一种残膜回收机防缠绕挑膜装置的制 一种秧草收获机用电力驱动行走机构

真空绝热体和冰箱的制作方法

2022-11-28 12:22:02 来源:中国专利 TAG:

真空绝热体和冰箱
1.本技术是lg电子株式会社的发明专利申请(申请日为2019年6月26日、申请号为201980023734.2,发明名称为“真空绝热体和冰箱”)的分案申请。
技术领域
2.本公开涉及真空绝热体和冰箱。


背景技术:

3.真空绝热体是通过对其本体内部进行真空处理来抑制传热(heat transfer,热传递)产品。真空绝热体可以减少通过对流和传导进行的传热,因此被应用于加热设备和制冷设备。在应用于冰箱的典型绝热方法中,虽然以不同方式应用于冷藏和冷冻方面,但通常设置具有约30cm或更大厚度的泡沫聚氨酯绝热壁。但是,冰箱的内部容积因而减少。
4.为了增加冰箱的内部容积,尝试将真空绝热体应用于冰箱。
5.本技术人的韩国专利第10-0343719号(参考文献1)公开了一种制备真空绝热板并将其构建于冰箱的壁中的方法,并且真空绝热板的外部使用诸如泡沫聚苯乙烯的单独模制件来完成(finish,整饰)。根据该方法,不需要额外的发泡,并且提升了冰箱的绝热性能。然而,制造成本增加,并且制造方法复杂。作为另一个示例,在韩国专利公开第10-2015-0012712号(参考文献2)中已经公开了一种使用真空绝热材料来设置壁并另外使用泡沫填充材料来附加地设置绝热壁的技术。根据参考文献2,制造成本增加,并且制造方法复杂。
6.为了解决这个问题,本技术人已经提交了韩国专利申请第10-2013-0049495号(参考文献3),其公开了一种技术,该技术提供了处于空的真空状态(empty vacuum state)的真空绝热体,而没有在其中设置单独的绝热材料。此外,该技术提供了一种在真空绝热体中设置的热交换(heat exchange)管路。热交换管路是两条管路(即蒸发器的入口管和蒸发器的出口管)在其中彼此接触的管路。热交换管路是使流经两个管路内部的制冷剂在其中彼此进行热交换以提高制冷循环性能的管路。
7.热交换管路穿过真空空间部的内部,延伸到冰箱的外部和冰箱的内部。因此,为了保持真空空间部的真空状态,热交换管路穿过真空空间部和冰箱内部的板的位置被密封。为了实现上述目的,本技术人已经在图17和图18中公开了一种用以密封分支的(branched)热交换管路的单独管路的结构,该结构在韩国专利申请第10-2017-0171596号(参考文献4)中公开。
8.根据参考文献4,为了保持密封,热交换管路的两条管路可以被分支以便穿过真空空间部,从而导致四个被穿透部分(penetrated portion)或开口。然而,随着被穿透部分的数量增加,可能会发生热损失。另外,如果在任何一个被穿透部分存在问题,则可能难以在真空空间部中保持真空。另外,两条管路的焊接部可能暴露于真空空间部,因此,从焊接部产生的气体可能会破坏真空空间部的真空状态,可能破坏真空空间部的真空状态。
9.此外,由于构成热交换管路的两条管路中的每条管路的分支点的急剧的弯曲角(sharp bending angle),可能会发生制冷剂的压力损失。由于构成支撑单元的杆的节距间
隙(pitch gap)(约200mm),热交换管路的弯曲角会进一步增大。另外,由于在形成真空空间部的不锈钢材料与形成热交换管路的铜材料之间在被穿透部分处进行了异质接合(heterogeneous bonding),因此难以进行加工(work)或安装。
10.这些参考文献公开了将热交换管路放置在真空绝热体中以保持热绝缘(thermal insulation)的特征。为此,由于在真空绝热体被真空密封之前,热交换管路的许多管路可能被设置在真空绝热体内的固定位置处,因此可能难以进行加工或安装。另外,通过贯通部的密封很有可能破坏真空绝热体的真空状态,这可能导致真空绝热体的丢弃。


技术实现要素:

11.【技术问题】
12.实施例提供了一种真空绝热体,其中在热交换管路穿过真空空间部的部分处解决了加工的困难,并且减少了被穿透部分的数量。
13.实施例还提供了一种真空绝热体,其中从构成热交换管路的两条管路的焊接部产生的气体不会对真空空间部的内部空间产生影响。
14.实施例还提供了一种真空绝热体,其中减少了由于热交换管路的急剧弯曲而导致的制冷剂的压力损失。
15.实施例还提供了一种真空绝热体,其中解决了由于热交换管路与真空空间部之间的异质焊接(heterogeneous welding)而发生的泄漏和加工困难。
16.实施例还提供了一种真空绝热体,其中易于安装热交换管路,并且首先或安装时防止了真空绝热体内的真空破坏或真空空间的真空状态的破坏。
17.【技术方案】
18.在一个实施例中,一种冰箱,其可包括:热交换管路,其包括至少两条管路,该两条管路穿过第一板构件和第二板构件,以允许制冷剂移动到内部和外部空间;以及贯通部,设置在第一板构件和第二板构件中的至少一个中,并且制冷剂管穿过该贯通部。密封构件,该密封构件被构造为在其中容纳制冷剂管,密封构件与第一板构件和第二板构件中的至少一个联接,以及该密封构件由导热系数(thermal conductivity)小于第一板构件和第二板构件中的每个的材料制成。
19.由于热交换不暴露于真空空间部,因此真空空间部可能不会受到不利影响,可以改善真空性能。
20.在另一个实施例中,冰箱可包括:制冷剂管,其穿过第一板构件的贯通部和第二板构件的贯通部。制冷剂通过该开口移动到第一空间和第二空间。贯通密封部或组件,被构造为在该贯通密封部中容纳制冷剂管,以及密封成对的贯通部,以阻挡冷空气在第一空间和第二空间之间的传导(conduction)。
21.因此,可以提高防止冷空气损失的性能。
22.在又一个实施例中,冰箱包括:贯通部,设置在第一板构件或第二板构件中的至少一个中,并且制冷剂管穿过该贯通部。密封构件,该密封构件被构造为容纳该制冷剂管,以及该密封构件由导热系数小于第一板构件和第二板构件中的每个的材料制成。该密封构件由第一板构件或第二板构件中的至少一个支撑,防止第一空间的冷空气泄漏到第二空间,并且允许制冷剂管与第一板构件和第二板构件间隔开。
23.因此,可以减少热损失或传递,可以增加产品使用寿命,以及可以防止真空空间的破坏。
24.【有益效果】
25.根据实施例,贯通部的数量可以减少到一个,热交换管路通过该贯通部穿过真空空间部,可以通过单独的抗传导片(conductive resistance sheet)密封该贯通部。因此,可以减少热损失,还可以减少对在真空空间部的真空破坏或真空状态损失的担忧。
26.根据实施例,由于热交换管路不暴露于真空空间部,因此可以防止由于热交换管路而导致真空空间部内的气体的增加,从而提高产品的使用寿命。
27.根据实施例,由于不需要在真空空间部中不合理地弯曲热交换管路,因此可以减少由于制冷剂管路的意外变形而导致的制冷剂的压力损失。
28.根据实施例,热交换管路的安装加工可以是容易的,并且可提高真空空间部的密封保持的可靠性。
29.附图描述
30.图1为根据一个实施例的冰箱的立体图。
31.图2为示意性地示出了用于冰箱的主体和门的真空绝热体的视图。
32.图3a到图3c为示出了真空空间部的内部构造的各种实施例的视图。
33.图4为示出了通过检验树脂而获得的结果的图表。
34.图5示出了通过对树脂的真空保持性能进行试验而获得的结果。
35.图6a至图6c示出了通过分析从pps和低释气pc排出的气体成分而获得的结果。
36.图7示出了通过测量高温排气中树脂被大气压力损坏的最大变形温度而获得的结果。
37.图8a至图8c是示出了抗传导片及其周边部件的各种实施例的视图。
38.图9为示出了根据一个实施例的热交换管路的安装部的构造的视图。
39.图10为根据一个实施例的应用了图9中的热交换管路的安装部的制冷剂的视图。
40.图11为关于热交换管路的路径的图10中的实施例的概念图。
41.图12为根据另一个实施例的应用了热交换管路的安装部的制冷剂的视图。
42.图13为关于热交换管路的路径的图12中的实施例的概念图。
43.图14为根据又一个实施例的应用了热交换管路的安装部的制冷剂的视图。
44.图15为关于热交换管路的路径的图14中的实施例的概念图。
45.图16为图15中的实施例的立体图。
46.图17为示出了热交换管路的布置的视图,在该热交换管路的布置中解决了图16中的限制。
47.图18为用于说明在图17中提供的热交换管路的绝热结构的视图。
48.图19为用于说明在图17中的热交换管路的绝热结构的另一个示例的视图。
49.图20为示出了贯通密封部的构造的剖视图。
50.图21a、图21b、图22a和图22b为示出了制造贯通密封部的过程的视图。
51.图23至图26为示出了贯通密封部和管路绝热部之间的相互关系的视图。
52.图27和图28为根据另一个实施例的贯通密封部或组件的视图。
53.图29至图40为示出了根据应用真空绝热体的各种冰箱安装热交换管路的各种实
施例的视图。
具体实施方式
54.以下,将参考附图描述示例性实施例。然而,本发明可以以许多不同的形式来实施,而不应该被解释为限于本文所述的实施例,并且理解本发明的精神的本领域普通技术人员可以容易地通过添加、改变、删除和添加部件来实现包括在同一构思范围内的其他实施例;相反,应该理解的是它们也被包括在本发明的范围内。
55.下面示出的附图可以显示为与实际产品不同,或者可以删除夸大或简单或详细的部分,但是这旨在促进对本发明的技术思想的理解。其不应被解释为限制性的。
56.通过将相同或相似的附图标记分配给在功能方面相同或相似的部件,与附图一同示出的每个部件的数量有助于理解本发明的构思。类似地,即使实施例不同,在功能方面执行相同或相似的功能的情况下,也分配相同或相似的附图标记以促进对本发明的理解。
57.在提供对本发明进一步理解的附图中,相同的附图标记将赋予在每个附图中相同的构件。这是为了避免在理解本发明的思想时出现重复的解释并且关注技术之间的差异。
58.在以下描述中,真空压力意指低于大气压的任何压力状态。另外,a的真空度高于b的真空度这种表达意味着a的真空压力低于b的真空压力。
59.图1为根据一个实施例的冰箱的立体图。
60.参考图1,冰箱1包括:主体2,设有能够储藏存储物品的腔室(cavity)9;以及门3,其设置为打开或关闭主体2。门3可以可旋转地或可滑动地移动地设置以打开或关闭腔室9。腔室9可以提供冷藏室和冷冻室中的至少一个。
61.腔室9可以配备有制冷或冷冻循环的部件或装置,在该循环中冷空气被供给到腔室9中。例如,这些部件可以包括:压缩机4,用以压缩制冷剂;冷凝器5,用以使已压缩的制冷剂冷凝;膨胀器6,用以使已冷凝的制冷剂膨胀;以及蒸发器7,用以使已膨胀的制冷剂蒸发,以带走热量。作为典型的结构,风扇可以被安装在邻近蒸发器7的位置处,并且从风扇吹出的流体可以穿过蒸发器7,然后被吹入腔室9中。通过由风扇调节吹送量和吹送方向、调节循环的制冷剂的量、或者调节压缩机的压缩率来控制冷冻负荷,从而能够控制冷藏空间或冷冻空间。
62.图2是示意性地示出冰箱1的主体2和门3中使用的真空绝热体的视图。在图2中,主体侧真空绝热体在顶壁和侧壁被移除的状态下被示出,门侧真空绝热体在前壁的一部分被移除的状态下被示出。此外,为了便于理解,示意性示出了设置抗传导片60或63处的部分的节段(section)。
63.参考图2,真空绝热体可以包括:第一板构件10,用以提供低温空间或第一空间的壁;第二板构件20,用以提供高温空间或第二空间的壁;以及真空空间部或第三空间50,其限定为第一板构件10与第二板构件20之间的间隙。而且,真空绝热体包括抗传导片60和抗传导片63,以防止第一板构件10与第二板构件20之间的热传导(thermal conduction)。密封部或焊接部61可以将抗传导片60和63密封到第一板构件10和第二板构件20,使得真空空间部50处于密封或真空状态。
64.当真空绝热体被应用于冰箱或保温设备(warming apparatus)时,提供冰箱的内部空间或内空间的壁的第一板构件10可以被称为内壳体,提供冰箱的外部空间的壁的第二
板构件20可以被称为外壳体。
65.机械室(machine room)8可以包括提供制冷或冷冻循环的部件。机械室可以被放置在主体侧真空绝热体的下后侧处,通过从真空空间部50排出空气而形成真空状态的排气口(exhaust port)40被设置在真空绝热体的任一侧处。此外,还可以安装穿过真空空间部50的管路64,以便安装除霜水管线和电线。
66.第一板构件10可以限定用于设置到其的第一空间的壁的至少一部分。第二板构件20可以限定用于用于设置到其的第二空间的壁的至少一部分。第一空间和第二空间可以被限定为具有不同温度的空间。这里,每个空间的壁不仅可以用作直接接触空间的壁,而且还可以用作不接触空间的壁。例如,本实施例的真空绝热体还可以被应用于还具有与每个空间接触的单独的壁的产品。
67.导致真空绝热体的绝热效果损失的传热的因素是:第一板构件10与第二板构件20之间的热量或热传导,第一板构件10与第二板构件20之间的热辐射(heat radiation),以及真空空间部50的气体传导(gas conduction)。
68.在下文中,将提供抗热单元(heat resistance unit)或抗热片,该抗热单元或抗热片被设置为减少与传热的这些因素相关的绝热损失。本实施例的真空绝热体和冰箱不排除在真空绝热体的至少一侧处还设置有另一绝热装置的情况。因此,还可以将使用发泡等的绝热装置设置到真空绝热体的另一侧。
69.抗热单元可以包括抗传导片60或63,其抵抗沿着第三空间50的壁传递的热的传导,并且可以进一步包括与该抗传导片联接的侧框架。抗传导片60或63和侧框架将通过下面的描述变得清楚。
70.另外,抗热单元可以包括在第三空间50内以板状设置的至少一个抗辐射片(radiation resistance sheet)32,或者可以包括在第三空间50内抵抗第二板构件20和第一板构件10之间的辐射传递热(radiation heat transfer)的多孔材料。抗辐射片32和多孔材料将通过下面的描述变得清楚。
71.图3a和图3b为示出了真空空间部或第三空间50的内部构造的各种实施例的视图。
72.首先,参考图3a,真空空间部50可具有与第一空间和第二空间各自的压力不同的压力,诸如在真空状态,从而减少绝热损失。真空空间部50的温度可以被设置成介于第一空间的温度与第二空间的温度之间。由于真空空间部50被设置为处于真空状态的空间,所以由于对应于第一空间与第二空间之间压力差的力,第一板构件10和第二板构件20受到沿使它们彼此靠近的方向收缩的力。因此,真空空间部50可以在其减小的方向上变形。在此情况下,绝热损失可能由于以下原因而产生:由真空空间部50的收缩引起的热辐射量的增加,以及由板构件10和板构件20之间的接触引起的热传导量的增加。
73.可提供支撑单元或支撑件30以减小真空空间部50的变形。支撑单元30包括杆31。杆31可以相对于板构件10和20沿基本竖直的方向延伸,以支撑第一板构件10与第二板构件20之间的距离。可以在杆31的至少任一端上附加地设置支撑板35。支撑板35可将至少两个或更多个杆31彼此连接,以相对于第一板构件10和第二板构件20在水平方向上延伸。支撑板35可以被设置为板状,或者可以被设置为格状(lattice shape),以减小支撑板与第一板构件10或第二板构件20接触的面积,从而减小传热。杆31和支撑板35在至少一个部分处彼此固定,以便一同插入第一板构件10与第二板构件20之间。支撑板35与第一板构件10和第
二板构件20中的至少一个接触,从而防止第一板构件10和第二板构件20的变形。此外,基于杆31的延伸方向,支撑板35的总截面积被设置为大于杆31的总截面积,以使通过杆31传递的热量可以通过支撑板35扩散。
74.将描述支撑单元30的材料。
75.支撑单元30可以具有:高抗压强度(high compressive strength),以承受真空压力;低释气率(low outgassing rate)和低吸水率(low water absorption rate),以保持真空状态;低导热系数,以便减少板构件10和20之间的热传导。另外,支撑单元30可以具有在高温下的安全抗压强度,以承受高温排气(high-temperature exhaust)过程;具有优异的可加工性(machinability),以便进行模制(molding,成型);以及具有低的模制成本。这里,执行排气过程所需的时间大约需要几天。因此,时间缩短,从而显著改善了制造成本和生产率。因此,因为随着执行排气过程的温度升高,排气速度增加,所以在高温下要确保抗压强度。发明人已经在上述条件下进行了各种检测。
76.首先,陶瓷(ceramic)或玻璃具有低释气率和低吸水率,但是其可加工性显著降低。因此,陶瓷和玻璃可能不能用作支撑单元30的材料。树脂可以被考虑作为支撑单元30的材料。
77.图4为示出了通过检测树脂获得的结果的图表。
78.参考图4,本发明人已经检测了各种树脂,大多数树脂可能不能使用,因为它们的释气率和吸水率非常高。因此,本发明人已经检测了近似满足释气率和吸水率条件的树脂。结果是,聚乙烯(pe,polyethylene)由于其高释气率和低抗压强度而可能不能使用。聚氯三氟乙烯(pctfe,polychlorotrifluoroethylene)由于其价格过高而可能不能使用。聚醚酮酮(peek,polyether ether ketone)由于其高释气率而可能不能使用。从由聚碳酸酯(pc)、玻璃纤维pc、低释气pc、聚苯硫醚(pps)和液晶聚合物(lcp)组成的组中选择的树脂可以用作支撑单元30的材料。然而,pc的释气率为0.19,处于较低水平。因此,当执行通过施加热量来进行排气的烘烤所需的时间增加到一定水平,pc可以用作支撑单元30的材料。
79.本发明人通过对预期用于真空空间部50内部的树脂进行各种研究,已经找到了最佳材料。在下文中,将参考附图描述所进行的研究的结果。
80.图5为示出了通过对树脂的真空保持性能进行实验而获得的结果的视图。
81.参考图5,其示出了一曲线图,该曲线图示出了通过使用相应的树脂制造支撑单元30,然后测试树脂的真空保持性能而获得的结果。首先,使用酒精对使用所选材料制造的支撑单元30进行清洁,在低压下放置48小时,暴露于空气中2.5小时,然后在支撑单元30置于真空绝热体中的状态下,在90℃下经受排气过程约50小时,从而测量支撑单元30的真空保持性能。
82.lcp的初始排气性能最佳,但其真空保持性能差。这可能是由lcp对温度的敏感性而引起的。另外,通过曲线图的特征可以预计,当最终允许压力为5
×
10-3
托(torr)时,其真空性能将保持约0.5年。因此,lcp可能不能用作支撑单元30的材料。
83.关于玻璃纤维pc(g/f pc),其排气速度快,但其真空保持性能低。决定了这将受到添加剂的影响。另外,通过曲线图的特性可以预计,玻璃纤维pc将在相同条件下保持其真空性能约8.2年的时间。因此,pc(g/fpc)可能不能用作支撑单元30的材料。
84.与上述两种材料相比,预计在低释气pc(o/g pc)的情况下,其真空保持性能优异,
并且其真空性能将在相同条件下保持约34年。然而,可以看出,低释气pc的初始排气性能低,因此,低释气pc的制造效率降低。
85.可以看出,在pps的情况下,其真空保持性能非常优异,并且其排气性能也很优异。基于真空保持性能,pps可以用作支撑单元30的材料。
86.图6a至图6c示出了通过分析从pps和低释气pc排出的气体的成分而获得的结果,其中,横轴表示气体的质量数(mass number),纵轴表示气体的浓度(concentration)。图6a示出了通过分析从低释气pc排出的气体而获得的结果。在图6a中,可以看到氢气或h2系列(i)、水或h2o系列(ii)、氮气/一氧化碳/二氧化碳/氧气或n2/co/co2/o2系列(iii)和烃系列(iv)被均匀地(equally)排出。图6b示出了通过分析从pps排出的气体获得的结果。在图6b中,可以看到h2系列(i)、h2o系列(ii)、n2/co/co2/o2系列(iii)的排放程度较弱。图6c是通过分析从不锈钢中排出的气体而获得的结果。在图6c中,可以看出,从不锈钢中排出了与pps类似的气体。因此,可以看出pps与不锈钢排出了类似的气体。
87.作为分析结果,可以再次确认pps作为支撑单元30的材料是优异的。
88.为了进一步增强支撑单元30的强度,可以使用添加了百分之几十(several tens%)的玻璃纤维(g/f)(诸如40%的g/f和pps一起)的材料。为了进一步增加在支撑单元30中使用的pps g/f40%材料的强度,可以在注射后(injection)进一步对pps g/f40%材料进行结晶处理(在150℃或更高的大气下放置约1小时)作为后处理过程。
89.图7示出了通过测量在高温排气中树脂被大气压力损坏的最大变形温度而获得的结果。此时,以30mm的距离、2mm的直径设置杆31。参考图7,可以看出,在pe的情况下,破裂在60℃发生;在低释气pc的情况下,破裂在90℃发生;在pps的情况下,破裂在125℃发生。
90.作为分析结果,可以看出,pps可以用作在真空空间部50内部使用的树脂。然而,就制造成本而言,可以使用低释气pc。
91.返回参考图3a,将描述抗辐射片32,该抗辐射片用于减少通过真空空间部50的第一板构件10与第二板构件20之间的热辐射。第一板构件10和第二板构件20可以由能够防止腐蚀并提供足够强度的不锈钢材料制成。不锈钢材料具有0.16的相对高辐射率(emissivity),因此可以传递大量的辐射热(radiation heat)。此外,由树脂制成的支撑单元30的辐射率低于板构件的辐射率,并且不完全设置在第一板构件10和第二板构件20的内表面。因此,支撑单元30对辐射热没有很大的影响。因此,可以在真空空间部50的大部分区域上方以板状形式设置抗辐射片32,以便专注于减少在第一板构件10与第二板构件20之间传递的辐射热。具有低辐射率的产品可以用作抗辐射片32的材料。在一个实施例中,具有0.02的辐射率的铝箔可以用作抗辐射片32。另外,由于使用一个抗辐射片32可能不能充分地阻止热辐射的传递,因此可以以一定距离设置至少两个抗辐射片32,使得两个抗辐射片不互相接触。另外,至少一个抗辐射片32可以以与第一板构件10或第二板构件20的内表面接触的状态设置。
92.参考图3b,板构件10和20之间的距离由支撑单元30保持,并且可以在真空空间部50中填充多孔材料33。多孔材料33可以具有比第一板构件10和第二板构件20的不锈钢材料高的辐射率。但是,由于多孔材料33被填充在真空空间部50中,因此多孔材料33具有阻止辐射传热的高效率。
93.在本实施例中,可以制造不带有抗辐射片32的真空绝热体。
94.参考图3c,可以不设置用于保持真空空间部50的支撑单元30。多孔材料333可以被设置为由膜34围绕而不是由支撑单元30围绕。这里,多孔材料33可以以被压缩的状态设置,以保持真空空间部50的间隙。膜34由例如pe材料制成,该膜以在膜34上打孔的状态设置。
95.在本实施例中,可以制造不带有支撑单元30的真空绝热体。也就是说,多孔材料33可以一起执行抗辐射片32的功能和支撑单元30的功能。
96.图8a至图8c是示出了抗传导片60或63及其周边部件的各种实施例的视图。图2中简单地示出了抗传导片60或63的结构,但应该参考附图来详细理解。
97.首先,图8a提出的抗传导片60可以应用于主体侧真空绝热体。特别地,第一板构件10和第二板构件20被密封,以对真空绝热体的内部抽真空。在这种情况下,由于第一板构件10和第二板构件20的温度彼此不同,在第一板构件10和第二板构件20之间可能发生传热。设置抗传导片60以防止在两种不同类型的板构件10和20之间的热传导。
98.抗传导片60可以设置有密封部或焊接部61,在该密封部处抗传导片60的两端被密封,以限定用于第三空间或真空空间部50的壁的至少一部分并保持真空状态。抗传导片60可以设置为以微米为单位的薄箔(thin foil),以减少沿着用于真空空间部50的壁传导的热量。密封部610可以被设置为焊接部,并且抗传导片60与板构件10和板构件20可以被彼此熔合(fuse)。为了在抗传导片60与第一板构件10和第二板构件20之间引起熔合作用,抗传导片60以及第一板构件10和第二板构件20可以由相同的材料制成(例如不锈钢材料)。密封部610并不限于焊接部,并且可以通过诸如翘曲(cocking)的工艺来设置。抗传导片60可以设置为弯曲形状(curved shape)。因此,抗传导片60的热传导距离设置得比板构件10和20中的每个的直线距离(linear distance)更长,从而可以进一步减少热传导的量。
99.沿着抗传导片60发生温度变化。因此,为了阻止热量传递到抗传导片60的外部,可以在抗传导片60的外部处设置屏蔽部或盖62,以产生绝热作用。换句话说,在冰箱1中,第二板构件20具有高温,第一板构件10具有低温。此外,在抗传导片60中发生从高温到低温的热传导,因此抗传导片60的温度会急剧变化。因此,当抗传导片60向其外部打开时,可极大地发生经过打开位置的传热。为了减少热损失,在抗传导片60的外部设置了屏蔽部62。例如,当抗传导片60暴露于低温空间和高温空间中的任一空间时,抗传导片60在暴露部分可能不能用作抗传导件(conductive resistor)。
100.屏蔽部62可以设置为与抗传导片60的外表面接触的多孔材料。屏蔽部62可以设置为绝热结构,例如单独的衬垫,该屏蔽部被放置在抗传导片60的外部。屏蔽部62可以设置为真空绝热体的一部分,当主体侧真空绝热体相对于门侧真空绝热体关闭时,该屏蔽部被设置在面向相应的抗传导片60的位置处。为了减少即使在主体2和门3被打开时的热损失,屏蔽部62可以设置为多孔材料或单独的绝热结构。
101.图8b中提出的抗传导片60可以应用于门侧真空绝热体。在图8b中,详细描述了与图8a的部分不同的部分,并且相同的描述被应用于与图8a的部分相同的部分。在抗传导片60的外侧处进一步设置侧框架70。在侧框架70上可以放置用于密封门3与主体2之间的部件或密封件、排气过程所需的排气口、用于真空保持的吸气端口(getter port)等。这是因为,虽然在主体侧真空绝热体内这些部件的安装是方便的,但是在门侧真空绝热体中这些部件的安装位置是有限的。
102.在门侧真空绝热体中,难以将抗传导片60放置在真空空间部50的前端部分(即真
空空间部50的转角侧部分)处。这是因为,与主体2不同,门3的转角边缘部分被暴露在外部。更详细地,如果抗传导片60被放置在真空空间部50的前端部分处,则门3的转角边缘部分被暴露在外,因此存在一个缺点,应构造单独的绝热部件,以使抗传导片60热绝缘。
103.图8c中提出的抗传导片63可以安装在穿过真空空间部50的管路64中。在图8c中,详细描述了与图8a和图8b的部分不同的部分,并且相同的描述被应用于与图8a和图8b的部分相同的部分。具有与图8a类似形状的抗传导片63(诸如折皱的(wrinkled,有褶皱的)或锯齿状的(zig-zag)抗传导片63)可以被设置在管路64的周边部分处。因此,可以延长传热路径(heat transfer path),并且可以防止由压力差导致的变形。此外,可以设置单独的屏蔽部,以提高抗传导片的绝热性能。
104.将返回参考图8a描述第一板构件10和第二板构件20之间的传热路径。通过真空绝热体的热量可以被分为:表面传导热(surface conduction heat)

,沿着真空绝热体、更具体地沿着抗传导片60的表面传导;支撑件传导热(supporter conduction heat)

,沿着设置在真空绝热体内的支撑单元30传导;气体传导热(gas conduction heat)

,通过在真空空间部中的内部气体传导;以及辐射传递热(radiation transfer heat)

,通过真空空间部传递。
105.传递热可以根据各种设计尺寸而改变。例如,可以改变支撑单元30,使得第一板构件10和第二板构件20可以承受真空压力而不会变形,可改变真空压力,可改变第一板构件10和第二板构件20之间的距离,以及可改变抗传导片60或63的长度。根据分别由板构件10和20提供的空间(第一空间和第二空间)之间的温度差,可以改变传递热(transfer heat)。在该实施例中,考虑到真空绝热体的总传热量小于由发泡聚氨酯(foaming polyurethane)形成的典型绝热结构的总传热量,已经找到了真空绝热体的构造。在包括通过使聚氨酯发泡形成的绝热结构的典型冰箱中,有效传热系数可以被提议为19.6mw/mk。
106.通过对该实施例的真空绝热体的传热量进行对比分析,气体传导热

的传热量可能是最小的。例如,气体传导热

的传热量可被控制为等于或小于总传热量的4%。被定义为表面传导热

和支撑件传导热

的总和的固体传导热(solid conduction heat)的传热量是最大的。例如,固体传导热的传热量可以达到总传热量的75%。辐射传递热

的传热量小于固体传导热的传热量,但是大于气体传导热的传热量。例如,辐射传递热

的传热量可以占总传热量的约20%。
107.根据这样的传热分布(heat transfer distribution),表面传导热

、支撑件传导热

、气体传导热

和辐射传递热

的有效传热系数(ek:有效k)(w/mk)可以具有公式1的顺序。
108.【公式1】
109.ek
固体传导热
>ek
辐射传递热
>ek
气体传导热
110.这里,有效传热系数(ek)是可以使用目标产品的形状和温度差测量的值。有效传热系数(ek)是可以通过测量总传热量和热量被传递处的至少一个部分处的温度而获得的值。例如,使用可以在冰箱中定量地测量的热源来测量热值(w),使用分别通过冰箱的主体和门的边缘传递的热来测量门的温度分布(k),以及热量被传递所通过的路径被计算为换算值(m),从而评估有效传热系数。
111.整个真空绝热体的有效传热系数(ek)是由k=ql/a

t给出的值。这里,q表示热值
(w),并且可使用加热器(heater)的热值来获得。a表示真空绝热体的截面面积(m2),l表示真空绝热体的厚度(m),以及

t表示温度差。
112.对于表面传导热,传导热值(conductive calorific value)可以通过抗传导片60或抗传导片63的入口与出口之间的温度差(

t)、抗传导片的截面面积(a)、抗传导片60或63的长度(l)和抗传导片60或63的导热系数(k)(抗传导片的导热系数是材料的材料性质且可以提前获得)获得。对于支撑件传导热,传导热值可以通过支撑单元30的入口与出口之间的温度差(

t)、支撑单元30的截面面积(a)、支撑单元30的长度(l)和支撑单元30的导热系数(k)获得。这里,支撑单元30的导热系数是材料的材料性质并且可以提前获得。通过从整个真空绝热体的传热量减去表面传导热和支撑件传导热可以得到气体传导热

和辐射传递热

的总和。通过显著降低真空空间部50的真空度(vacuum degree),当不存在气体传导热时,可以通过评估辐射传递热而获得气体传导热

和辐射传递热

的比率。
113.当在真空空间部50内设置有多孔材料时,多孔材料传导热

可以是支撑件传导热

和辐射传递热

的总和。多孔材料传导热可以根据多个变量(包括多孔材料的种类、数量等)而变化。
114.根据一个实施例,由相邻杆31形成的几何中心与每个杆31所位于的点之间的温度差

t1可以设置为小于0.5℃。另外,由相邻杆31形成的几何中心与真空绝热体的边缘部分之间的温度差

t2可以被设置为小于0.5℃。在第二板构件20中,第二板构件20的平均温度与通过抗传导片60或抗传导片63的传热路径与第二板构件20相交的点处的温度之间的温度差可以是最大的。例如,当第二空间是比第一空间热的区域时,通过抗传导片60或63的传热路径与第二板构件20相交的点处的温度变得最低。类似地,当第二空间是比第一空间更冷的区域时,通过抗传导片60或63的传热路径与第二板构件20相交的点处的温度变得最高。
115.这意味着,应该控制除了通过抗传导片60或63的表面传导热之外的、通过其他点传递的热量,并且仅在表面传导热占据最大传热量时才能达到满足真空绝热体的全部传热量。为此,抗传导片60或63的温度变化可以被控制为大于板构件10和20的温度变化。
116.将描述构成真空绝热体的部件的物理特性。在真空绝热体中,由真空压力产生的力(force by vacuum pressure)被施加于所有部件。因此,可以使用具有一定的强度(n/m2)的材料。
117.在这样的情况下,板构件10和板构件20以及侧框架70可以由具有足够强度的材料制成,借助该强度使得它们不会被均匀的真空压力损坏。例如,当减少杆31的数量以限制支撑件传导热时,由于真空压力可能发生板构件10和20的变形,这可能对冰箱的外观有不良的影响。抗辐射片32可以由具有低辐射率且可易于进行薄膜加工的材料制成。另外,抗辐射片32确保足够强的强度,以不会因外部冲击而变形。支撑单元30被设置成具有足够强的强度以支撑由真空压力产生的力并承受外部冲击,并且具有可机械加工性。抗传导片60可以由薄板形状且可以承受真空压力的材料制成。
118.在一个实施例中,板构件10和20、侧框架70和抗传导片60或63可以由具有相同强度的不锈钢材料制成。抗辐射片32可以由比不锈钢材料的强度弱的铝制成。支撑单元30可以由比铝的强度弱的树脂制成。
119.不同于从材料角度看强度,需要从刚度的角度进行分析。刚度(n/m)是不会轻易变
形的特性。虽然使用相同的材料,但其刚度可根据其形状而变化。抗传导片60或抗传导片63可以由具有高强度或预定强度的材料制成,但是材料的刚度可以较低,以便增加热阻(heat resistance,耐热性)并使辐射热最小化,因为施加真空压力时抗传导片60或63均匀地伸展而没有任何凹凸(roughness)。抗辐射片32需要一定水平的刚度,以免由于变形而与另一部件接触。特别地,抗辐射片32的边缘部分可能由于抗辐射片32的自身负荷引起的下垂而产生传导热。因此,需要一定水平的刚度。支撑单元30可能需要足够强的刚度以承受来自板构件10和20的压缩应力和外部冲击。
120.在一个实施例中,板构件10和20和侧框架70可以具有最高的刚度,以防止由真空压力导致的变形。支撑单元30(特别是杆31)可以具有第二高的刚度。抗辐射片32可以具有比支撑单元30低但比抗传导片60或63高的刚度。最后,抗传导片60或63可以由易于因真空压力而变形且具有最低刚度的材料制成。
121.即使当多孔材料33填充在真空空间部50中时,抗传导片60或63也可以具有最低刚度,并且板构件10和20和侧框架70可以具有最高的刚度。
122.真空空间部50可以仅通过支撑单元30抵抗传热。这里,多孔材料33可以与支撑单元30一同填充在真空空间部50中以抵抗传热。向多孔材料33的传热可以被抵抗而无需应用支撑单元30。
123.在以上描述中,已经提出了pps的树脂作为适用于支撑单元30的材料。杆31以2cm至3cm的间隙设置在支撑板35上,并且杆31的高度为1cm至2cm。这些树脂在模制过程中往往流动性差。在很多情况下,模制品不具有设计价值。特别地,由于树脂在远离液体的液体注射端口的部分中的非均匀注射,通常不能正确地提供模制品(诸如长度短的杆31)的形状。
124.这可能会在之后导致支撑单元30的损坏或有缺陷的真空绝热体。
125.支撑单元30是基本上二维的结构,但是其面积相当大。因此,如果缺陷发生在其中一部分中,则难以丢弃整个结构。随着冰箱和保温设备的尺寸越来越大以满足消费者的需求,这种限制变得更加明显。
126.参考图9,真空绝热体可以应用于冰箱的主体。在这种情况下,将设置在冰箱内部(即在第一空间中)的蒸发器与设置在冰箱外部(即在第二空间中)的冷凝器连接起来的制冷剂管可以穿过真空绝热体。制冷剂管可以设置为热交换管路117。
127.热交换管路117可以通过将入口管171接合到出口管172来提供,制冷剂通过该入口管被引入到设置在冰箱中的蒸发器中,制冷剂通过该出口管从蒸发器排出。入口管171和出口管172这两个管路可以通过焊接彼此接合。流过入口管171和出口管172的制冷剂可以彼此进行热交换以提高制冷循环的效率。
128.根据一个实施例,热交换管路117可以设置在真空空间部50的外部。为了防止热交换管路对真空空间部50的真空状态产生负面影响,可以不将热交换管路设置在狭窄的真空空间部50中,并且可能不需要将热交换管路117安装到狭窄的真空空间部50中的努力。
129.在以下实施例中,热交换管路是指一管路区域,在该管路区域上,入口管和出口管彼此紧密(intensively)接触以允许制冷剂彼此进行热交换。虽然是在工程余裕度(engineering margins)的范围内在用于附加热交换的其他区域进行热交换,但是应理解的是热交换的量相对较小。在一些情况下,应理解的是在其他地方附加地设置了热交换管路,但是在该实施例中,应理解的是,用于热交换的管路被放置在被称为热交换管路的区域
中。
130.图9为示出了根据一个实施例的热交换管路的安装部的构造的视图。
131.参考图9,设置了第一板构件10和第二板构件20,并且在板构件10和板构件20之间设置真空空间部50。第一板构件10可以被用作冰箱的低温侧壁,第二板构件20可以被用作冰箱的高温侧壁。
132.热交换管路117可以穿过真空绝热体的壁。也就是说,热交换管路117可以直线地穿过第一板构件10、真空空间部50和第二板构件20,然后相对于真空绝热体从一个空间被抽出到另一空间。热交换管路117所穿过的板构件10和板构件20可以相对于真空绝热体具有相同的点。热交换管路117可以不设置在真空空间部50内。当真空绝热体应用于冰箱时,真空绝热体可以从冰箱内部抽出到冰箱外部。
133.热交换管路117通过贯通部穿过真空绝热体的壁,该贯通部可以由贯通密封部或密封组件300密封。贯通部可以定义为一部分,板构件10和板构件20在该部分中是开放的以便制冷剂管穿过该部分。热交换管路117可以穿过真空绝热体,而没有真空空间部50的真空破坏和贯通密封部300的绝热损失。下面将参考其他附图更详细地描述贯通密封部300。
134.抽出到外部的热交换管路117可以被构造为使得入口管171和出口管172(图16)在预定空间中彼此热交换,该预定空间借助管路绝热壳体302相对于外部分隔。热交换管路117可以具有弯曲或卷绕形状(rolled shape)使得热交换管路117在管路绝热壳体302内进行强烈的(intensively)热交换。
135.管路绝热壳体302的内部可以作为或带有管路绝热部或空间301被提供,使得构成热交换管路117(图16)的入口管171和出口管172彼此进行热交换,以防止由于与外部的热交换而产生绝热损失。管路绝热部301可以通过真空、绝热泡沫(adiabatic foam)和与外界隔绝的空气来执行绝热功能。可替代地,由于管路绝热壳体302被其本身分隔成内部和外部,管路绝热壳体302可以通过屏蔽来执行绝热功能。
136.管路绝热壳体302可以安装在第二板构件20上或第二板构件处,并且第二板构件20的外表面可以被设置为管路绝热部301的一个壁。然而,本实施例不限于此。例如,管路绝热壳体302可以安装在第一板构件10的一侧,并且第一板构件10的内表面可以作为管路绝热部301的一个壁被提供。然而,在这种情况下,冰箱内的空间可能变窄。
137.至少贯通密封部300可以设置在管路绝热部301和管路绝热壳体302的内部。也就是说,贯通密封部300可以不暴露在外部,以及可以由管路绝热部301和管路绝热壳体302覆盖。
138.沿着热交换管路117传播的热量可能导致绝热损失。例如,通过贯通密封部300可能不会发生对真空空间部50的真空状态的真空破坏或损坏,并且可以阻挡流向冰箱外部的空气流以减少绝热损失。然而,在设计制冷系统时,可能会发生如下情况:通过使用第一板构件10作为边界沿热交换管路117传导到冰箱内部的热量没有被充分阻挡。在这种情况下,管路绝热部301和管路绝热壳体302可以被进一步安装在第一板构件10的一侧。在一些情况下,可以应用小尺寸的绝热构件而不是大尺寸的构造实现管路绝热部301和管路绝热壳体302。应理解的是,在以下其他实施例中,绝热构件设置在板构件10和板构件20两者上。
139.然而,通过对制冷系统的充分检查,可以仅通过在第二板构件20内设置的管路绝热部301和管路绝热壳体302来减少在冰箱的内部中受到影响的绝热损失。
140.根据本实施例,可以在开始时或在安装时减少由热交换管路117对真空空间部50施加的影响,以及可以解决由于真空绝热体的密封而使得真空绝热体不能在后续被维修的限制。
141.图10为根据一个实施例的应用图9的热交换管路的安装部的制冷剂的视图。在图10的冰箱中,单个真空绝热体被分隔壁350划分为两个空间。该两个空间可以由不同的门打开和关闭,并且可以设置单个蒸发器,以将冷空气供应到两个空间中。
142.参考图10,由单个绝热体提供的单个主体2可以被分为两个空间,并且可以通过单独的门3来打开和关闭这两个空间。这两个空间可以以上部冷藏和下部冷冻的方式运行。分隔壁350可以以如下方式中的至少一种设置:绝热单元(为发泡构件)被填充到其中的方式,或内部空间与外部屏蔽的屏蔽方式。
143.蒸发器7设置在这两个空间中的冷冻空间中。供应到蒸发器7的冷空气可以从入口管171(图16)经由压缩机4和冷凝器5被供应。入口管171可以用作膨胀装置。在蒸发器7中蒸发的制冷剂通过出口管172(图16)排出。已经说明的是,在冰箱的外部设置有热交换管路117,在该热交换管路中,入口管171和出口管172彼此进行交换。
144.热交换管路117设置在单独的空间中,该单独空间具有沿着真空绝热体的外表面延伸的一个表面,作为真空绝热体外部的实质壁(substantial wall),提供冰箱的壁。热交换管路117可以与上述热交换管路117相同,因为热绝缘由管路绝热部301和管路绝热壳体302(图9)来实现。
145.可以在分隔壁350中设置冷空气通道351。冷空气通道351可以是一通道,蒸发器7中产生的冷空气通过该通道从设置有蒸发器7的空间传递到另一空间。为了将在蒸发器7中产生的除霜水(defrosting water)移除到主体2的外部,可以在真空绝热体中进一步设置除霜水管路352。
146.贯通密封部300可以设置在热交换管路117穿过主体2所处的位置处,以防止热量被传递到冰箱的内部和外部。另外,管路绝热部301和管路绝热壳体302可以覆盖贯通密封部300,以更牢固地防止冷空气损失。
147.在图10中,粗实线表示内径约为3毫米或更大的铜管。细实线表示作为毛细管的具有约1毫米或更小的直径的细管道(capillary)。
148.图11为关于热交换管路的路径的图10的实施例的更清楚的概念图。
149.参考图11,通过设置在真空绝热体1的外表面上的管路绝热部301和管路绝热壳体302将热交换管路117与外部屏蔽。在这种状态下,构成热交换管路117的入口管171和出口管172(图16)可以仅彼此进行热交换,以减少绝热损失。
150.贯通密封部300可以由管路绝热部301和管路绝热壳体302覆盖并保护。
151.根据上述组成部分,热交换管路117可以在冷凝器c与蒸发器e之间充分产生热能,以重新利用该热能。
152.由于热交换管路没有设置在真空空间部50中,因此可以从开始时就防止真空空间部50的真空破坏和热交换管路的维修困难。
153.图12是根据另一个实施例的应用了热交换管路的安装部的制冷剂的视图。除了热交换管路周边部件和热交换管路的安装之外,图12的实施例的其他组成部分与图10的实施例的那些相同,因此,将从图10的实施例的描述中得出未解释的组成部分。
154.参考图12,热交换管路117可以被设置在分隔壁350中。例如,热交换管路117可以设置在分隔壁350内。分隔壁350被构造为使主体2内的两个空间热绝缘。因此,可以不单独设置仅作为热交换管路117而设置的单独的绝热组成部分,例如,提供管路绝热部301和管路绝热壳体302。分隔壁350的组成部分可以被设置为热交换管路117的绝热组成部分。
155.连接到蒸发器7的热交换管路117可以在分隔壁350中在入口管171与出口管172(图16)之间进行热交换,然后借助穿过贯通密封部300被抽出到主体2的外部。
156.在该实施例中,不需要在冰箱的外部单独地设置管路绝热部301和管路绝热壳体302。因此,可以更有效地利用冰箱的内部和外部空间。此外,由于分隔壁350的绝热组成部分与热交换管路117的绝热组成部分一起使用,因此可以提高空间利用率。
157.图13为关于热交换管路的路径的图12的实施例的更清楚的概念图。
158.参考图13,分隔壁350的多个组成部分可以分别用作热交换管路117的绝热组成部分。作为分隔壁350的外表面结构,由树脂材料制成的外壳可以用作管路绝热壳体302,并且设置到分隔壁350中的由发泡树脂材料制成的绝热构件可以用作管路绝热部301。
159.构成热交换管路117的入口管171和出口管172(图16)可以仅彼此进行热交换,以减少绝热损失。
160.贯通密封部300可以由分隔壁350覆盖并保护。如上所述,可以在第二板构件20的与贯通密封部300相邻的一侧处设置单独的绝热结构。
161.根据上述组成部分,热交换管路117可以在冷凝器c与蒸发器e之间充分产生热能,以重新利用该热能。
162.根据上述组成部分,由于不需要用于在冰箱外部单独安装热交换管路的组成部分,因此可以简化构造,并且可以减小冰箱的尺寸。可选择地,由于在真空空间部50中不存在热交换管路,因此可以获得如前面的实施例中的各种优点。
163.图14为根据又一个实施例的应用了热交换管路的安装部的制冷剂的视图。除了热交换管路的周边部件和热交换管路的安装之外,根据图14的实施例的其他组成部分与根据图10和图12的实施例的那些相同,因此,将从图10和图12的实施例的描述中得出未解释的组成部分。
164.参考图14,在该实施例中,热交换管路117设置在机械室8中。由于热交换管路117设置在机械室8的内部空间中,因此,可以设置管路绝热部301和管路绝热壳体302,以充分地在被设置在热交换管路117中的两条管路之间进行热交换。
165.在该实施例中,驱动蒸发器7所需的除霜水管路352和贯通密封部300可以通过单个贯通结构来实现。入口管171、出口管172(图16)和除霜水管路352可以一起穿过单个贯通密封部300,真空绝热体穿过该单个贯通密封部。因此,根据另一个实施例,由于单个贯通部足以用作在两个位置处彼此隔开地设置的贯通部,因此可以减少绝热损失,并且可以减少对由于真空破坏而引起的故障的担忧。
166.在该实施例中,由于热交换管路117安装在机械室8(图2)的内部空间中,所以可以有效地利用机械室8,并且冰箱可以不增加尺寸,从而更有效地利用冰箱外部的空间。
167.图15为关于热交换管路的路径的图14的实施例的更清楚的概念图。
168.参考图15,热交换管路117设置在机械室8的内部空间中。热交换管路117可以通过管路绝热壳体302和管路绝热部301在入口管171与出口管172(图16)之间进行热交换,而与
机械室8(图2)的热状态无关。
169.根据上述组成部分,热交换管路117可以在冷凝器c与蒸发器e之间充分产生热能,以重新利用该热能。特别地,蒸发器e与冷凝器c之间的距离可以减小。因此,可以减少诸如由于不必要的管路长度而引起的压降之类的不可逆损失,以提高制冷系统的效率,并且可以不需要用于为不必要的管路提供隔热的附加部件。
170.图16为将产品应用于图15中提出的实施例的情况的立体图。
171.参考图16,管路绝热部301和管路绝热壳体302设置在机械室8中,热交换管路117设置在管路绝热壳体302中。热交换管路117可以弯曲成之字形(zigzag shape)并沿板构件的平面方向延伸,以确保用于热交换的路径。
172.贯通密封部300可以穿过真空绝热体,热交换管路117可以穿过贯通密封部300的内部。尽管除霜水管路352(图14)穿过贯通密封部300,但是在该附图中没有示出。
173.提供热交换管路117中的一条管路的入口管171可以作为毛细管与机械室8内的冷凝器5连接,提供另一条管路的出口管172可以作为具有大直径的铜管路与压缩机4连接。
174.在图16的实施例中,当观察到管路绝热部301的温度分布时,贯通密封部300的温度低,并且温度在热交换管路117延伸到管路绝热部301的内部的方向上逐渐升高。详细地,在图16中,设置有贯通密封部300的管路绝热部301的右下部分的温度可以是最低的,而左下部分的温度可以是最高的。在上述热布置中,在管路绝热部301中可能会出现不均匀的温度分布,从而使热交换管路的热交换效率降低,并显著地导致热泄漏。
175.图17为示出解决了上述限制的热交换管路的布置的视图。
176.参考图17,在热交换管路117的布置中,贯通密封部300可以设置在热交换管路117的中心处。连接到蒸发器e(图15)的管路可以通过贯通密封部300移动。在热交换管路117的布置中,热交换管路117在另一点处连接到管路绝热部301的外部,该另一点可以设置在最外侧。热交换管路117可以被缠绕(wound)成螺旋形状,同时相对于贯通密封部300的中心逐渐增大直径。根据上述构造,热交换管路117的中心部分的温度可以是最低的,并且朝向外部温度可逐渐升高。因此,管路绝热部301可以具有均匀的温度分布,以提高热交换管路的热交换效率并减少热损失。
177.由于入口管171和出口管172(图16)在热交换管路117中产生逆流流动(counter current flow,对向流),所以热交换管路117之间的间隔部可以由管路绝热部301隔热,以防止热交换管路117发生不必要的热交换。
178.箭头表示流过出口管172内部的蒸发后的制冷剂的流动,该出口管从具有较低温度的蒸发器e中抽出。
179.在图17的实施例中,可以优化具有最低温度的中心部分(其中出口管172的热影响是最主要的)和具有最高温度的最外面部分(其中进口管171的热影响是最主要的)的布置。此外,贯通密封部300设置在中心部分处,其穿过第一板构件10和第二板构件20,并且热交换管路117可以在旋转的或螺旋的同时被抽出到外部,并且具有逐渐增大的直径。根据热交换管路117的布置,当从中心观察时,管路绝热部301的温度分布可以是径向均匀的(radially uniform)。因此,可以提高热交换效率,并且可以减少热泄漏。
180.在图17的热交换管路的布置中,为了获得弯曲效率,可以对管路绝热部301进行隔热。
181.图18是用于说明图17中提供的热交换管路的绝热结构的剖视图。
182.参考图18,在管路绝热部301中,可以以诸如聚苯乙烯发泡的方式填充管路绝热壳体302的内部空间。管路绝热部301可以被构造为,使得构成热交换管路117的入口管171和出口管172可以在预定位置处精确地执行逆流热交换。此外,可以缠绕热交换管路117,使得其直径朝向外部增大以实现热平衡。
183.虽然热交换管路117示出为被缠绕从而形成一层,但是也可以可替换地使热交换管路117被缠绕从而形成两层或三层。
184.图19为用于说明图17的热交换管路的绝热结构的另一个示例的视图。
185.参考图19,管路绝热部301可被设置在真空状态下以提供管路真空部或空间3011。在管路绝热壳体302中的第二板构件20的一侧附加地设置有真空板3012,以保持管路真空部3011内的真空状态。真空板3012可以覆盖贯通密封部300以保持密封。因此,冰箱内的冷空气和冰箱内的气压可能不会对管路真空部3011产生影响。
186.在下文中,将描述贯通密封部300。
187.贯通密封部300可以是一组成部分,该组成部分被安装在热交换管路117穿过真空绝热体的点处并且被设置为防止热量传递到由真空绝热体分隔的内部和外部。
188.图20为示出了贯通密封部300的构造的剖视图。
189.参考图20,真空空间部50设置在板构件10与板构件20之间的间隔部中。图8c中所示的折皱的抗传导片63可以设置在板构件10和板构件20的贯通部处。折皱的抗传导片63可以抵抗板构件10和20之间的热传导并且防止构件10和20被真空压力与大气压之间的压力差损坏。可以将折皱的抗传导片63的两端焊接到板构件10和板构件20,并且可以通过折皱的抗传导片63的折皱形状进一步防止热传导。
190.热交换管路117穿过折皱的抗传导片63的内部空间。块(block,块体)310和块320可以设置在热交换管路117的上端和下端,以阻塞开口部分。密封构件330可以设置在块310和块320的内部或两者之间以阻挡小通风。
191.这些块310和320可以由具有低导热系数(heat conductive coefficient)的软材料制成。块310和320可以由导热系数小于板构件10和板构件20中的每个的材料制成,以抵抗板构件之间的热传导。
192.作为所示构造的替代,折皱抗传导片63可以实现为具有小尺寸的大量折皱或脊形(ridge)的构件或片。例如,可以设置平薄板状构件(flat thin plate-like member)或弧形板(arc-shaped plate)。将第一板构件10的贯通部与第二板构件20的贯通部连接以阻挡第三空间(第三空间为真空空间)的真空泄漏的构件可以称为第三板构件或第三板。
193.第三板构件的一个表面可以由块310或320和密封构件330支撑,因此,通过第三板的传热可以由块和密封构件阻挡。
194.将详细描述这些块310和320。
195.这些块310和320可以设置为执行相同功能的一对构件。尽管只描述了任何一构件,但是该描述可以同样地应用于其他构件。
196.外支撑件311与第一板构件10的外表面接触以密封在第一板构件10中形成的间隙或开口,和/或帮助密封在第一板构件10和第二板构件20之间的真空空间部50,该外支撑件设置在第一块310中,该第一块310设置在第一板构件10的一侧处,即在冰箱内部。热交换管
路117由设置在外支撑件311内部的第一表面支撑,贯通部可以被支撑在设置在外支撑件311的底部表面的第二表面内。外支撑件311可以用于支撑热交换管路117并且执行操作,使得块310在贯通部被支撑。
197.内推件(inner pusher)312具有与折皱的抗传导片63的横截面尺寸相对应的尺寸,该内推件可以进一步设置在外支撑件311内部的。
198.内推件312可以压缩密封构件330以填充折皱的抗传导片63的内部空间。密封构件330可以由一材料制成,该材料在随着诸如液态硅的流体经过预定时间之后可固化。根据密封构件330,可以将除了内推件312和内推件322以及热交换管路117之外的整个间隙或真空空间部50密封在折皱的抗传导片63的内部空间中。导热系数小于板构件10和20的材料也可以应用于密封构件330。
199.外支撑件311的描述类似地应用于第二块320的外支撑件321,内推件312的描述类似地用于第二块320的内推件322的描述。
200.即使热交换管路117穿过真空绝热体,具有上述结构的贯通密封部300也可以屏蔽穿过真空绝热体的内部和外部的气体的流动和传热。
201.当块310或320阻挡热交换管道117和第三板构件之间的热传导,并完全密封热交换管道117和第三板构件使得空气不能通过时,可以省略密封构件330。在这种情况下,仅有块310或320可称为密封构件。在此,当最初应用块310或320时,可应用具有可塑性(plasticity)的合成树脂(synthetic resin)。
202.当仅使用块310和320无法防止第一空间的冷空气的泄漏时,可以应用密封构件330。在这种情况下,块310和320和密封构件330都可以被称为密封构件或系统。在此,块310和320可以主要阻挡热传导,密封构件330可主要防止冷空气泄漏。
203.块310和320和密封构件330的描述可以同样地应用于关于贯通密封部的其他实施例。
204.图21a、图21b、图22a和图22b为示出了制造贯通密封部300的过程的视图。
205.首先,参考图21a和图21b,图21a示出了侧视图,图21b示出了俯视图。
206.块310和块320可以分为第一或一侧块3101和第一或一侧块3201以及第二或另一侧块3102和第二或另一侧块3202。第一块310将作为示例被描述,并且相同的描述将同样地应用于第二块320。
207.第一块310被分成一侧块3101和另一侧块3102以围绕热交换管路117。当第一块310被设置为单个本体时,该第一块可以从热交换管路117的一端插入以便被引导到适当的位置。但是,这是不可取的,因为它造成了加工上的困难。在图21b中,箭头表示一侧块3101和另一侧块3102正在接近热交换管路117以围绕热交换管路117。可以在块中限定预定的凹槽3103和凹槽3104,使得一侧块和另一侧块围绕热交换管路117。
208.在图21b中,虚线表示竖直截面和水平截面的相应位置,可以一起理解热交换管路117与块310和块320的相对位置。
209.密封构件330可以作为流体被插入到折皱的抗传导片63的内部空间中。密封构件330可以被设置成围绕热交换管路117的外表面。密封构件330可以防止热交换管路117接触折皱的抗传导片63,从而借助抗传导片53充分执行热传导热阻(thermal conductive resistance)的功能。此后,将块310和块320推入折皱的抗传导片63中。改换附图时会给出
说明。
210.参考图22a和图22b,图22a示出了侧视图,图22b示出了俯视图。
211.第一块310和第二块320插入到折皱的抗传导片63中。箭头指示块310和320的移动方向。
212.由于第一块310和第二块320至少部分地插入到折皱的抗传导片63中,所以密封构件330可以变形以移动到热交换管路117和抗传导片63之间的间隔部或间隙,从而被填充到间隔部中。这里,内推件312和内推件322可以执行推动和压缩密封构件330的活塞(plunger)的功能。
213.当将块310和块320充分插入到折皱的抗传导片63中时,密封构件330可以填充到块的凹槽3103和凹槽3104与热交换管路117之间的间隔部中。由于热交换管路117可能被设置为一对管171和管172,因此可能难以设置凹槽3013和凹槽3104以匹配管171和管172的外观。由于此限制,密封构件330在生产方面可能是方便的,以防止块310和320的凹槽与热交换管路117之间的间隙的出现。密封构件330可以为粘合剂使得块310和块320彼此联接。
214.图22的箭头表示内推件312和内推件322推动密封构件330以对折皱的抗传导片63的内部密封。
215.根据贯通密封部300,热交换管路117可以对部分的内部和外部进行密封,热交换管路117在该部分处穿过真空绝热体,以及真空绝热体的内部与外部之间的传热可以减少。
216.贯通密封部300可以与管路绝热部301一起阻挡通过真空绝热体的贯通部传递的热。将通过改换附图来描述贯通密封部300与管路绝热部301之间的相互关系。
217.图23至图26为示出了贯通密封部300与管路绝热部301之间的相互关系的视图。
218.首先,参考图23,管路绝热部301可以提供向前管路绝热部(forward pipeline adiabatic part)或空间341,该向前管路绝热部或空间在其中心处具有贯通密封部300。绝热部341可以沿着相对于板构件20垂直或向前的平面在向前的方向上扩展,如前面参考图17所描述的。向前管路绝热部341可以优选地应用于图17的热交换管路。
219.向前管路绝热部341可以附接到或设置在第二块320和/或第二板构件20和/或热交换管路117,或者发泡到预定壳体的内部空间中。
220.参考图24,管路绝热部301可以提供单向管路绝热部(one-way pipeline adiabatic part)或空间342,该单向管路绝热部在贯通密封部300的一个方向上延伸。单向管路绝热部342可以优选地应用于图16的热交换管路117。
221.单向管路绝热部341可以附接到或设置于第二块320和/或第二板构件20和/或热交换管路117,或者发泡到预定壳体的内部空间中。
222.参考图25,管路绝热部301可以提供单侧(one-side)绝热部344,该单侧绝热部设置在沿着热交换管路117与贯通密封部300分开的一侧处。该单侧绝热部或空间344可以固定到块320和/或热交换管路117和/或第二板构件20上。
223.热交换管路117所穿过的另一空间可以提供开口绝热部或空间343,使得通过管路绝热壳体302将该另一空间与真空空间50和其他空间分开,以执行绝热功能。
224.参考图26,与图26的情况不同,单侧绝热部344可以被设置成与块320分开。这种情况可以应用于以下情况:当热交换管路117的热交换性能不足时,需要在入口管171与出口管172之间的附加热交换。
225.当需要对第一板构件10进行热绝缘时,图25和图26的情况可以优选地作为简单的结构应用,以获得绝热效果。
226.图27和图28为根据另一个实施例的贯通密封部300的视图。
227.参考图27,该实施例与图20的实施例的不同之处在于,公块(male block,凸块)和母块(female block,凹块)彼此啮合,并且密封构件330被变为诸如o形环的密封件。在没有任何具体说明的情况下,仍可应用与图20相关的描述。
228.第一块360可以设置在第一板构件10的一侧,第二块370可以设置在第二板构件20的一侧。由于块360和块370彼此相似,所以将描述一个块,且相同的描述也将应用于其他块。
229.在第一块360中,外支撑件361被卡住以支撑在第一板构件10上,并且内插入部或管362进一步被设置在外支撑件361内部,然后被插入到折皱的抗传导片63中。第一联接部363设置在内插入部362的内部和外部的至少一个点处。
230.外支撑件371和内插入部372进一步设置在第二块370上。第二联接部373设置在内插入部372的内部和外部的至少一个点处。
231.外支撑件361和371卡在板构件10和20的外表面上,以分别密封块360和370与板构件10和20之间的接触表面。可以将外表面密封件365和375插入到块360和370与板构件10和20的接触表面中,以提高密封操作的可靠性。内表面密封件364和374可以插入到外支撑件361和371的内表面与热交换管路117的外表面的接触表面中,以防止流体流到冰箱的内部和外部。内表面密封件364和374中的每个可以具有与热交换管路117的外表面形状相似的横截面形状,以在接触表面上完整地执行密封操作。
232.密封件364,365,374,375的每个可以由橡胶制成,并且以由弹性材料制成的物体围绕块360和/或370的外表面的方式设置。
233.联接部363和联接部373可以被设置为联接单元,这些联接单元设置在彼此对应的表面上。例如,内螺旋或螺纹和外螺旋或螺纹可以被设置成通过它们的旋转而彼此联接。密封件364、密封件365、密封件374和密封件375的相互接触表面可以通过联接部363和联接部373的联接操作而被密封成彼此接近。
234.块360和块370可以由橡胶或塑料制成,并且可以不妨碍折皱的抗传导片63的热传导热阻的作用。折皱的抗传导片63与块369和块370之间的间隔部可以是空的,或者密封构件330可以被插入到间隔部中以抵抗热传导传热和流体的流动。
235.参考图28,虽然块360和块370中的每个被设置为一个本体(one body,一体),但是也可以像图20的实施例一样,板构件360和370的两个构件可彼此一体形成,处于彼此分离的状态。在将块360和370中的每个设置为一个本体之后,块370可以在与热交换管路117的外表面联接的状态下彼此联接,以完成贯通密封部330的联接。
236.箭头的方向指示块360和块370中的每个的移动方向和旋转方向。
237.图29至图40为示出了各种实施例的视图,其中根据真空绝热体所应用到的各种冰箱,安装了热交换管路。例如,图10、图12和图14所示的冰箱具有一形状,其中单个真空绝热被分隔壁分隔成两个储藏室。这里,冷空气由单个蒸发器供应到两个储藏室。在下文中,提出了根据各种冰箱类型的热交换管路的实施例。未具体描述冰箱构造的冰箱的构造被认为与已经描述的描述内容相同。
238.在图29和图30中,单个真空绝热体2为冰箱1提供单个储藏室,冷空气由单个蒸发器供应到单个储藏室。
239.参考图29,热交换管路117可以设置在第二板构件20的外部。因此,热交换管路117可以由管路绝热部301和/或管路绝热壳体301热绝缘。
240.可以设置贯通密封部300,制冷剂管路通过该贯通密封部300将热交换管路117与蒸发器7连接。除了贯通密封部300,还可以在真空绝热体中设置除霜水管路352,该除霜水管路用于排出在蒸发器7运行过程中产生的除霜水。
241.参考图30,其他部件与图29中的那些部件相同,除霜水管路352与贯通密封部300是共用的。详细地,制冷剂管路不仅穿过单个贯通密封部300,而且还穿过除霜水管路352。
242.在该实施例中,由于减少了在真空绝热体中限定的开口的数量,所以可以进一步减少绝热损失,并且还可以减少对真空破坏的担忧。
243.在该实施例中,由于热交换管路117设置在机械室8(图2和图16)的内部空间中,所以可以进一步提高空间利用率,可以更加简化冰箱的外观,并且可以减少冰箱的体积。
244.在图31至图33中,提供一种冰箱1,该冰箱设置至少两个储藏室,其中单个真空绝热体2由分隔壁350分隔。在每个储藏室中均设置有蒸发器,以将冷空气供应到至少两个储藏室中。
245.参考图31,热交换管路117可以设置在第二板构件20的外部。因此,热交换管路117可以由管路绝热部301和/或管路绝热壳体301热绝缘。
246.可以设置贯通密封部300,制冷剂管路通过该贯通密封部300将热交换管路117连接到蒸发器71和蒸发器72中的每个。除了贯通密封部300之外,还可以在真空绝热体中设置除霜水管路352,该除霜水管路用于排出在蒸发器71和蒸发器72中的每个的运行过程中产生的除霜水。除霜水管路352被构造为使得在蒸发器71和蒸发器72中产生的除霜水一起流动。
247.可以设置两个蒸发器,以根据蒸发器71和72中的每个所需的容量来调节引入到每个蒸发器中的制冷剂的量。为此,可以在冷凝器5的后端处设置制冷剂分配部401。在制冷剂分配部401中分配的制冷剂可以通过热交换管路117进行热交换,然后被引入到蒸发器71和蒸发器72中的每个中。
248.在蒸发器71和蒸发器72中蒸发的制冷剂可以在制冷剂结合部(refrigerant combining part,制冷剂混合部)402中结合,然后在热交换管路117中进行热交换。制冷剂结合部402可以设置在冰箱1内的任一点处。由于构成制冷剂结合部402的入口管172具有直径较大的管路,所以两个出口管172穿过贯通密封部300不是优选的,因为贯通密封部300的横截面积增加。因此,制冷剂结合部402可以设置在真空绝热体2内部,即在冰箱内的任一点处。
249.另一方面,由于入口管171是毛细管,所以两条管路可以一起穿过贯通密封部300。而且,由于对制冷剂1的单独控制需要对热交换的量进行单独控制,因此两个入口管可以单独地穿过贯通密封部300。
250.在该实施例中,当需要对储藏室进行独立控制时,可以优选地应用本冰箱。
251.参考图32,该实施例与前述实施例的不同之处在于,如图图12的实施例,热交换管路117设置在分隔壁350的内部。
252.根据该实施例,除了图31的实施例的特征之外,没有必要在冰箱1外部单独设置管路绝热部301和管路绝热壳体302。因此,可以更有效地利用冰箱1的外部空间。此外,由于分隔壁350的绝热组成部分与热交换管路117的绝热组成部分一同使用,所以可以提高冰箱1的内部空间的空间利用率。
253.在该实施例中,制冷剂结合部402(图31)可以设置在分隔壁的内部。
254.参考图33,该实施例与前述实施例的不同之处在于,如同图31的实施例,热交换管路117设置在机械室8(图16)的内部。在该实施例中,可以在冰箱1内的空间中设置制冷剂结合部402。
255.根据本实施例,除了图31的实施例的特征之外,驱动蒸发器71和蒸发器72所需的除霜水管路352和贯通密封部300可以由单个贯通结构实现。也就是说,两个入口管171、出口管172以及除霜水管路352可以一起穿过单个贯通密封部300,真空绝热体穿过该单个贯通密封部。因此,根据另一个实施例,由于单个贯通部300足以用作在两个位置处彼此隔开地设置的贯通部,所以可以减少绝热损失,并且可以减少由于真空破坏而导致的担忧。
256.在该实施例中,由于热交换管路117被安装在机械室8(图16)的内部空间中,所以可以有效地利用机械室8,并且冰箱可以不增加尺寸,从而更有效地利用冰箱1外部的空间。
257.在该实施例中,由于减少了在真空绝热体中限定的开口的数量,所以可以进一步减少绝热损失,还可以减少真空破坏或真空状态损失。
258.在图34至图36中,提供了一种冰箱1,该冰箱设置至少两个储藏室,其中单个真空绝热体2由分隔壁35分隔。在每个储藏室中设置有蒸发器71、72,以将冷空气供应到至少两个储藏室中。因此,冰箱1可以具有与图31和图33所示的形状相似的形状。但是,这些冰箱彼此之间的不同之处在于,设置了两个压缩机501和502以提高压缩效率并获得更高的压力。由于设置了两个压缩机501和502,因此可以积极地(positively)应对两个蒸发器71和72的制冷剂。
259.除了与压缩机相关的构造之外,图34至图36的实施例与图31至图33的实施例相同,因此,仍应用相关的描述。
260.参考图34,当需要对每个储藏室进行独立控制时,可以优选地应用根据该实施例的冰箱1,并且低压部分的压缩机501和高压部分的压缩机502可串联(in series)设置。两个压缩机501和502可以达到更高的压力并且向两个蒸发器71和72供应足够的制冷功率(cooling power)。
261.参考图35,根据该实施例的冰箱可以提高空间利用率。此外,低压部分的压缩机501和高压部分的压缩机502可以串联设置。两个压缩机501和502可以达到更高的压力并且向两个蒸发器71和72供应足够的冷却功率。
262.参考图36,在根据该实施例的冰箱1中,由于减少了在真空绝热体2中限定的开口的数量,所以可以进一步减少绝热损失,也可以减少对真空破坏的担忧。此外,低压部分的压缩机501和高压部分的压缩机502可以串联设置。两个压缩机501和502可以达到更高的压力并且向两个蒸发器71和72供应足够的冷却功率。
263.在图37和图38中,提供一种冰箱1,该冰箱具有由单个真空绝热体2构成的多个单储藏室。这里,单个蒸发器7可以向相应的单个储藏室中的每个供应冷空气。在该实施例中,每个储藏室可以在不同的热状态下运行,使得冰箱1以多种构造运行。可以以冗余方式应用
图29和图30中所示的冰箱系统,因此,相同的描述也将应用于该实施例。
264.参考图37,图29中所示的冰箱可以被视为一结构,在该结构中,冰箱1的储藏室被堆叠在上侧和下侧两者上。冰箱1的每个储藏室都被设置在不同的温度状态下,以便适应消费者的需求。
265.参考图38,图30中所示的冰箱可以被视为一结构,在该结构中,冰箱1的储藏室被堆叠在上侧和下侧两者上。冰箱1的每个储藏室也可以设置在不同的温度状态下,以便主动地适应消费者的需求。
266.图37和图38的储藏室可以彼此结合使用。例如,在其中一个冰箱1(图38)中,热交换管路117位于机械室8中,在另一个冰箱1(图37)中,热交换管路117可以放置在真空绝热体117的外后表面上。
267.在图39中,冰箱1包括至少两个真空绝热体。至少两个真空绝热体或主体601和602中的每个均提供储藏室。因此,冰箱1可以包括至少两个储藏室。特别地,该实施例与前述实施例的不同之处在于,通过单个蒸发器7向全部至少两个储藏室中供应冷空气。
268.参考图39,提供了第一主体601和第二主体602,该第一主体和第二主体被设置为真空绝热体。主体601和主体620中的每个可以通过门3分别被选择性地打开和关闭。
269.在第二主体602的周围设置有用于制冷系统的必要组成部分,例如压缩机4、冷凝器5、蒸发器7、热交换管路117和除霜水管路352。热交换管路117可以借助通过贯通密封部300穿过真空绝热体601和/或602而被抽出到外部。冷空气可以从蒸发器7直接供应到冰箱的第二主体602的内部。
270.第一主体601和第二主体602可以通过冷空气通道351彼此连通。冷空气通道351可以设置为两个通道,用于供应和收集冷空气,以充分地供应冷空气。冷空气通道351可以设置为穿过主体601和602中的每个并且将主体601和602彼此连接的通道。
271.根据本实施例,其中设置有单个热交换管路117的制冷系统可以向两个真空绝热体601和602提供冷空气。每个真空绝热体601和602提供一个储藏室,并且每个储藏室可以在它们之间没有任何温度干扰的情况下运行。
272.在图40的实施例中,冰箱包括至少两个真空绝热体601和602。至少两个真空绝热体601和602中的每个均提供储藏室。因此,冰箱1可以包括至少两个储藏室。特别地,该实施例与前述实施例的不同之处在于,在一个制冷系统中提供的冷空气通过蒸发器71和72被供应到至少两个储藏室中的每个。该实施例与图39的实施例不同之处在于,在每个储藏室中均设置有蒸发器71和72,其他相同。因此,在没有任何特别说明的情况下,将仍应用图39的描述。
273.参考图40,为了向两个蒸发器71和72供应制冷剂,设置了制冷剂分配部401和制冷剂结合部402。在主体601和主体602中每个的内部设置蒸发器71、72,以向相应的储藏室供应冷空气。
274.贯通密封部300可设置在第一主体601和第二主体602的固定的面对位置(fixed facing position)处,以便与第一蒸发器71连接的入口管和出口管穿过第一主体601和第二主体602。
275.根据本实施例,其中设置有单个热交换管路117的制冷系统可以向两个真空绝热体601和602提供冷空气。由于每个真空绝热体601和602不仅提供储藏室,而且在每个储藏
室中设置有蒸发器72、72,所以可以消除每个储藏室的干扰的影响,并且完全独立地使用这些储藏室。
276.【工业实用性】
277.根据这些实施例,当使用真空绝热体时,由于基本上使用的热交换管路设置在与真空无关的外部空间中,因此可以消除真空空间部与热交换管路之间的干扰,以期对实际商业化产生的进一步影响。
278.更详细地,存在由于贯通部的数量的减少而减少热损失、提高加工的便利性和减少对真空破坏的担忧的效果。
再多了解一些

本文用于创业者技术爱好者查询,仅供学习研究,如用于商业用途,请联系技术所有人。

发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表

相关文献