一种残膜回收机防缠绕挑膜装置的制 一种秧草收获机用电力驱动行走机构

射频系统、通信设备、通信控制方法及通信控制装置与流程

2022-11-19 10:57:40 来源:中国专利 TAG:


1.本技术涉及天线技术领域,特别是涉及一种射频系统、通信设备、通信控制方法及通信控制装置。


背景技术:

2.随着射频技术的发展,射频系统中多天线切换的应用越来越广泛。然而,多天线切换时,由于通信设备的布局限制,难以保证不同天线能输出相同的功率,导致多天线切换时存在功率不平衡的问题。


技术实现要素:

3.本技术实施例提供一种射频系统、通信设备、通信控制方法及通信控制装置,能够改善多天线切换时存在功率不平衡的问题。
4.本技术第一方面提供了一种射频系统,包括:
5.第一处理电路,与第一天线端连接,所述第一处理电路被配置为支持对第一射频信号的发射处理;
6.第一切换电路,被配置有第一公共端、第一切换端及第二切换端,所述第一公共端与所述第一天线端连接,所述第一切换端与第一天线连接,所述第二切换端与第二天线连接,所述第一公共端与所述第一切换端之间的通路上设有可选通的衰减通道,所述衰减通道被配置为衰减第一射频信号的功率,所述第一切换电路被配置为选通所述第一天线端与目标天线之间的通路,所述目标天线包括所述第一天线和所述第二天线中的一支;
7.其中,在所述衰减通道处于关断状态时,所述第一天线端到所述第一天线的第一通路插损值小于所述第一天线端到所述第二天线的第二通路插损值;在所述目标天线为所述第一天线且所述第一天线端处于信号发射状态的情况下,所述第一切换电路还被配置为选通所述衰减通道,以使所述第一天线和所述第二天线均可以预设功率范围内的功率发射所述第一射频信号。
8.本技术第二方面提供了一种通信控制方法,应用于具有如上所述的射频系统的通信设备,包括:
9.获取所述通信设备当前的场景信息;
10.根据所述场景信息确定连接至所述第一天线端的所述目标天线,所述目标天线包括第一天线和第二天线中的一支;
11.在所述目标天线为所述第一天线且所述第一天线端处于信号发射状态的情况下,控制所述第一切换电路选通所述衰减通道,以使所述第一天线和所述第二天线均以预设功率范围内的功率发射所述第一射频信号。
12.本技术第三方面提供了一种通信控制装置,应用于具有如上所述的射频系统的通信设备,所述通信控制装置,用于获取所述通信设备当前的场景信息;根据所述场景信息确定连接至所述第一天线端的所述目标天线,所述目标天线包括第一天线和第二天线中的一
支;在所述目标天线为所述第一天线且所述第一天线端处于信号发射状态的情况下,控制所述第一切换电路选通所述衰减通道,以使所述第一天线和所述第二天线均以预设功率范围内的功率发射所述第一射频信号。
13.本技术第四方面提供了一种通信设备,包括:
14.如上所述的射频系统。
15.本技术第五方面提供了一种通信设备,包括存储器及处理器,所述存储器中储存有计算机程序,所述计算机程序被所述处理器执行时,使得所述处理器执行如上所述的通信控制方法的步骤。
16.本技术第六方面提供了一种计算机可读存储介质,其上存储有计算机程序,所述计算机程序被处理器执行时实现如上所述的通信控制方法的步骤。
17.上述射频系统、通信设备、通信控制方法及通信控制装置,其中射频系统包括第一处理电路和第一切换电路,第一切换电路使第一处理电路可切换地连接至第一天线和第二天线;第一切换电路中第一公共端与第一切换端之间的通路上设有可选通的衰减通道,衰减通道被配置为衰减第一射频信号的功率。在衰减通道处于关断状态时,第一天线端到第一天线的第一通路插损值小于第一天线端到第二天线的第二通路插损值;在目标天线为第一天线且第一天线端处于信号发射状态的情况下,第一切换电路还被配置为选通衰减通道,以使第一天线和第二天线均可以预设功率范围内的功率发射第一射频信号,从而改善第一天线和第二天线切换时的功率不平衡的问题,提高射频系统的通信性能。
附图说明
18.为了更清楚地说明本技术实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本技术的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
19.图1为一实施例的射频系统的结构框图之一;
20.图2为一实施例的射频系统的结构框图之二;
21.图3为一实施例的射频系统的结构框图之三;
22.图4为一实施例的射频系统的结构框图之四;
23.图5为一实施例的射频系统的结构框图之五;
24.图6为一实施例的射频系统的结构框图之六;
25.图7为一实施例的射频系统的结构框图之七;
26.图8为一实施例的射频系统的结构框图之八;
27.图9为一实施例的射频系统的结构框图之九;
28.图10为一实施例的射频系统的结构框图之十;
29.图11为一实施例的射频系统的结构框图之十一;
30.图12为一实施例的通信控制方法的流程图之一;
31.图13为一实施例的通信控制方法的流程图之二;
32.图14为一实施例的通信控制方法的流程图之三;
33.图15为一实施例的通信控制方法的流程图之四;
34.图16为一实施例的通信控制方法的流程图之五;
35.图17为一实施例中的通信设备的结构框图。
具体实施方式
36.为了使本技术的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本技术进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本技术,并不被配置为限定本技术。
37.可以理解,本技术所使用的术语“第一”、“第二”等可在本文中被配置为描述各种元件,但这些元件不受这些术语限制。这些术语仅被配置为将第一个元件与另一个元件区分,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在本技术的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。
38.需要说明的是,当元件被称为“设置于”另一个元件,它可以直接在另一个元件上或者也可以存在居中的元件。当一个元件被认为是“连接”另一个元件,它可以是直接连接到另一个元件或者可能同时存在居中元件。
39.本技术实施例涉及的射频系统可以应用到具有无线通信功能的通信设备,其通信设备可以为手持设备、车载设备、可穿戴设备、计算设备或连接到无线调制解调器的其他处理设备,以及各种形式的用户设备(user equipment,ue)(例如,手机),移动台(mobile station,ms)等等。为方便描述,上面提到的设备统称为通信设备。
40.图1为一实施例的射频系统的结构框图之一,参考图1,在本实施例中,射频系统包括第一处理电路110和第一切换电路120(图1仅示出第一切换电路120的简易示意图,仅为示意,不做限定)。
41.在本实施例中,第一处理电路110,与第一天线端连接,第一处理电路110被配置为支持对第一射频信号的发射处理;第一切换电路120,被配置有第一公共端、第一切换端及第二切换端,第一公共端与第一天线端连接,第一切换端与第一天线连接,第二切换端与第二天线ant2连接,第一公共端与第一切换端之间的通路上设有可选通的衰减通道121,衰减通道121被配置为衰减第一射频信号的功率,第一切换电路120被配置为选通第一天线端与目标天线之间的通路,目标天线包括第一天线ant1和第二天线ant2中的一支。
42.其中,第一天线ant1和第二天线ant2被配置为支持对第一射频信号的收发处理;第一处理电路110被配置为通过第一切换电路120可切换地连接至第一天线ant1、第二天线ant2,以支持对第一射频信号的发射处理,第一射频信号来自射频收发器130。可以理解,第一处理电路110可以包括功率放大器、滤波器等器件,以实现对第一射频信号的发射处理。
43.其中,第一切换电路120被配置为形成有可选通的第一公共端至第一切换端之间的可连接至第一天线ant1的通路,和可选通的第一公共端至第二切换端之间的可连接至第二天线ant2的通路,通过选通连接至第一天线ant1的通路或选通连接至第二天线ant2的通路,实现将第一处理电路110可切换地连接至目标天线,目标天线包括第一天线ant1和第二天线ant2中的一支。通过天线的切换,能够使得射频系统在应用于通信设备时,能够适应更多的场景,例如,在第一天线ant1和第二天线ant2中的一支所处的位置被握住或者接触到而影响天线的信号传输质量时,可以切换到另一支天线,从而在整体上提升传输的信号质
量。具体地,第一切换电路120通过选通第一公共端与第一切换端之间的通路,可以选通第一天线端与第一天线ant1之间的通路;通过选通第一公共端与第二切换端之间的通路,可以选通第一天线端与第二天线ant2之间的通路。
44.其中,第一公共端与第一切换端之间的通路上设有可选通的衰减通道121,衰减通道121被配置为衰减第一射频信号的功率。具体地,当衰减通道121为衰减功率为xdb时,若经过衰减通道121前的射频信号的功率为p,则经过衰减通道121后的射频信号的功率为(p-x)db。当目标天线为第一天线ant1时,第一切换电路120可以根据需求选通衰减通道121,从而第一切换电路120中的连接至第一天线ant1的通路可以对输入的第一射频信号进行功率的衰减。可选地,衰减通道121中可以包括衰减网络,也可以包括衰减器等,从而实现对第一射频信号的功率衰减功能。
45.在本实施例中,在衰减通道121处于关断状态时,第一天线端到第一天线ant1的第一通路插损值小于第一天线端到第二天线ant2的第二通路插损值;在目标天线为第一天线ant1且第一天线端处于信号发射状态的情况下,第一切换电路120还被配置为选通衰减通道121,以使第一天线ant1和第二天线ant2均可以预设功率范围内的功率发射第一射频信号。
46.其中,在衰减通道121处于关断状态时,第一天线端到第一天线ant1的第一通路插损值小于第一天线端到第二天线ant2的第二通路插损值。在相关技术中,若第一天线ant1和第二天线ant2对应的切换通路的插损值不同,则当在第一天线端输出的具有某一功率的第一射频信号通过第一天线端到第一天线ant1的通路时被衰减的功率值和通过第一天线端到第二天线ant2的通路时被衰减的功率值将不同,从而导致第一天线ant1和第二天线ant2在发射该第一射频信号时存在功率不平衡的问题,由此难以保证射频系统应用在通信设备时各种场景下的性能,天线切换性能降低。在本实施例中,在目标天线为第一天线ant1且第一天线端处于信号发射状态的情况下,第一切换电路120被配置为选通衰减通道121,从而通过衰减通道121的衰减功能可以增大第一天线端到第一天线ant1之间的插损值以补偿第一通路插损值和第二通路插损值之间的差值,使得第一天线ant1和第二天线ant2均可以预设功率范围内的功率发射第一射频信号,改善第一天线ant1和第二天线ant2切换时的功率不平衡的问题。
47.其中,预设功率范围可以是趋近于零或等于零的范围,当预设功率范围趋近于零的范围时,第一天线ant1和第二天线ant2可以以较为接近的功率发射第一射频信号,以改善第一天线ant1和第二天线ant2切换时的功率不平衡的问题;当预设功率范围等于零的范围时,第一天线ant1和第二天线ant2均以相同的功率发射第一射频信号,从而解决第一天线ant1和第二天线ant2切换时的功率不平衡的问题。
48.可选地,衰减通道121的插损值等于第二通路插损值与第一通路插损值之间的差值,从而,通过衰减通道121的衰减功能可以补齐第一通路插损值和第二通路插损值之间的差值,使得预设功率范围为等于零的范围。
49.可选地,第一处理电路110在第一天线端输出的射频信号的功率为目标天线的目标发射功率与功率补偿值之和,功率补偿值根据第二通路插损值计算获得。其中,目标发射功率是指目标天线在发射射频信号所需求的功率值,目标发射功率通常是根据射频系统在各种场景下的性能的相关参数计算获取的目标值,因此,当目标天线能够以目标发射功率
发射射频信号时,可以完全发挥出该目标天线的性能。
50.相关技术中,由于连接至第二天线ant2的第二通路插损值大于连接至第一天线ant1的第一通路插损值,由此,第一射频信号在经过第二通路插损的衰减到达第二天线ant2发射时的功率可能偏低,从而在射频系统应用在某些场景下时,第二天线ant2的性能可能不能完全发挥,导致用户体验较差。而在本实施例中,第一处理电路110在第一天线端输出的射频信号的功率为目标天线的目标发射功率与功率补偿值之和,且功率补偿值根据第二通路插损值计算获得,从而,第一处理电路110在第一天线端输出第一射频信号时的功率已提高,可以补齐第二通路插损引入的与目标发射功率之间的差异,使得第二天线ant2的发射功率仍然为目标发射功率,避免了第二天线ant2发射功率偏低的问题。
51.当目标天线为第一天线ant1且第一处理电路110处于信号发射状态时,第一切换电路120通过选通衰减通道121,可以对经功率补偿后的射频信号进行功率衰减,能够改善第一通路插损值小而导致的第一天线ant1发射功率超标而无法满足法规要求的问题。由此,射频系统能够在天线功率平衡的基础上,保证各天线的性能都能完全发挥,提高用户体验。可以理解,本实施例的射频系统局限于一支第一天线ant1和一支第二天线ant2,也同样适用于多支第一天线ant1和/或多支第二天线ant2。当天线的数量为多支时,则射频系统对应的端口数量、衰减通道121数量相应增多。
52.本实施例提供的射频系统,包括第一处理电路110和第一切换电路120,第一切换电路120使第一处理电路110可切换地连接至第一天线ant1和第二天线ant2;第一切换电路120中第一公共端与第一切换端之间的通路上设有可选通的衰减通道121,衰减通道121被配置为衰减第一射频信号的功率。在衰减通道121处于关断状态时,第一天线端到第一天线ant1的第一通路插损值小于第一天线端到第二天线ant2的第二通路插损值;在目标天线为第一天线ant1且第一天线端处于信号发射状态的情况下,第一切换电路120还被配置为选通衰减通道121,以使第一天线ant1和第二天线ant2均可以预设功率范围内的功率发射第一射频信号,从而改善第一天线ant1和第二天线ant2切换时的功率不平衡的问题,提高射频系统的通信性能。
53.图2为一实施例的射频系统的结构框图之二,参考图2(图2仅示出第一切换电路120的简易示意图,仅为示意,不做限定),在本实施例中,第一处理电路110还被配置为支持对第一射频信号的接收处理;第一公共端与第一切换端之间还形成有可选通的旁路通道122,旁路通道122被配置传输第一射频信号;在目标天线为第一天线ant1且第一天线端处于信号接收状态的情况下,第一切换电路120还被配置为选通旁路通道122,将来自第一天线ant1的第一射频信号传输至第一处理电路110。
54.其中,第一处理电路110还被配置为支持对第一射频信号的接收处理,从而,第一处理电路110通过第一切换电路120可切换地连接至第一天线ant1、第二天线ant2,可以支持对第一射频信号的发射处理和接收处理。
55.其中,旁路通道122与衰减通道121的功能相反,旁路通道122没有衰减作用或者衰减趋近于零,经过旁路通道122后的射频信号的功率没有衰减。在目标天线为第一天线ant1且第一天线端处于信号接收状态的情况下,目标天线仅处于接收射频信号,此时不会存在多天线切换时的发射功率不平衡的问题,此时,通过第一切换电路120选通没有衰减功能的旁路通道122,可以在最低插损的情况下将来自第一天线ant1的第一射频信号传输至第一
处理电路110,避免牺牲射频系统的接收性能。
56.可选地,当第一处理电路110具备收发处理功能时,第一处理电路110可以包括功率放大器、低噪声放大器及射频开关等,通过对射频开关的控制,实现第一处理电路110的信号发射功能和信号接收功能的切换。
57.可选地,第一切换电路120可以根据其受控端接收的第一控制信号选通目标天线对应的通路。当射频系统应用在通信设备时,第一控制信号可以根据通信设备当前的场景信息及第一处理电路110的处理状态相关生成。场景信息例如可以是场景信息可以竖屏刷短视频、横屏手握看视频/打游戏、口袋/背包听歌等。第一天线ant1和第二天线ant2可以设置在不同位置,从而第一天线ant1和第二天线ant2中总有一支目标天线的位置没有被握住或者被碰触,能够具有良好的信号收发性能,通过控制第一切换电路120,将第一处理电路110与目标天线连接,可以提高信号传输质量。处理状态包括信号发射状态和信号接收状态,其中,在信号发射状态时,由于第一天线ant1和第二天线ant2对应的通路插损值不同,所以存在天线发射功率不平衡的问题,需要通过衰减通道121进行插损补偿,以改善天线不平衡的问题。
58.场景信息可以通过通信设备中的控制模块140,例如应用处理器进行获取,第一处理电路110的处理状态可以由射频系统中的射频收发器130进行获取,因此,第一控制信号可以由应用处理器和射频收发器130共同提供;也可以由射频收发器130向应用处理器传输相关处理状态信息,由应用处理器进行分析处理后提供第一控制信号;也可以由应用处理器向射频收发器130传输相关的场景信息,由射频收发器130进行分析后提供第一控制信号;还可以中央处理器、微控制单元(单片机)等能够对第一切换电路120内部开关器件进行控制的处理器等。
59.图3为一实施例的射频系统的结构框图之三,参考图3,在本实施例中,第一切换电路120还包括:第一选通模块123和第二选通模块124。
60.第一选通模块123,被配置有一第一端和三个第二端,第一端为第一切换电路120的第一公共端,三个第二端分别与衰减通道121、旁路通道122及第二天线ant2一一对应连接,与第二天线ant2连接的第二端为第二切换端;第二选通模块124,被配置有两个第三端和一第四端,两个第三端分别与衰减通道121、旁路通道122一一对应连接,第四端为第一切换端。
61.其中,第一选通模块123用于选通第一天线端连接至第一天线ant1的通路或选通第一天线端连接至第二天线ant2的通路;第一选通模块123和第二选通用于选通第一天线端连接至第一天线ant1的衰减通道121或旁路通道122,以实现将第一天线端可切换地连接至第一天线ant1和第二天线ant2,并实现第一天线ant1可切换地连接至衰减通道121和旁路通道122。
62.具体地,在目标天线为第一天线ant1且第一天线端处于信号发射状态的情况下,第一选通模块123选通第一端与连接至衰减通道121的第二端之间的通路,第二选通模块124选通连接至衰减通道121的第三端与第四端之间的通路;在目标天线为第一天线ant1且第一天线端处于信号接收状态的情况下,第一选通模块123选通第一端及与旁路通道122连接的第二端之间的通路,第二选通模块124选通与旁路通道122连接的第三端及第四端之间的通路;在目标天线为第二天线ant2的情况下,第一选通模块123选通第一端与连接至第二
天线ant2的第二端之间的通路。
63.图4为一实施例的射频系统的结构框图之四,参考图4(图4以衰减通道121为衰减器xdb att、旁路通道122为bypass为例),第一选通模块123可以包括sp3t开关,sp3t开关的公共端为第一选通模块123的第一端,sp3t开关的三个连接端分别为第一选通模块123的三个第二端;第二选通模块124可以包括spdt1开关,spdt1开关的两个连接端分别为第二选通模块124的两个第三端,spdt1开关的公共端为第二选通模块124的第四端。可选地,第一选通模块123、第二选通模块124、衰减通道121及旁路通路可以形成集成电路,以提高电路的集成度,降低第一切换电路120的占用面积。
64.可选地,第一选通模块123和第二选通模块124可以根据射频收发器130和/或控制模块140输出的第一控制信号选通相应的通路。以第一选通模块123和第二选通模块124根据射频收发器130输出的第一控制信号选通相应的通路且第一切换电路120为集成电路为例,其中射频收发器130还与第一处理电路110连接,如图4所示,第一切换电路120被配置有第一公共端口g1、第一切换端口1、第二切换端口2及受控端口s,第一公共端口g1分别与第一公共端、第一天线端连接,第一切换端口1分别与第一切换端、第一天线ant1连接,第二切换端口2分别与第二切换端、第二天线ant2连接;射频收发器130被配置有控制端口,控制端口与第一切换电路120的受控端口s连接,控制端口用于传输射频收发器130输出的第一控制信号以控制第一选通模块123、第二选通模块124的选通情况。
65.可选地,射频收发器130的控制端口可以为通用输入/输出(general purpose input/output,gpio)接口。射频收发器130内部设置有gpio控制单元,示例性的,当需要控制第一切换电路120的选通情况时,gpio控制单元可通过gpio接口引脚输出不同电平信号或不同占空比电压信号至第一切换电路120的受控端口,从而控制第一选通模块123、第二选通模块124的选通情况。
66.图5为一实施例的射频系统的结构框图之五,参考图5,在本实施例中,第一切换电路120还包括:第二选通模块124、第三选通模块125和第四选通模块126。
67.第三选通模块125,第三选通模块125的第五端与第一收发端连接,第三选通模块125的一第六端与第二天线ant2连接;第四选通模块126,第四选通模块126的第三端与第三选通模块125的另一第六端连接,第四选通模块126的两个第四端分别与衰减通道121、旁路通道122连接;第二选通模块124,第二选通模块124的两个第三端分别与衰减通道121、旁路通道122一一对应连接,第二选通模块124的第四端为第一切换端。其中,第三选通模块125用于选通连接至目标天线的通路,第四选通模块126和第二选通模块124用于共同选通衰减通道121或旁路通路。
68.图6为一实施例的射频系统的结构框图之六,参考图6,在本实施例中,第三选通模块125可以包括一个spdt2开关,spdt2开关的公共端与第一收发端连接,spdt2开关的两个连接端分别与第四选通模块126、第二天线ant2一一对应连接。第四选通模块126包括spdt3开关,spdt3开关的公共端与spdt2开关的一连接端连接,spdt3开关的两个连接端分别与衰减通道121、旁路通道122连接;第二选通模块124包括spdt1开关,spdt1开关的两个连接端分别与衰减通道121、旁路通道122连接,spdt1开关的公共端与第一天线ant1连接。可选地,spdt3开关、spdt1开关、衰减通道121及旁路通路可以形成集成电路,以提高电路的集成度,降低第一切换电路120的占用面积。
69.可选地,第三选通模块125、第四选通模块126及第二选通模块124可以根据射频收发器130和/或控制模块140(例如应用处理器)输出的第一控制信号选通相应的通路。以第三选通模块125、第四选通模块126及第二选通模块124根据控制模块140输出的第一控制信号选通相应的通路且第四选通模块126、第二选通模块124、衰减通道121及旁路通路为切换集成电路为例,如图6所示,切换集成电路被配置有第二公共端口g2、第三公共端口g3及受控端口s,第二公共端口g2与第三选通模块125连接,第三公共端口g3与第一天线ant1连接,受控端口s与应用处理器分别与第三选通模块125的受控端、第四选通模块126的受控端、第二选通模块124的受控端连接,应用处理器用于输出的第一控制信号以控制第三选通模块125、第四选通模块126、第二选通模块124的选通情况。
70.图7为一实施例的射频系统的结构框图之七,参考图7,在本实施例中,还包括:第二处理电路150和第二切换电路160。
71.第二处理电路150,与第二天线端连接,第二天线端被配置为与第三天线ant3连接,第二处理电路150被配置为支持对第一射频信号的发射处理;第二切换电路160,被配置有第二公共端、第三切换端及第四切换端,第二公共端被配置为与射频收发器130的一信号输出端连接(图中仅示出射频收发器130的信号输出端与其他模块的连接关系,未示出射频收发器130的其他端与其他模块的连接关系),第三切换端与第一处理电路110的输入端连接,第四切换端与第二处理电路150的输入端连接,第二切换电路160被配置为将信号输出端选通至目标处理电路以使得目标处理电路输入来自射频收发器130的第一射频信号以实现对第一射频信号的发射处理,目标处理电路包括第一处理电路110和第二处理电路150中的一路。
72.其中,第二处理电路150被配置为与第三天线ant3连接以支持对第一射频信号的发射处理,第一射频信号来自射频收发器130。可以理解,第二处理电路150可以包括功率放大器、滤波器等器件,以实现对第一射频信号的发射处理。可选地,第二天线端到第三天线ant3直接的通路插损值可以趋近于第一天线端到第一天线ant1的第一通路插损值,但第二天线端与第一天线端的发射端均可被单独控制,从而第二天线端的发射功率可以与第一天线端的发射功率不同。可选地,可以直接控制第二天线端以某一预设功率范围内的功率发射第一射频信号,以使得最终第一天线ant1、第二天线ant2及第三天线ant3的发射功率都处于相同的预设范围内,以实现第一天线ant1、第二天线ant2及第三天线ant3的发射功率相平衡。
73.其中,第二切换电路160被配置为形成有可选通的第二公共端与第三切换端之间的通路,及可选通的第二公共端与第四切换端之间的通路,通过两路通路之一的选通,可选通连接至射频收发器130的一信号输出端的目标处理电路,使得目标处理电路输入来自射频收发器130的第一射频信号以实现对第一射频信号的发射处理。目标处理电路包括第一处理电路110和第二处理电路150中的一路。
74.通过第一处理电路110、第二处理电路150、第一切换电路120及第二切换电路160,可以实现射频系统的第一射频信号的双路发射功能,提高发射通路及发射天线的可选择性,以使射频系统可以适用于更多的使用场景;同时通过多天线的切换,可由将上行信号分布在天线效率更好的天线上,进一步提高射频系统工作的通信性能。
75.图8为一实施例的射频系统的结构框图之八,参考图8(图8实施例以图6实施例为
基础进行示意),本实施例中,第二切换电路160可以包括spdt4开关,spdt4开关的公共端为第二切换电路160的第二公共端,spdt4开关的两个连接端分别为第二切换电路160的第三切换端、第四切换端。
76.可选地,第二切换电路160可以根据接收的第二切换控制信号选通目标处理电路对应的通路。第二切换控制信号可以与信号接收质量信息相关,例如可由射频收发器130或者控制模块140(例如应用处理器)根据第一处理电路110和第二处理电路150的信号接收质量信息确定目标处理电路,根据目标处理电路和目标天线生成第二切换控制信号。信号接收质量信息可以包括与所接收的射频信号的无线性能度量相关联的原始和处理后的信息,诸如信号强度、接收功率、参考信号接收功率(reference signal receiving power,rsrp)、接收信号强度(received signal strength indicator,rssi)、信噪比(signal to noise ratio,snr)、mimo信道矩阵的秩(rank)、载波干扰噪声比(carrier to interference plus noise ratio,rs-cinr)、帧误码率、比特误码率、参考信号接收质量(reference signal reception quality,rsrq)等。
77.可选地,在本实施例中,通过控制模块140(例如应用处理器)控制第一切换电路120、第二切换电路160的选通情况,且第三选通模块125的受控端与控制模块140的第一控制端连接,第二选通模块124的受控端、第四选通模块126的受控端、第二切换电路160的受控端同时与控制模块140的第二控制端连接以共用该端口。具体地,在目标处理电路为第一处理电路110时,第一天线端处于信号发射状态,控制模块140的第二控制端同时向第二切换电路160、第四选通模块126输出高电平信号,同时第一控制端向第三选通模块125输出高电平,以控制第一处理电路110与射频收发器130的信号输出端之间的通路及控制衰减通道121导通;在目标处理电路为第二处理电路150时,控制模块140的第二控制端同时向第二切换电路160、第四选通模块126输出低电平信号,以控制第一处理电路110与射频收发器130的信号输出端之间的通路及控制衰减通道121关断,此时,若第一处理电路110处于信号接收状态,则第一控制端向第三选通模块125输出高电平且第二控制端向第四选通模块126输出低电平以导通旁路通道122。
78.在其他实施例中,当第一处理电路110和第二处理电路150通过时分机制进行工作时,可以由第一处理电路110和第二处理电路150的内部开关器件进行目标处理电路的切换,射频系统不需要额外设置第二切换电路160,此时,可以使用第一处理电路110与第二处理电路150集成电路后的集成电路的控制引脚(bten)控制第四选通模块126,由控制模块140继续控制第三选通模块125,其余可参考图7实施例的相关控制逻辑,在此不再赘述。
79.图9为一实施例的射频系统的结构框图之九,参考图9,在本实施例中,还包括:第三处理电路170。
80.第三处理电路170,被配置为支持对第二射频信号的发射处理;其中,第一天线端可切换地连接第一处理电路110、第三处理电路170;第二射频信号和第一射频信号为不同网络制式的射频信号。
81.其中,第三处理电路170被配置为支持对第二射频信号的发射处理,可以理解,第三处理电路170可以包括功率放大器、滤波器等器件,以实现对第二射频信号的发射处理。
82.其中,通过第三处理电路170和第一处理电路110与第一天线端的可切换连接,射频系统可以不同网络制式的射频信号的发射处理。可选地,不同网络制式例如可以是蓝牙
制式和wifi制式,从而射频系统可以支持蓝牙制式和wifi制式的无线通信。可选地,第一处理电路110支持蓝牙制式的发射处理,第二处理电路150支持wifi制式的发射处理,从而第一射频信号为蓝牙信号,第二射频信号为wifi信号。
83.可选地,第一处理电路110和第三处理电路170可以通过射频开关实现与第一天线端的可切换连接。可选地,第一天线端的目标处理电路可以根据通信类型确定。
84.通信类型可以根据上述实施例中场景信息中的场景类型确定,场景类型可以根据上层应用的使用情况、数据流量的检测数据、通信设备与其他设备的连接等信息进行确定,例如,当通信设备与蓝牙耳机、蓝牙音箱连接时,可以判定当前通信类型为蓝牙通信,从而确定连接至第一天线端的目标处理电路为第一处理电路110。可以理解,通信类型与可以通过其他现有的相关技术进行获取,在此不做限定。
85.可选地,结合上述图7-图9的实施例,当射频系统同时包括第一处理电路110、第二处理电路150和第三处理电路170时,第一处理电路110、第二处理电路150和第三处理电路170可以以tdd方式对第一射频信号和第二射频信号进行发射处理,第一射频信号可以从第一天线ant1、第二天线ant2及第三天线ant3中选择一支进行发射,第二射频信号可以从第一天线ant1、第二天线ant2中选择一支进行发射。
86.可选地,第一处理电路110、第二处理电路150均还可以被配置为支持对第一射频信号的接收处理,第三处理电路170还可以被配置为支持对第一射频信号的接收处理,从而射频系统可以支持第一射频信号和第二射频信号的收发处理,第一射频信号从第一天线ant1、第二天线ant2及第三天线ant3中选择一支进行收发,第二射频信号可以从第一天线ant1、第二天线ant2中选择一支进行收发。
87.图10、图11分别为一实施例的射频系统的结构框图之十、十一,参考图10和图11,在本实施例中,射频系统还可以包括第四处理电路180,被配置为支持对第二射频信号的收发处理;其中,第二天线端可切换地连接第二处理电路150、第四处理电路180;第二射频信号和第一射频信号为不同网络制式的射频信号。
88.可选地,以第一射频信号为蓝牙信号,第二射频信号为wifi信号为例进行说明,参考图10(图10中以集成电路的控制引脚控制第一切换电路120选通情况为例)和图11(图11中以控制模块140控制第一切换电路120、第二切换电路160选通情况且控制模块140为应用处理器ap为例),在本实施例中,第一处理电路110、第二处理电路150、第三处理电路170及第四处理电路180均能够支持对射频信号的收发处理,共用第一天线端的第一处理电路110、第三处理电路170可以共用接收通路以形成bt和wifi共享的第一收发电路,共用第二天线端的第二处理电路150、第四处理电路180可以共用接收通路以形成bt和wifi共享的第二收发电路。其中,第一收发电路包括第一蓝牙发射支路、第一wifi发射支路,以及第一共享接收支路,第二收发电路包括第二蓝牙发射支路、第二wifi发射支路,以及第二共享接收支路。可以理解,在其他实施例中,蓝牙发射支路与wifi发射支路也可以共享。
89.可选地,第一处理电路110、第二处理电路150、第三处理电路170及第四处理电路180共享后的第一收发电路和第二收发电路可以集成在前端模块(front-endmodules,fem)芯片中。fem芯片的作用是将射频信号放大以提高发射功率增加传输距离,或者经过低噪声放大器放大以提高接收灵敏度提高接收距离的作用,如图所示,fem芯片内部包括功率放大器(txpa和bt pa)、低噪声放大器(lna1和lna2)、射频开关(t1-t4、sp3t01、sp3t02)、耦合器
及bypass开关(bypass k1、bypass k2)。其中功率放大器用于将相应的发射射频信号放大以提高发射功率;低噪声放大器用于将接收的射频信号放大以提高接收灵敏度;bypass开关用于防止接收的功率太大将低噪声放大器打饱和而影响接收性能;耦合器用于将部分发射功率耦合反馈到射频收发器130,以实现功率控制的作用;sp3t01以时分方式分别将第一收发电路各支路与第一天线ant1或第二天线ant2连接,实现蓝牙和wifi信号的收发。fem芯片中还包括一些电容、电阻,这里不再赘述。fem芯片还设有电源端vcc,以及与射频收发器130相应端口连接的一些使能端,如蓝牙使能端bten、低噪声放大器使能端lnaen和功率放大器使能端paen。可以理解,其他实施例中,上述实施例中的第一切换电路120和第二切换电路160也可以集成在fem芯片中,对此不做进一步阐述。
90.可选地,如图10和图11所示,射频系统还可以包括第一滤波模块190和第二滤波模块200。第一滤波模块190的第一端与第一切换端连接,第一滤波模块190的第二端与第一天线ant1连接,第一滤波模块190用于对输入的射频信号进行滤波处理;第二滤波模块200的第一端与第二切换端连接,第二滤波模块200的第二端与第二天线ant2连接,第二滤波模块200用于对输入的射频信号进行滤波处理。可选地,第一滤波模块190和第二滤波模块200分别用于滤除2.4ghz频段以外的无用信号,因为wifi 2.4g频段和蓝牙都是工作于2.4g-2.8g频段,因此可以使用相同的滤波器以达到相同的效果。
91.可选地,在其他实施例中,射频系统还可以包括第三滤波模块,第三滤波模块的第一端与第一天线端连接,第三滤波模块的第二端与第一切换电路120的第一公共端连接,第三滤波模块用于对输入的射频信号进行滤波处理。可选地,括第三滤波模块用于滤除2.4ghz频段以外的无用信号,因为wifi 2.4g频段和蓝牙都是工作于2.4g-2.8g频段,因此可以使用相同的滤波器以达到相同的效果。本实施例通过一个滤波模块可以代替上一实施例中的两个滤波模块,可以节省一个滤波器,降低了器件成本。
92.可选地,在本实施例中,射频系统还包括射频收发器130,射频收发器130可用于完成数字信号到射频信号的转换和逆转换过程,包括数字信号的封装成帧、数模信号的转换、调制、上变频等等过程,最终生成相应的第一射频信号和第二射频信号,或者接收到信号后经过一系列逆过程送到处理器中处理,包括下变频、解调、模数信号的转换、解封装等过程。
93.图12为一实施例的通信控制方法的流程图之一,通信控制方法应用于通信设备,在本实施例中,通信设备包括如上各个实施例的射频系统,射频系统的相关描述参见上述实施例,在此不再赘述。参考图12,通信控制方法包括步骤121-步骤123。
94.步骤121,获取通信设备当前的场景信息。
95.其中,场景信息包括当前使用场景类型及当前的设备状态,用于表征通信设备的当前使用场景下的设备状态,使用场景类型可以理解为是应用的使用情况,例如听歌、看视频、打游戏等,设备状态可以理解为包括设备本身的姿态、被握持的状态。例如,场景信息可以竖屏刷短视频、横屏手握看视频/打游戏、口袋/背包听歌。可以理解,通信设备能够检测或者被检测到的所有状态均可以视为通信设备的状态。
96.步骤122,根据场景信息确定连接至第一天线端的目标天线,目标天线包括第一和第二天线中的一支。
97.其中,由于天线在通信设备中的位置是固定的,所以不同使用场景下的设备状态将影响天线的收发情况,根据场景信息进行目标天线的切换,能够使得射频系统在应用于
通信设备时,能够适应更多的场景,例如,在第一天线和第二天线中的一支所处的位置被握住或者接触到而影响天线的信号传输质量时,可以切换到另一支天线,从而在整体上提升传输的信号质量。
98.可选地,可以预先设置与第一天线对应的第一场景信息和与第二天线对应的第二场景信息,若当前场景信息对应为第一场景信息,则选择第一天线为目标天线;若当前场景信息对应为第二场景信息,则选择第二天线为目标天线。
99.步骤123,在目标天线为第一天线且第一天线端处于信号发射状态的情况下,控制第一切换电路选通衰减通道,以使第一天线和第二天线均以预设功率范围内的功率发射第一射频信号。
100.其中,第一天线端和第一天线之间的通路上设有可选通的衰减通道,衰减通道的相关描述参见上述实施例,在此不再赘述。在确定目标天线为第一天线且第一天线端处于信号发射状态的情况,控制第一切换电路选通连接至第一天线的通路,同时,控制第一切换电路选通衰减通道,可以使第一天线和第二天线均可以预设功率范围内的功率发射第一射频信号。
101.可选地,场景信息可以通过通信设备中的应用处理器进行获取,第一处理电路的处理状态可以由射频系统中的射频收发器进行获取,因此,上述步骤可以由应用处理器和射频收发器共同执行;也可以由射频收发器向应用处理器传输相关处理状态信息,由应用处理器执行上述步骤;也可以由应用处理器向射频收发器传输相关的场景信息,由射频收发器执行上述步骤。
102.本实施例提供的通信控制方法,通过获取通信设备当前的场景信息;根据场景信息确定连接至第一天线端的目标天线,目标天线包括第一天线和第二天线中的一支;在目标天线为第一天线且第一天线端处于信号发射状态的情况下,控制第一切换电路选通衰减通道,以使第一天线和第二天线均以预设功率范围内的功率发射第一射频信号。从而,可以通过目标天线的切换匹配当前的使用场景,提高信号传输质量;还可以改善第一天线和第二天线切换时的功率不平衡的问题,提高射频系统的通信性能。
103.图13为一实施例的通信控制方法的流程图之二,参考图13,通信控制方法包括步骤131-步骤134,其中步骤131-步骤133参见上一实施例中步骤121-步骤123的相关描述,在此不再赘述。
104.步骤134,在目标天线为第一天线且第一天线端处于信号接收状态的情况下,控制第一切换电路选通旁路通道,将来自第一天线的第一射频信号传输至第一处理电路。
105.当目标天线为第一天线且第一天线端处于信号接收状态的情况下,通过控制第一切换电路选通没有衰减功能的旁路通道,可以在最低插损的情况下将来自第一天线的第一射频信号传输至第一处理电路,避免牺牲射频系统的接收性能。其中,第一处理电路、旁路通道的相关描述可以参见射频系统中对应实施例中的相关描述,在此不做赘述。
106.图14为一实施例的通信控制方法的流程图之三,参考图14,通信控制方法还包括步骤141-步骤143。
107.步骤141,获取第一处理电路和第二处理电路的信号接收质量信息。
108.步骤142,根据信号接收质量信息确定目标处理电路,目标处理电路输入来自射频收发器的第一射频信号以实现对第一射频信号的发射处理,目标处理电路包括第一处理电
路和第二处理电路中的一路。
109.步骤143,在目标发射电路为第一处理电路且目标天线为第一天线的情况下,控制第二切换电路选通第二公共端与第三切换端之间的通路,及控制第一切换电路选通第一公共端与第一切换端之间的通路并选通衰减通道。
110.其中,信号接收质量信息、第二处理电路、第二切换电路、第二公共端、第三切换端、第四切换端及第二切换电路的选通过程的相关描述可以参见射频系统中对应实施例中的相关描述,在此不做赘述。
111.可选地,信号接收质量信息可以由射频收发器进行获取,并由射频收发器根据信号接收质量信息确定目标处理电路,因此,上述步骤可以由射频收发器执行;或者信号接收质量信息也可以由射频收发器获取后输出至应用处理器或其他处理器,上述步骤由应用处理器或其他处理器执行。
112.图15为一实施例的通信控制方法的流程图之四,参考图15,通信控制方法还包括步骤151-步骤152。
113.步骤151,获取通信设备的通信类型。
114.步骤152,根据通信类型控制第一天线端与目标处理电路连接,目标处理电路包括支持对第一射频信号发射处理的第一处理电路和支持对第二射频信号发射处理的第三处理电路中的一路;第二射频信号和第一射频信号为不同网络制式的射频信号。
115.其中,通信类型的获取可以参见上述实施例中的相关描述,在此不再赘述。通过第三处理电路和第一处理电路与第一天线端的切换连接控制,可以使射频系统支持不同网络制式的射频信号的发射处理。
116.图16为一实施例的通信控制方法的流程图之五,参考图16,通信控制方法还包括步骤161-步骤162。
117.步骤161,获取目标天线的目标收发状态。
118.步骤162,在目标收发状态为信号发射状态的情况下,控制第一天线端输出的射频信号的功率为目标天线的目标发射功率与功率补偿值之和,功率补偿值根据第二天线的插损值计算获得。
119.其中,目标发射功率是指目标天线在发射射频信号所需求的功率值,目标发射功率通常是根据射频系统在各种场景下的性能的相关参数计算获取的目标值,因此,当在目标收发状态为信号发射状态的情况下,控制第一天线端输出的射频信号的功率为目标天线的目标发射功率与功率补偿值之和,可以完全发挥出该目标天线的性能。可选地,上述步骤161-步骤162可以通过射频收发器执行,也可以通过其他处理器执行。
120.本技术实施例还提供了一种通信控制装置,应用于具有上所述的射频系统的通信设备,所述通信控制装置,用于获取所述通信设备当前的场景信息;根据所述场景信息确定连接至所述第一天线端的所述目标天线,所述目标天线包括第一天线和第二天线中的一支;在所述目标天线为所述第一天线且所述第一佳美口处于信号发射状态的情况下,控制所述第一切换电路选通所述衰减通道,以使所述第一天线和所述第二天线均以预设功率范围内的功率发射所述第一射频信号。
121.其中,通信控制装置用于执行上述实施例的通信控制方法的步骤,通信控制装置的相关描述可以参见通信控制方法中的相关描述,在此不再赘述。
122.本技术实施例还提供了一种通信设备,包括如上实施例中的射频系统,该通信设备可以通过目标天线的切换匹配当前的使用场景,提高信号传输质量;还可以改善第一天线和第二天线切换时的功率不平衡的问题,提高射频系统的通信性能。
123.图17为一实施例的通信设备的结构框图,参考图17,以上述通信设备为手机11为例进行说明,该手机11可包括存储器21(其任选地包括一个或多个计算机可读存储介质)、处理器22、外围设备接口23、上述实施例的射频系统24、输入/输出(i/o)子系统26。这些部件任选地通过一个或多个通信总线或信号线29进行通信。本领域技术人员可以理解,图17所示的手机11并不构成对手机的限定,可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。图17中所示的各种部件以硬件、软件、或硬件与软件两者的组合来实现,包括一个或多个信号处理和/或专用集成模块。
124.存储器21任选地包括高速随机存取存储器,并且还任选地包括非易失性存储器,诸如一个或多个磁盘存储设备、闪存存储器设备、或其他非易失性固态存储器设备。示例性的,存储于存储器21中的软件部件包括操作系统211、通信模块(或指令集)212、全球定位系统(gps)模块(或指令集)213等。
125.处理器22和其他控制模块(诸如射频系统24中的控制模块140)可以被配置为控制手机11的操作。该处理器22可以基于一个或多个微处理器、微控制器、数字信号处理器、基带处理器、功率管理模块、音频编解码器芯片、专用集成模块等。
126.处理器22可以被配置为实现控制手机11中的天线的使用的控制算法。处理器22还可以发出被配置为控制射频系统24中各开关的控制命令等。
127.i/o子系统26将手机11上的输入/输出外围设备诸如键区和其他输入控制设备耦接到外围设备接口23。i/o子系统26任选地包括触摸屏、按键、音调发生器、加速度计(运动传感器)、周围光传感器和其他传感器、发光二极管以及其他状态指示器、数据端口等。示例性的,用户可以通过经由i/o子系统26供给命令来控制手机11的操作,并且可以使用i/o子系统26的输出资源来从手机11接收状态信息和其他输出。例如,用户按压按钮261即可启动手机或者关闭手机。
128.本技术实施例还提供了一种通信设备,包括存储器及处理器,存储器中储存有计算机程序,计算机程序被处理器执行时,使得处理器执行如上的通信控制方法的步骤。
129.本技术实施例还提供了一种计算机可读存储介质。一个或多个包含计算机可执行指令的非易失性计算机可读存储介质,当计算机可执行指令被一个或多个处理器执行时,使得处理器执行通信控制方法的步骤。
130.本技术实施例还提供了一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行通信控制方法。
131.本技术所使用的对存储器、存储、数据库或其它介质的任何引用可包括非易失性和/或易失性存储器。合适的非易失性存储器可包括只读存储器(rom)、可编程rom(prom)、电可编程rom(eprom)、电可擦除可编程rom(eeprom)或闪存。易失性存储器可包括随机存取存储器(rm),它用作外部高速缓冲存储器。作为说明而非局限,rm以多种形式可得,诸如静态rm(srm)、动态rm(drm)、同步drm(sdrm)、双数据率sdrm(ddr sdrm)、增强型sdrm(esdrm)、同步链路(synchlink)drm(sldrm)、存储器总线(rmbus)直接rm(rdrm)、直接存储器总线动态rm(drdrm)、以及存储器总线动态rm(rdrm)。
132.以上实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
133.以上实施例仅表达了本技术的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对本技术专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本技术构思的前提下,还可以做出若干变形和改进,这些都属于本技术的保护范围。因此,本技术专利的保护范围应以所附权利要求为准。
再多了解一些

本文用于创业者技术爱好者查询,仅供学习研究,如用于商业用途,请联系技术所有人。

发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表

相关文献