的输入数据,以此进行目标检测任务,获得了一定的实验结果,这也证明了深度学习技术在雷达目标检测领域有着巨大探索价值与应用前景,但雷达回波到回波图像需做二次处理,并且仅通过图像进行目标检测,也导致模型对转化后的雷达回波图像质量存在一定要求,降低了识别准确率。


技术实现要素:

5.本发明的目的是提供一种基于深度学习的雷达回波检测方法、系统、设备及介质,以提高对“低小慢”目标雷达回波检测的准确性和适用性。
6.为实现上述目的,本发明提供了如下方案:一种基于深度学习的雷达回波检测方法,所述方法包括:获取待测目标的雷达回波数据;
利用雷达回波检测模型对所述待测目标的雷达回波数据进行检测,得到所述待测目标的速度和距离方位;其中,所述雷达回波检测模型包括串联连接的特征提取模块和目标检测模块;所述特征提取模块包括卷积神经网络特征提取子模块、结合软注意力机制的自编码器杂波抑制子模块和特征融合子模块;所述卷积神经网络特征提取子模块和所述自编码器杂波抑制子模块均与所述特征融合子模块连接;所述特征融合子模块与所述目标检测模块连接;所述卷积神经网络特征提取子模块用于对输入的待测目标的雷达回波数据进行卷积处理,得到第一待测特征张量;所述自编码器杂波抑制子模块用于对输入的待测目标的雷达回波数据进行编码压缩和解码重构处理,得到第二待测特征张量;所述特征融合子模块用于融合所述第一待测特征张量和所述第二待测特征张量,得到融合待测特征张量;所述目标检测模块用于根据所述融合待测特征张量确定所述待测目标的速度和距离方位。
7.可选地,所述雷达回波检测模型的确定方法,具体包括:获取训练数据集;所述训练数据集包括雷达回波数据样本和对应的样本目标的真实速度和真实距离方位;构建初始神经网络模型;所述初始神经网络模型包括串联连接的特征提取网络和目标检测网络;所述特征提取网络包括第一卷积神经网络、结合软注意力机制的自编码器网络和特征融合网络;所述第一卷积神经网络和所述自编码器网络均与所述特征融合网络连接;所述特征融合网络与所述目标检测网络连接;将所述雷达回波数据样本输入至所述第一卷积神经网络中进行卷积处理,得到第一样本特征张量;将所述雷达回波数据样本输入至所述自编码器网络中进行编码压缩和解码重构处理,得到第二样本特征张量;将所述第一样本特征张量和所述第二样本特征张量输入至所述特征融合网络中进行融合,得到融合样本特征张量;将所述融合样本特征张量输入至目标检测网络中,得到所述样本目标的预测速度和预测距离方位;根据所述预测距离方位和所述真实距离方位确定目标距离方位损失值;根据所述预测速度和所述真实速度确定目标速度损失值;以所述目标距离方位损失值和所述目标速度损失值的加权和最小为目标,对所述初始神经网络模型的参数进行优化调整,得到训练好的初始神经网络模型;所述目标距离方位损失值和所述目标速度损失值的权重是采用变异系数加权方法确定的;将训练好的初始神经网络模型中的特征提取网络确定为所述雷达回波检测模型的特征提取模块;将训练好的初始神经网络模型中的目标检测网络确定为所述雷达回波检测模型的目标检测模块。
8.可选地,所述目标距离方位损失值的计算公式为:
;其中,loss
range
为目标距离方位损失值,n为训练数据集中的雷达回波数据样本总数,xi为第i个雷达回波数据样本,f1(xi)为第i个雷达回波数据样本对应的预测距离方位,y
1,i
为第i个雷达回波数据样本对应的真实距离方位。
9.可选地,所述目标速度损失值的计算公式为:;其中,loss
velocity
为目标速度损失值,n为训练数据集中的雷达回波数据样本总数,xi为第i个雷达回波数据样本,f2(xi)为第i个雷达回波数据样本对应的预测速度,y
2,i
为第i个雷达回波数据样本对应的真实速度。
10.可选地,所述目标距离方位损失值和所述目标速度损失值的权重的计算公式为:;其中,为第t个训练轮次下,第l项任务损失值的权重;为第t个训练轮次下,第l项任务损失值的方差;为第t个训练轮次下,第l项任务损失值的相对标准偏差;为第t个训练轮次下,第l项任务损失值的均值;m为任务总项数,且m=2,其中,第1项任务为目标距离方位检测,第2项任务为目标速度检测;w
1,t
为第t个训练轮次下的目标距离方位损失值的权重,w
2,t
为第t个训练轮次下的目标速度损失值的权重。
11.可选地,所述目标检测模块包括卷积神经网络目标检测子模块和全连接层目标检测子模块;所述卷积神经网络目标检测子模块分别与所述特征融合子模块和所述全连接层目标检测子模块连接;所述卷积神经网络目标检测子模块用于对所述融合待测特征张量进行卷积处理,得到第三待测特征张量;所述全连接层目标检测子模块用于根据所述第三待测特征张量确定所述待测目标的速度和距离方位。
12.一种基于深度学习的雷达回波检测系统,所述系统包括:数据获取子系统,用于获取待测目标的雷达回波数据;数据检测子系统,用于利用雷达回波检测模型对所述待测目标的雷达回波数据进行检测,得到所述待测目标的速度和距离方位;其中,所述雷达回波检测模型包括串联连接的特征提取模块和目标检测模块;所述特征提取模块包括卷积神经网络特征提取子模块、结合软注意力机制的自编码器杂波抑制子模块和特征融合子模块;所述卷积神经网络特征提取子模块和所述自编码器杂波抑制
子模块均与所述特征融合子模块连接;所述特征融合子模块与所述目标检测模块连接;所述卷积神经网络特征提取子模块用于对输入的待测目标的雷达回波数据进行卷积处理,得到第一待测特征张量;所述自编码器杂波抑制子模块用于对输入的待测目标的雷达回波数据进行编码压缩和解码重构处理,得到第二待测特征张量;所述特征融合子模块用于融合所述第一待测特征张量和所述第二待测特征张量,得到融合待测特征张量;所述目标检测模块用于根据所述融合待测特征张量确定所述待测目标的速度和距离方位。
13.一种电子设备,包括存储器及处理器,所述存储器用于存储计算机程序,所述处理器运行所述计算机程序以使所述电子设备执行上述的基于深度学习的雷达回波检测方法。
14.一种计算机可读存储介质,其存储有计算机程序,所述计算机程序被处理器执行时实现上述的基于深度学习的雷达回波检测方法。
15.根据本发明提供的具体实施例,本发明公开了以下技术效果:本发明提供的基于深度学习的雷达回波检测方法,所利用的雷达回波检测模型是采用训练数据集对基于卷积神经网络与结合软注意力机制的自编码器的初始神经网络模型进行训练得到的,包括串联连接的特征提取模块和目标检测模块,特征提取模块包括卷积神经网络特征提取子模块、结合软注意力机制的自编码器杂波抑制子模块和特征融合子模块。卷积神经网络特征提取子模块能够通过卷积操作提取输入的雷达回波数据的特征,自编码器杂波抑制子模块能够通过编码-解码操作实现杂波抑制,因此能够有效处理弱小目标所在的复杂场景下的高杂波并提取有效特征,从而在之后的目标检测模块中实现对弱小目标的速度与距离方位的检测,有效降低雷达回波数据的低信噪比与高杂波对雷达目标检测所造成的影响,提高对“低小慢”目标雷达回波检测的准确性和适用性。
附图说明
16.为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
17.图1为本发明提供的基于深度学习的雷达回波检测方法的流程图;图2为本发明实施例提供的对原始雷达回波数据的预处理流程图;图3为本发明实施例提供的基于深度学习的雷达回波检测方法的整体流程图;图4为本发明实施例提供的基于深度学习的雷达回波检测方法的特征提取模块流程图;图5为本发明实施例提供的基于深度学习的雷达回波检测方法的目标检测模块流程图;图6为本发明提供的基于深度学习的雷达回波检测系统的模块图。
具体实施方式
18.下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
19.本发明的目的是提供一种基于深度学习的雷达回波检测方法、系统、设备及介质,以提高对“低小慢”目标雷达回波检测的准确性和适用性。
20.为实现上述目的,本发明通过设计基于卷积神经网络与结合软性注意力机制的自编码器融合的特征提取模块,实现对雷达回波数据中的杂波进行抑制;同时设计目标检测模块,实现对待测目标的速度与距离方位的识别。两个模块通过串联的方式进行连接,以实现雷达回波数据目标检测任务。
21.为使本发明的上述目的、特征和优点能够更加明显易懂,下面结合附图和具体实施方式对本发明作进一步详细的说明。
22.实施例一本实施例提供一种基于深度学习的雷达回波检测方法。如图1所示,所述方法包括:步骤101:获取待测目标的雷达回波数据。
23.步骤102:利用雷达回波检测模型对所述待测目标的雷达回波数据进行检测,得到所述待测目标的速度和距离方位。
24.其中,所述雷达回波检测模型包括串联连接的特征提取模块和目标检测模块;所述特征提取模块包括卷积神经网络特征提取子模块、结合软注意力机制的自编码器杂波抑制子模块和特征融合子模块;所述卷积神经网络特征提取子模块和所述自编码器杂波抑制子模块均与所述特征融合子模块连接;所述特征融合子模块与所述目标检测模块连接。
25.所述卷积神经网络特征提取子模块用于对输入的待测目标的雷达回波数据进行卷积处理,得到第一待测特征张量。所述自编码器杂波抑制子模块用于对输入的待测目标的雷达回波数据进行编码压缩和解码重构处理,得到第二待测特征张量。所述特征融合子模块用于融合所述第一待测特征张量和所述第二待测特征张量,得到融合待测特征张量。所述目标检测模块用于根据所述融合待测特征张量确定所述待测目标的速度和距离方位。
26.进一步地,所述目标检测模块包括卷积神经网络目标检测子模块和全连接层目标检测子模块;所述卷积神经网络目标检测子模块分别与所述特征融合子模块和所述全连接层目标检测子模块连接。其中,所述卷积神经网络目标检测子模块用于对所述融合待测特征张量进行卷积处理,得到第三待测特征张量;所述全连接层目标检测子模块用于根据所述第三待测特征张量确定所述待测目标的速度和距离方位。
27.进一步地,所述雷达回波检测模型的确定方法包括:步骤s1:获取训练数据集;所述训练数据集包括雷达回波数据样本和对应的样本目标的真实速度和真实距离方位。
28.步骤s2:构建初始神经网络模型。所述初始神经网络模型包括串联连接的特征提取网络和目标检测网络;所述特征提取网络包括第一卷积神经网络、结合软注意力机制的自编码器网络和特征融合网络;所述第一卷积神经网络和所述自编码器网络均与所述特征
融合网络连接;所述特征融合网络与所述目标检测网络连接;所述目标检测网络包括第二卷积神经网络和全连接层网络;所述第二卷积神经网络分别与所述特征融合网络和所述全连接层网络连接。
29.步骤s3:将所述雷达回波数据样本输入至所述第一卷积神经网络中进行卷积处理,得到第一样本特征张量。
30.步骤s4:将所述雷达回波数据样本输入至所述自编码器网络中进行编码压缩和解码重构处理,得到第二样本特征张量。
31.步骤s5:将所述第一样本特征张量和所述第二样本特征张量输入至所述特征融合网络中进行融合,得到融合样本特征张量。
32.步骤s6:将所述融合样本特征张量输入至目标检测网络中,得到所述样本目标的预测速度和预测距离方位。具体地,将所述融合样本特征张量输入至所述第二卷积神经网络中进行卷积处理,得到第三样本特征张量;将所述第三样本特征张量输入至所述全连接层网络中进行检测,得到所述样本目标的预测速度和预测距离方位。
33.步骤s7:1)根据所述预测距离方位和所述真实距离方位确定目标距离方位损失值;2)根据所述预测速度和所述真实速度确定目标速度损失值。
34.步骤s8:以所述目标距离方位损失值和所述目标速度损失值的加权和最小为目标,对所述初始神经网络模型的参数进行优化调整,得到训练好的初始神经网络模型;所述目标距离方位损失值和所述目标速度损失值的权重是采用变异系数加权(coefficient of variations weighting,cov-weighting)方法确定的。
35.步骤s9:1)将训练好的初始神经网络模型中的特征提取网络确定为所述雷达回波检测模型的特征提取模块;2)将训练好的初始神经网络模型中的目标检测网络确定为所述雷达回波检测模型的目标检测模块。
36.优选地,为提高目标检测的准确性,所述待测目标的雷达回波数据及所述训练数据集中的雷达回波数据均为按照时序关系进行分组预处理后的雷达回波数据,预处理步骤参见图2,包括:1)对设备采集的离散数字信号形式的雷达回波数据进行变频处理;2)对变频处理后的雷达回波数据进行抽取滤波处理;3)对抽取滤波处理后的雷达回波数据进行脉冲压缩处理,得到时序脉冲序列形式的雷达回波数据。
37.在实际应用中,采用本发明提供的方法对弱小目标的雷达回波数据进行检测的步骤具体如下:1)对弱小目标的雷达回波数据按时序关系进行分组预处理,得到对应的时域脉冲序列。
38.2)在特征提取模块(此处指初始神经网络模型的特征提取网络)中,引入卷积神经网络与结合软性注意力机制的自编码器,前者通过卷积操作,以近似传统信号处理的操作方法实现提取特征,后者通过编码-解码操作以实现杂波抑制,将两个子模块输出的数据向量进行融合,作为特征提取模块的输出结果。
39.3)在目标检测模块(此处指初始神经网络模型的目标检测网络)中,引入卷积神经网络对特征提取模块输出的融合特征数据进行卷积操作,后通过全连接层进行目标速度和距离方位的检测。
40.4)将特征提取模块与目标检测模块串联搭建整体模型,即初始神经网络模型。
41.5)考虑目标任务并不单一,故设计结合检测目标的速度与距离方位的损失函数,为后续训练网络时反向传播参数优化做好准备。
42.6)通过预处理后的时序脉冲序列对基于卷积神经网络与结合软注意力机制的自编码器的初始神经网络模型进行有监督训练,得到训练好的初始神经网络模型,即雷达回波检测模型。
43.7)利用所述训练好的初始神经网络模型对弱小目标的雷达回波数据进行速度与距离方位检测。
44.本发明的整体流程如图3所示(图3中的虚线框表示雷达回波检测模型),整体流程包括两个部分:通过基于卷积神经网络与结合软注意力机制自编码器的特征提取网络模块(即特征提取模块)对输入的雷达回波数据进行特征提取与杂波抑制;基于卷积神经网络的雷达目标检测网络模块(即目标检测模块)通过特征提取模块输出的融合特征进行雷达目标的速度与距离方位检测。在针对雷达回波数据的特征提取与杂波抑制阶段,引入了卷积神经网络与结合软注意力机制的自编码器两个子网络,并以并联的方式接收相同数据进行并行处理,对两个子网络输出结果进行特征融合操作,以此作为特征提取模块的输出特征,而在雷达目标检测部分通过卷积神经网络与全连接层进行雷达目标速度与距离方位检测。以下对上述主要步骤进行详细论述。
45.在训练数据集上对比真实值计算损失函数,进行反向传播具体的实施步骤如下:步骤1:首先对损失函数进行设计。本发明构建基于深度学习的弱小目标雷达回波检测模型,其目的在于通过雷达回波数据进行雷达目标速度与距离方位的共同检测。由于模型任务为目标速度检测与目标距离方位检测两项具体任务,因此认定为多任务回归模型。在多任务学习时希望多个相关任务共同训练,希望不同任务之间能够互相促进,从而在单任务上获得更好的效果。对于回归任务,通常使用的损失函数有l
1 loss与l
2 loss与smooth l
1 loss,具体计算公式如下所示:;;;其中,n为训练数据集中的雷达回波数据样本总数,xi为第i个雷达回波数据样本,f(xi)为在当前任务下,第i个雷达回波数据样本对应的预测值,yi为在当前任务下,第i个雷达回波数据样本对应的真实值。
46.l
1 loss不会产生梯度爆炸的问题,但是在中心点无法求导,往往适用于简单模型,而l
2 loss各点连续光滑,方便求导,收敛速度也要优于l
1 loss,但可能导致梯度爆炸,往往适用于数值特征不大,问题维度不高的情况,而smooth l
1 loss将l
1 loss与l
2 loss的优点相结合,并且巧妙避免了l
1 loss与l
2 loss会导致的问题,故选择smooth l
1 loss为单任务损失函数。并在其基础上,同时通过cov-weighting方法动态设定对应损失函数的权
重,cov-weighting通过单损失l的均值μ
l
和标准差σ
l
的变化情况来计算每个任务的权重,认为当一个任务的损失l的方差趋于0时,该任务优化目标达成。通过定义相对标准偏差c
l
的计算公式为,定义损失变化率r
t
的计算公式为(其中,r
t
第t个训练轮次下的损失变化率,l
t
为第t个训练轮次下的损失值,为第t-1个训练轮次下的损失值的均值),得到计算对应任务损失函数权重的具体公式如下:;其中,为第t个训练轮次下,第l项任务损失值的权重;为第t个训练轮次下,第l项任务损失值的方差;为第t个训练轮次下,第l项任务损失值的相对标准偏差;为第t个训练轮次下,第l项任务损失值的均值;m为任务总项数。在本发明中,m=2,第1项任务为目标距离方位检测,第2项任务为目标速度检测;w
1,t
为第t个训练轮次下的目标距离方位损失值的权重,w
2,t
为第t个训练轮次下的目标速度损失值的权重。
47.由此得到最终的损失函数为:loss
total
=w
1,t
loss
range
w
2,t
loss
velocity
;其中,loss
total
为雷达回波检测模型的最终损失值,loss
range
为目标距离方位损失值,loss
velocity
为目标速度损失值。
48.所述目标距离方位损失值的计算公式为:;其中,f1(xi)为第i个雷达回波数据样本对应的预测距离方位,y
1,i
为第i个雷达回波数据样本对应的真实距离方位。
49.所述目标速度损失值的计算公式为:;其中,f2(xi)为第i个雷达回波数据样本对应的预测速度,y
2,i
为第i个雷达回波数据样本对应的真实速度。
50.步骤2:特征提取模块搭建。如图4所示(图4中的虚线框表示特征提取模块),通过卷积神经网络特征提取子模块与结合软注意力机制的自编码器杂波抑制子模块并联搭建特征提取模块,上述两个子模块同时对输入的含杂波的雷达回波序列数据x进行特征处理,两个子模块输出特征数据经特征融合子模块进行特征融合后得到融合特征张量,并输出至目标检测模块。卷积神经网络进行特征提取计算的公式如下:
;其中,k为当前网络层数,q为对应层的网络节点数量,为第k层网络中第q节点对应的数据,y
k 1
为当前网络层向下层网络输出的结果,为第k层网络对应的权重矩阵,为第k层网络的偏置项,p为上层网络节点数量。
51.输入数据x通过自编码器神经网络进行编码压缩与解码重构,对原始数据进行变换,达到杂波抑制的目的。同时软注意力机制的介入,可以协助模块更好地从数据中选取重要部分,以提高模块杂波抑制效果。以上两个特征提取子模块输出的特征数据x’进行融合堆叠作为目标检测模块的输入。
52.步骤3:目标检测模块搭建。如图5所示(图5中的虚线框表示目标检测模块),目标检测模块为基于卷积神经网络结构的回归检测模型,卷积神经网络选用激活函数为relu,池化方式选用最大池化,同时在卷积层之间加入批标准化(batch normalization,bn),批标准化可以有效减少梯度消失的情况,加快模型的收敛速度,具体对应的计算公式如下:;;其中,x为批数据,x’为批标准化后的数据,μ为批数据的均值,σ为批数据的标准差。
53.特征提取子模块输出的特征数据x’作为雷达目标检测子模块的输入数据,经过卷积层计算与全连接层计算,对雷达目标的速度与距离距离方位进行检测。
54.步骤4:将特征提取模块与目标检测模块串联,至此基于深度学习的弱小目标的雷达回波检测模型(此处指初始神经网络模型)搭建完成,利用带有真实标签的雷达回波数据对初始神经网络模型进行训练,模型输出对应弱小目标的速度与距离方位。利用步骤1中设计的损失函数loss
total
计算损失,进行反向传播更新模型权重值,保存训练过程中误差最小的模型。
55.步骤5:利用设备采集待测目标的雷达回波数据,并按照如图2所示的步骤进行预处理后,利用步骤4训练好的雷达回波检测模型进行检测,得到待测目标的速度和距离方位。
56.实施例二为了执行上述实施例一对应的方法,以实现相应的功能和技术效果,下面提供一种基于深度学习的雷达回波检测系统。如图6所示,所述系统包括:数据获取子系统601,用于获取待测目标的雷达回波数据。
57.数据检测子系统602,用于利用雷达回波检测模型对所述待测目标的雷达回波数据进行检测,得到所述待测目标的速度和距离方位。
58.其中,所述雷达回波检测模型是包括串联连接的特征提取模块和目标检测模块;所述特征提取模块包括卷积神经网络特征提取子模块、结合软注意力机制的自编码器杂波
抑制子模块和特征融合子模块;所述卷积神经网络特征提取子模块和所述自编码器杂波抑制子模块均与所述特征融合子模块连接;所述特征融合子模块与所述目标检测模块连接。
59.所述卷积神经网络特征提取子模块用于对输入的待测目标的雷达回波数据进行卷积处理,得到第一待测特征张量。所述自编码器杂波抑制子模块用于对输入的待测目标的雷达回波数据进行编码压缩和解码重构处理,得到第二待测特征张量。所述特征融合子模块用于融合所述第一待测特征张量和所述第二待测特征张量,得到融合待测特征张量。所述目标检测模块用于根据所述融合待测特征张量确定所述待测目标的速度和距离方位。
60.实施例三本发明实施例还提供一种电子设备,包括存储器和处理器,该存储器用于存储计算机程序,该处理器用于运行计算机程序以使电子设备执行实施例一中的基于深度学习的雷达回波检测方法。所述电子设备可以是服务器。
61.另外,本发明还提供一种计算机可读存储介质,其存储有计算机程序,该计算机程序被处理器执行时实现实施例一中的基于深度学习的雷达回波检测方法。
62.本发明提供一种基于深度学习的雷达回波检测方法、系统、设备及介质,采用了基于卷积神经网络与自编码器结构构建的特征提取模块与目标检测模块。基于传统信号处理方法的雷达目标检测方法往往需要较为复杂的预处理过程,最终通过恒虚警检测技术进行目标的速度与距离方位的识别。同时检测器的参数需要预先进行设定,正因如此,在弱小目标出现的低信噪比高杂波的复杂场景下,检测器往往很难有很好的检测效果。本发明中基于卷积神经网络与结合软注意力机制的自编码器的特征提取模块能够有效处理弱小目标所在的复杂场景下的高杂波并提取有效特征。在之后的雷达目标检测模块中,利用卷积神经网络对特征提取模块传输的特征张量进行卷积池化操作,以实现对弱小目标速度与距离方位的检测,有效降低了雷达回波数据的低信噪比与高杂波对雷达目标检测所造成的影响,提高了对“低小慢”等弱小飞行目标的检测精度。
63.本说明书中各个实施例采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似部分互相参见即可。
64.本文中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的核心思想;同时,对于本领域的一般技术人员,依据本发明的思想,在具体实施方式及应用范围上均会有改变之处。综上所述,本说明书内容不应理解为对本发明的限制。
再多了解一些

本文用于创业者技术爱好者查询,仅供学习研究,如用于商业用途,请联系技术所有人。

发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表

相关文献