一种残膜回收机防缠绕挑膜装置的制 一种秧草收获机用电力驱动行走机构

多模式一体化微波遥感器的信号时序优化模型

2022-11-28 13:39:01 来源:中国专利 TAG:


1.本发明公开多模式一体化微波遥感器的信号时序优化模型,属于摄影测量学技术领域。


背景技术:

2.目前的微波遥感卫星大致可以分成单星单载荷、单星多载荷两种体制。单星单载荷体制下仪器的功能相对单一,单星多载荷体制通过搭载多个独立工作的载荷实现多种参数的测量,但各载荷之间往往缺乏相互支持,常会导致卫星的体积和质量较大、整星系统复杂、运行风险明显增加等问题。
3.为解决上述两种体制中的问题,值得探索的途径之一是发展多模式一体化微波遥感器。该遥感器是一种涵盖不同入射角的新体制微波遥感设备,能够集多种观测手段于一体,实现高度计、散射计、波谱仪、sar等多种观测模式的优势互补,同步提供各种海洋分辨率和多尺度的风、浪信息的观测。随着相控阵天线技术的成熟,以及卫星轻质化、小型化的趋势,发展多模式一体化微波遥感器的需求迫切,现已成为微波遥感领域的研究热点。对于多模式一体化微波遥感器,信号时序的设计是一个基础问题,涉及到多种模式发射和接收信号的时序分配。


技术实现要素:

4.本发明的目的在于提供多模式一体化微波遥感器的信号时序优化模型,以解决现有技术中,单星单载荷体制功能相对单一的局限性,单星多载荷体制存在卫星体积和质量较大、运行风险高的问题。
5.多模式一体化微波遥感器的信号时序优化模型,包括系统工作参数设计、信号时序优化模型建模、设定约束条件和信号时序优化模型求解;系统工作参数设计包括高度计模式参数设计、波谱仪模式参数设计、散射计模式参数设计和sar模式参数设计;约束条件包括sar模式有效工作时间约束、不同模式发射信号间不混叠约束和同一时刻工作模式单一性约束;信号时序优化模型求解包括编码、适应度函数设计、选择操作和交叉变异操作。优选地,高度计模式参数设计包括:高度计模式工作在0
°
形成入射角,采用脉冲有限工作体制,其方位向波束宽度为:(1),式中,为有效波高测量范围的最大值,h为轨道高度,方位向天线尺寸为:(2),式中,为信号波长,k取0.88;脉冲重复频率prf满足:,其中,(3),
,式中,表示高度计模式的脉冲重复频率,v表示平台速度,表示载波频率,表示高度计波束的脉冲宽度,为均方根波高,为形成跟踪门的数目,为点目标分辨率,为最大均方波高,n为独立测量数,即脉冲重复频率与高度测量平均时间的乘积,利用式(4),计算出其脉冲重复频率的下限。
6.优选地,波谱仪模式参数设计包括:波谱仪模式在2
°
、4
°
、6
°
、8
°
、10
°
形成入射角,采用360
°
圆锥扫描模式,两维波束宽度为2
°
方位向
×2°
距离向,为避免回波信号混叠,脉冲重复频率满足:,式中,prfspec表示波谱仪模式的脉冲重复频率,n取整数,c为光速,、分别代表波束足迹对应的最小斜距和最大斜距。
7.优选地,散射计模式参数设计包括:散射计模式采用笔形圆锥扫描模式,利用相控阵雷达天线波束让天线发射的波束在双侧前后斜视四个方向来回切换;脉冲重复频率需满足:(6),(7),式中,表示散射计模式的脉冲重复频率,为波束个数,为波束足印在地面扫描时的切向速度,为地距分辨率,为方位分辨率,为散射计外波束的入射角。
8.优选地,sar模式参数设计包括:在左右视同时正侧视观测的基础上,增加双侧前、后斜视的波束,对于每侧的视场,实现至少三个角度的海浪sar图像获取,sar模式的天线发射的波束在左右侧方向上来回切换;sar的距离向天线尺寸满足:(8),式中,为测绘带近端斜距,为最小测绘带宽,为测绘带近端波束入射角,sar方位向天线尺寸满足:(9),式中,为方位向分辨率,脉冲重复频满足:(10),(11),式中,是sar模式的脉冲重复频率,为回波的散布时间,为测绘带长度,为测绘带远端的波束入射角。
9.优选地,假设某个脉冲旁瓣引起的星下点回波在第个发射脉冲发射后经过时间接收到,将其时间长度假设为发射信号脉冲宽度的2倍,即2t
sar
a,目标场景的回波信号是在第个发射脉冲发射后经过时间接收到,则有:(12),式中,表示sar波束对应的测绘带近端斜
距;若希望接收窗口不会接收到星下点回波,则满足:,或(13),根据式(13)可知,为避免星下点回波干扰,sar的脉冲重复频率满足:或(14),式中,表示sar波束对应的测绘带远端斜距;为了避免sar发射信号与场景回波混叠,满足:,,对式(15)进行转化后,得:,式中,表示观测带内目标回波返回到雷达时经过的脉冲周期数,取整数。
10.优选地,信号时序优化模型建模包括:设研究的总时间序列长度为,将其等分为个时间段,每个时间段的长度为,优化模型为:(17),式中,表示第i个时间段的工作模式,表示当发射某种模式的信号时对应的峰值发射功率,对应不发射模式,对应sar模式,对应散射计模式,对应高度计模式,对应波谱仪模式,表示三类约束条件。
11.优选地,sar模式有效工作时间约束为,设在所研究的总时间序列长度内,发射sar模式的信号时长上限为a,则有:(18),其中,;不同模式发射信号间不混叠约束为,sar模式与波谱仪模式联合观测海浪,以及sar模式与散射计模式联合观测海风,均使用相同的prf工作,集成到同一根天线,将sar的脉冲重复频率设计为其他三种模式脉冲重复频率的整数倍关系,即有:(19);同一时刻工作模式单一性约束为,设逻辑变量ai、bi、ci、di分别表示第i个时间段是否发射sar、散射计、高度计、波谱仪模式信号的逻辑变量,ai=1表示第i个时间段发射sar模式信号,ai=0表示第i个时间段不发射sar模式信号,设ei=1表示不发射任何模式的信号,有如下约束:
(20)。
12.优选地,信号时序优化模型采用遗传算法,采用二进制编码,将sar模式的脉冲重复间隔与第一次发射sar模式信号的等待时间作为优化设计中的“个体”,一个“种群”由若干个个体构成,初始种群通过随机的方式产生;式(21)的目标函数作为遗传算法中的适应度函数:; (21);式中,表示每种模式对应的峰值发射功率,表示每种模式对应的脉冲宽度,表示每一模式对应的发射次数,代表第一次发射sar模式信号前的等待时间,为散射计波束对应的远端斜距,为目标照射时间,为目标被波束中心照射时雷达与目标间的斜距,为波束中心的斜视角。
13.优选地,遗传算法交叉概率和变异概率均设为定值,包括:s1.根据各种模式的脉冲重复频率,第一次发射sar模式信号前的等待时间,确定染色体编码的长度;s2.按约束条件随机生成初始种群,筛选出满足条件的prf,并令当前代数gen=0;s3.根据实际情况计算信号能量损耗,并根据数值进行排序;s4.根据排序结果,利用遗传算法的选择、交叉、变异等操作准则进行群体更新,形成新一代的群体,令gen=gen 1;s5.当迭代次数达到预设的最大值时,结束算法,输出结果。
14.相对比现有技术,本发明的有益效果是,信号时序的合理优化设计,实现宽覆盖、全要素、低功耗、多尺度的海面风、浪探测,解决现阶段卫星多载荷独立工作的缺陷,得到高分辨率、时空一致的风、浪产品,为海洋环境监测与预报提供支撑;开展的仿真工作验证了所提出方法的正确性,仿真结果表明所提出的优化方法可以设计出满足多种约束条件且能量最小的信号时序。
附图说明
15.图1是sar信号时序分析图;图2是优化设计算法流程图;图3是发射信号能量损耗与遗传代数的关系图。
具体实施方式
16.为使本发明的目的、技术方案和优点更加清楚,下面对本发明中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明的一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
17.多模式一体化微波遥感器的信号时序优化模型,包括系统工作参数设计、信号时序优化模型建模、设定约束条件和信号时序优化模型求解;系统工作参数设计包括高度计模式参数设计、波谱仪模式参数设计、散射计模式参数设计和sar模式参数设计;约束条件包括sar模式有效工作时间约束、不同模式发射信号间不混叠约束和同一时刻工作模式单一性约束;信号时序优化模型求解包括编码、适应度函数设计、选择操作和交叉变异操作。优选地,高度计模式参数设计包括:高度计模式工作在0
°
形成入射角,采用脉冲有限工作体制,其方位向波束宽度 为:(1),式中,为有效波高测量范围的最大值,h为轨道高度,方位向天线尺寸为:(2),式中,为信号波长,k取0.88;脉冲重复频率prf满足:,其中,(3),,式中,表示高度计模式的脉冲重复频率,v表示平台速度,表示载波频率,表示高度计波束的脉冲宽度,为均方根波高,为形成跟踪门的数目,为点目标分辨率,为最大均方波高,n为独立测量数,即脉冲重复频率与高度测量平均时间的乘积,利用式(4),计算出其脉冲重复频率的下限。
18.优选地,波谱仪模式参数设计包括:波谱仪模式在2
°
、4
°
、6
°
、8
°
、10
°
形成入射角,采用360
°
圆锥扫描模式,两维波束宽度为2
°
方位向
×2°
距离向,为避免回波信号混叠,脉冲重复频率满足:,式中,prfspec表示波谱仪模式的脉冲重复频率,n取整数,c为光速,、分别代表波束足迹对应的最小斜距和最大斜距。
19.优选地,散射计模式参数设计包括:散射计模式采用笔形圆锥扫描模式,利用相控阵雷达天线波束让天线发射的波束在双侧前后斜视四个方向来回切换;脉冲重复频率需满足:(6),(7),式中,表示散射计模式的脉冲重复频率,为波束个数,为波束足印在地面扫
描时的切向速度,为地距分辨率,为方位分辨率,为散射计外波束的入射角。
20.优选地,sar模式参数设计包括:在左右视同时正侧视观测的基础上,增加双侧前、后斜视的波束,对于每侧的视场,实现至少三个角度的海浪sar图像获取,sar模式的天线发射的波束在左右侧方向上来回切换;sar的距离向天线尺寸满足:(8),式中,为测绘带近端斜距,为最小测绘带宽,为测绘带近端波束入射角,sar方位向天线尺寸满足:(9),式中,为方位向分辨率,脉冲重复频满足:(10),(11),式中,是sar模式的脉冲重复频率,为回波的散布时间,为测绘带长度,为测绘带远端的波束入射角。
21.由于波束旁瓣的影响,当sar波束入射角较小时,旁瓣可能会对星下点进行照射,进而对回波数据的准确性造成影响。如图1所示,给出了sar信号的时间序列,假设某个脉冲旁瓣引起的星下点回波在第个发射脉冲发射后经过时间接收到,将其时间长度假设为发射信号脉冲宽度的2倍,即2t
sar
a,目标场景的回波信号是在第个发射脉冲发射后经过时间接收到,则有:(12),式中,表示sar波束对应的测绘带近端斜距;若希望接收窗口不会接收到星下点回波,则满足:,或(13),根据式(13)可知,为避免星下点回波干扰,sar的脉冲重复频率满足:或(14),式中,表示sar波束对应的测绘带远端斜距;为了避免sar发射信号与场景回波混叠,满足:,,对式(15)进行转化后,得:,式中,表示观测带内目标回波返回到雷达时经过的脉冲周期数,取整数。
22.优选地,信号时序优化模型建模包括:设研究的总时间序列长度为,将其等分为个时间段,每个时间段的长度为,优化模型为:(17),式中,
表示第i个时间段的工作模式,表示当发射某种模式的信号时对应的峰值发射功率,对应不发射模式,对应sar模式,对应散射计模式,对应高度计模式,对应波谱仪模式,表示三类约束条件。
23.优选地,sar模式有效工作时间约束为,设在所研究的总时间序列长度内,发射sar模式的信号时长上限为a,则有:(18),其中,;不同模式发射信号间不混叠约束为,sar模式与波谱仪模式联合观测海浪,以及sar模式与散射计模式联合观测海风,均使用相同的prf工作,集成到同一根天线,将sar的脉冲重复频率设计为其他三种模式脉冲重复频率的整数倍关系,即有:(19);同一时刻工作模式单一性约束为,设逻辑变量ai、bi、ci、di分别表示第i个时间段是否发射sar、散射计、高度计、波谱仪模式信号的逻辑变量,ai=1表示第i个时间段发射sar模式信号,ai=0表示第i个时间段不发射sar模式信号,设ei=1表示不发射任何模式的信号,有如下约束:(20)。
24.优选地,信号时序优化模型采用遗传算法,采用二进制编码,将sar模式的脉冲重复间隔与第一次发射sar模式信号的等待时间作为优化设计中的“个体”,一个“种群”由若干个个体构成,初始种群通过随机的方式产生;式(21)的目标函数作为遗传算法中的适应度函数:; (21);式中,表示每种模式对应的峰值发射功率,表示每种模式对应的脉冲宽度,表示每一模式对应的发射次数,代表第一次发射sar模式信号前的等待时间,为散射计
波束对应的远端斜距,为目标照射时间,为目标被波束中心照射时雷达与目标间的斜距,为波束中心的斜视角。
25.优选地,遗传算法交叉概率和变异概率均设为定值,包括:s1.根据各种模式的脉冲重复频率,第一次发射sar模式信号前的等待时间,确定染色体编码的长度;s2.按约束条件随机生成初始种群,筛选出满足条件的prf,并令当前代数gen=0;s3.根据实际情况计算信号能量损耗,并根据数值进行排序;s4.根据排序结果,利用遗传算法的选择、交叉、变异等操作准则进行群体更新,形成新一代的群体,令gen=gen 1;s5.当迭代次数达到预设的最大值时,结束算法,输出结果。
26.遗传算法参数设置如表1。
27.表1在采用遗传算法求解多模式一体化信号时序优化模型时,需由用户综合各种因素给出或选定的雷达参数一般包括:卫星高度,平台速度,时序总时长,各模式的峰值发射功率等。表2给出了设计多模式一体化微波遥感器信号时序时的已知技术参数。
28.利用表2中的参数作为输入,使用图2所示的流程进行了优化处理。图3给出了迭代过程中发射信号能量损耗与遗传代数的关系图。观察图3可发现,个体适应度在20代时变化趋向稳定,在第20代至第50代之间两个自变量的变化较小,最终在第50代输出最优解,该解可以满足信号时序的正常收发工作,并且信号能量损耗值最小。为分析最终输出结果的合理性,从50代样本数据中挑选了9个样本进行分析,遗传算法构建信号时序部分样本参数分析结果如表3所示。从表3中可发现,前20代迭代过程中的样本不满足2.2节所述的3类约束条件,会造成收发混叠的情况;从第40代开始,样本开始满足2.2节所述的3类约束条件,且随着代数的增加发射信号能量损耗逐渐减小。最后,根据第50代输出的样本,构建了信号时序的各项输出参数,结果如表4所示。
29.表2表3
利用表4所示的信号时序参数设计结果,对多模式一体化微波遥感器信号时序进行了模拟。该最优解满足各模式信号间不混叠的要求。为体现最优解的设计合理性,选取了表3中样本3对应的信号时序参数进行了模拟,此时sar模式的回波信号会与波谱仪模式的发射脉冲在4940微秒至4960微秒的时间段内发生混叠,不符合要求。
30.表4为进一步验证表4所示的信号时序输出参数满足波束轨迹覆盖连续性的要求,进行了高度计、波谱仪、散射计三种模式波束覆盖的仿真,所输出的最优信号时序参数可以满足高度计、波谱仪、散射计三种模式对海面连续观测的要求。
31.以上实施例仅用于说明本发明的技术方案,而非对其限制,尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换,而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。
再多了解一些

本文用于创业者技术爱好者查询,仅供学习研究,如用于商业用途,请联系技术所有人。

发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表

相关文献