一种残膜回收机防缠绕挑膜装置的制 一种秧草收获机用电力驱动行走机构

磁阻装置及其方法与流程

2022-11-13 14:21:49 来源:中国专利 TAG:

磁阻装置及其方法
1.相关申请的交叉引用
2.本技术要求2020年1月23日提交的美国非临时申请no.16/750,264的优先权,该申请的全部内容通过引用并入本文。
技术领域
3.本公开涉及磁阻装置以及用于制造和/或使用所公开的磁阻装置的方法等。
4.简述
5.在一个或多个实施例中,本公开涉及一种具有磁阻叠层或结构(例如,磁阻存储装置和/或磁阻传感器/换能器装置的一部分)的磁阻装置以及制造和操作所述磁阻装置的方法。在一个实施例中,本公开的示例性磁阻叠层(例如,用于磁性隧道结(mtj)磁阻装置中)包括一层或多层磁性或铁磁材料。
6.简而言之,本公开的用于存储装置(例如,磁阻随机存取存储器(mram))中的磁阻叠层包括设置在“固定”磁性区域和“自由”磁性区域之间的至少一个非磁性层(例如,至少一个介电层,或非磁性但导电的层),“固定”磁性区域和“自由”磁性区域每个都包括一层或多层铁磁材料。通过切换、编程和/或控制自由磁性区域的磁性层中的磁化矢量的方向,将信息存储在磁阻存储器堆栈中。自由磁性区域的磁化矢量的方向可以通过施加写入信号(例如,一个或多个电流脉冲)邻近或通过磁阻存储器叠层。相反,固定磁性区域的磁性层中的磁化矢量在写入信号的施加期间被磁性固定在预定方向。当与非磁性层相邻的自由磁性区域的磁化矢量与和非磁性层相邻的固定磁性区域的磁化矢量方向相同时,磁阻存储器叠层具有第一磁性状态。反之,当与非磁性层相邻的自由磁性区域的磁化向量与和非磁性层相邻的固定磁性区域的磁化向量的方向相反时,磁阻存储器叠层具有第二磁性状态。磁阻存储器叠层在第一和第二磁状态下具有不同的电阻。例如,第二磁性状态的阻值(例如,电阻值)可以相对高于第一磁性状态的阻值。响应于例如通过磁阻叠层施加的读取电流,基于叠层的阻值确定或读取磁阻存储器叠层的磁状态。
7.随着磁存储装置(例如,mram)朝着更小的工艺节点前进以增加密度,单个mtj比特尺寸必须横向缩小以适应更紧密的节距和比特之间的空间。然而,随着mtj比特的尺寸和/或纵横比减小,其形状磁各向异性也随之减小。随着形状各向异性的降低,mtj的能量势垒可能会降低。然而,随着能量势垒的降低,mtj比特的数据保持和/或热稳定性也可能降低。通常,可以通过改变自由区域的成分/材料/厚度来增加自由区域的垂直各向异性或磁矩来校正mtj比特的能量势垒的降低。然而,这样做也可能会提高mtj比特的临界电流(下面将更详细地描述)。具有高临界电流的mtj比特在写入和/或复位操作期间会经历更大量的周期性顺上和退化,并对mtj装置(即mram)的耐用性产生负面影响。
8.本公开涉及用于通过stt和/或sot切换方案写入或以其他方式切换磁阻存储器装置的磁状态的装置(例如,包括磁阻结构和/或叠层的装置)和方法。更具体地,以下说明描述了mtj几何结构的实施例,其单独或组合地集成了sot和/或stt切换机制,以提供改进的切换效率,使得能够在不使用不必要的高幅度的写电流的情况下进行高能量势垒mtj比特
的切换。然而,本公开的范围由所附权利要求限定,而不是由所得装置或方法的任何特征限定。
附图说明
9.本公开的实施例可以结合附图中所示的方面来实施。这些附图示出了本公开的不同方面,并且在适当的情况下,不同附图中指示类似结构、部件、材料和/或元件的附图标记被类似地标记。应当理解,除了具体示出的那些之外,这些结构、部件和/或元件的多种组合是可以预期的并且在本公开的范围内。
10.为了说明的简单和清楚,附图描绘了本文描述的各种实施例的一般结构和/或构造方式。为了便于说明,附图将所示磁阻叠层的不同层/区域描绘为具有均匀的厚度和具有直边的明确界定的边界。然而,本领域技术人员将认识到,在实际中,不同层通常具有不均匀的厚度。并且,在相邻层之间的界面处,这些层的材料可能会合金在一起,或者迁移到一种或另一种材料中,从而使它们的边界不明确。众所周知的特征(例如,互连等)和技术的描述和细节可能会被省略以避免混淆其他特征。图中的元素不一定按比例绘制。一些特征的尺寸可能相对于其他特征被夸大以提高对示例性实施例的理解。附图是为了帮助说明各个区域/层的相对定位和描述各个处理步骤而提供的简化。本领域技术人员将理解,这些区域不一定按比例绘制并且不应被视为代表不同区域/层之间的比例关系。此外,虽然某些区域/层和特征被图示为具有直的90度边缘,但实际上或实践中,这些区域/层可能是更“圆”的、弯曲的和/或逐渐倾斜的。
11.此外,本领域技术人员将理解,尽管在图中示出了具有明确界面的多个层,但在一些情况下,随着时间和/或暴露于高温,一些层的材料可能迁移到与其他层的材料中或与其他层的材料相互作用,在这些层之间呈现更分散的界面。需要说明的是,即使没有具体提及,结合一个实施例描述的方面也可以适用于其他实施例,并且可以与其他实施例一起使用。
12.此外,这里描述和说明了许多实施例。本公开既不限于任何单个方面或其实施例,也不限于这些方面和/或实施例的任何组合和/或排列。此外,本公开的每个方面和/或其实施例可以单独使用或与本公开的其他方面和/或其实施例中的一个或多个组合使用。为简洁起见,本文未单独讨论和/或说明某些排列和组合。值得注意的是,此处描述为“示例性”的实施例或实施方式不应被解释为例如比其他实施例或实施方式更优选或更有利的;相反,它旨在反映或表明所涉实施例是“示例性”实施例。此外,即使附图和本书面公开看起来以特定的构造顺序(例如,从底部到顶部)描述了所公开的磁阻装置的磁阻叠层,但是应当理解,所描绘的磁阻叠层可以具有不同的顺序(例如,相反的顺序(即从上到下))。
13.图1-16示出了根据本公开的一个或多个实施例的利用sot和/或stt切换机制的磁阻结构的区域的示意图;
14.图17a示出了根据本公开的一个或多个实施例的利用sot和/或stt切换机制的磁阻结构的区域的示意图;
15.图17b示出了根据本公开的一个或多个实施例的描绘图17a中所示的磁阻结构的横截面的俯视图;
16.图18示出了描绘根据本公开的一个或多个实施例的制造的一个阶段期间的磁阻
结构的侧视图;
17.图19图示了描绘根据本公开的一个或多个实施例的制造的一个阶段期间的磁阻结构的侧视图;
18.图20示出了描绘根据本公开的一个或多个实施例的制造的一个阶段期间的磁阻结构的侧视图;
19.图21示出了描绘根据本公开的一个或多个实施例的制造的一个阶段期间的磁阻结构的侧视图;
20.图22a示出了描绘根据本公开的一个或多个实施例的制造的一个阶段期间的磁阻结构的侧视图;
21.图22b示出了图22a中所示的磁阻结构的垂直侧视图;
22.图22c示出了图22a和22b中所示的磁阻结构的俯视图;
23.图23示出了描绘根据本公开的一个或多个实施例的制造的一个阶段期间的磁阻结构的侧视图;
24.图24a示出了描绘根据本公开的一个或多个实施例的制造的一个阶段期间的磁阻结构的侧视图;
25.图24b示出了图24a中所示的磁阻结构的垂直侧视图;
26.图24c示出了图24a和24b中所示的磁阻结构的俯视图;
27.图25-27是说明用于制造利用sot和/或stt切换机制的磁阻结构的一个或多个示例性过程的流程图;
28.图28是在磁阻存储器单元配置中电连接到选择装置(例如,存取晶体管)的示例性磁阻存储器叠层的示意图;
29.图29a和29b是包括分立存储器装置和嵌入式存储器装置的集成电路的示意框图,每个存储器装置包括mram(在一个实施例中,其代表根据本公开的某些实施例的方面的具有多个磁阻存储器叠层的一个或多个mram阵列)。
30.同样,这里描述和说明了许多实施例。本公开既不限于任何单个方面或其实施例,也不限于这些方面和/或实施例的任何组合和/或排列。本公开的每个方面和/或其实施例可以单独使用或与本公开的其他方面和/或其实施例中的一个或多个组合使用。为简洁起见,许多这些组合和排列在本文中没有单独讨论。
具体实施方式
31.应当注意,本文公开的所有数值(包括所有公开的厚度值、限值和范围)可以具有与公开数值的
±
10%的偏差(除非指定不同的偏差)。例如,被公开为“t”个单位厚的层的厚度可以从(t-0.1t)到(t 0.1t)个单位变化。此外,诸如“大约”、“基本上”、“近似”等所有相关术语都用于表示
±
10%的可能偏差(除非另有说明或指定了其他偏差)。此外,在权利要求中,例如,所描述的层/区域的厚度和原子组成的值、限值和/或范围也表示所述值、限值和/或范围
±
10%。
32.应当注意,这里所阐述的描述本质上仅仅是说明性的,并不旨在限制主题的实施例或者这些实施例的应用和使用。在此描述为示例性的任何实施方式不应被解释为优选于或有利于其他实施方式。而是,术语“示例性”是在示例或“说明性”的意义上使用的,而不是“理想的”。术语“包括”、“包含”、“具有”、“有”及其任何变体同义地用于表示或描述非排他性包含。因此,使用此类术语的装置或方法不仅包括那些元素或步骤,还可以包括未明确列出或此类装置和方法固有的其他元素和步骤。此外,本文中的术语“第一”、“第二”等并不表示任何顺序、数量或重要性,而是用于将一个元素与另一个元素区分开来。类似地,相对取向的术语,例如“顶”、“底”等参考所描述的图中所示的结构的取向来使用。此外,本文中的术语“a”和“an”并不表示数量的限制,而是表示存在至少一个所引述的项目。
33.还应注意,虽然示例性实施例是在mtj叠层/结构的背景下描述的,但本发明也可以结合巨磁阻(gmr)叠层/结构来实施,其中导体(例如,铜层)位于两个铁磁区域/层/材料之间。本公开的实施例可以与其他类型的磁阻叠层/结构结合使用,其中这种叠层/结构包括固定磁性区域。为简洁起见,将不会在gmr或其他磁阻叠层/结构(例如,各向异性磁阻(amr)装置)的上下文中再具体重复本公开中呈现的讨论和说明,但以下描述的讨论和附图应被解释为完全适用于gmr和其他磁阻叠层/结构(例如,amr型装置)。
34.在本公开中,术语“区域”通常可用于指代一层或多层。即,区域(如本文所用)可以包括单层材料(沉积物、膜、涂层等)或一个层叠在另一个之上的多层材料(即,多层结构)。此外,虽然在下面的描述中,所公开的磁阻装置中的不同区域和/或层可以通过特定名称来指代(例如,底部电极、顶部电极、固定磁性区域、自由磁性区域。),然而这仅是为了易于描述,而不意图作为功能描述或层的相对位置/方向。此外,虽然下面的描述和附图看起来描绘了层相对于彼此的特定取向,但是本领域普通技术人员将理解,这样的描述和描绘仅仅是示例性的。例如,虽然磁阻叠层的自由区域可以被描述为在自旋霍尔(sh)材料“上方”,但在某些方面,整个描绘的磁阻结构可以被翻转,使得自由区域在sh材料“下方”。
35.在一个示例性实施例中,本公开的磁阻装置的磁阻结构可以实现为stt和/或sot mram元件。在这样的实施例中,磁阻结构可以包括设置(例如,夹在)两个铁磁区域之间的中间层,以形成mtj装置或mtj型装置。在设置在中间层任一侧的两个铁磁区中,一个铁磁区可以是固定(或钉扎)磁性区域,而另一个铁磁区可以是自由磁性区域。术语“自由”旨在指具有这样的磁矩的铁磁区域,该磁矩可以响应于施加的用于切换磁矩矢量的磁场或自旋极化电流而显著偏移或移动。相关地,词语“固定”或“钉扎”用于指具有这样的磁矩矢量的铁磁区域,该磁矩矢量基本上不响应于这种施加的磁场或自旋极化电流而移动。如本领域所公知的,所描述的磁阻结构的电阻可以基于与非磁性层(例如,隧穿势垒)相邻的自由区域的磁化方向(例如,磁矩的方向)与和非磁性层相邻的固定区域的磁化方向(例如,磁矩的方向)平行布置还是反平行布置而改变。通常,如果这两个区域具有相同的磁化布置,则产生的相对较低的电阻被认为是数字“0”,而如果布置是反平行的,则产生的相对较高的电阻被认为是数字“1”。存储装置(例如,mram)可以包括多个磁阻结构/叠层,其可以被称为存储单元或元件,布置成列和行的阵列。通过测量通过每个单元的电流,可以读取每个单元的电阻,从而可以读取存储在存储阵列中的数据。
36.在一些实施例中,自由磁性区域和固定磁性区域可以各自包括多个磁性或铁磁性材料的层,例如,包括铁磁性元素镍(ni)、铁(fe)和钴(co)中的一种或多种的材料,包括例如具有元素钯(pd)、铂(pt)、镁(mg)、锰(mn)和铬(cr)、硼(b))以及一个或多个合成反铁磁结构(saf)或合成铁磁结构(syf)中的一种或多种的合金或工程材料,其中磁性材料层中的一层或多层还可以包括一层或多层非磁性材料层(例如,钌(ru)、铜(cu)、铝(al)、钽(ta)、
钛(ti)、铌(nb)、钒(v)、锆(zr)、铱(ir)及其一种或多种合金,以及在某些实施例中,钨(w)和钼(mo)。中间层(例如,介电层)可以是例如一层或多层氧化铝和/或氧化镁。
37.在利用sot切换机制的磁阻装置中,可以通过驱动电流脉冲通过邻近(例如,接触或接近)自由区域的sh材料来实现或辅助磁阻叠层的自由区域的磁化的切换。sh材料的示例包括但不限于:铂(pt),β-钨(β-w),钽(ta),钯(pd),铪(hf),金(au),包含金的合金(例如,aupt、aucu、auw),包含铋(bi)和硒(se)的合金(例如,bi2se3或(bise)2te3),包含铜(cu)以及铂(pt)、铋(bi)、铱(ir)或铅(pb)中的一种或多种的合金(例如,cupt合金、cubi合金、cuir合金、cupb合金),包含银(ag)和铋(bi)的合金(例如,agbi合金),包含锰(mn)以及铂(pt)、铱(ir)、钯(pd)或铁(fe)中的一种或多种的合金(例如,ptmn合金、irmn合金、pdmn合金、femn合金)或其组合。
38.需要通过自由区域以改变其磁性状态的平均电流可以称为临界电流(critical current)(ic)。临界电流表示在磁阻存储单元中“写入”数据所需的电流。降低临界电流是合乎需要的,以使得可以为每个存储单元使用更小的存取晶体管,并且可以生产更高密度、更低成本的存储器,等等。降低的临界电流还可以导致磁阻存储器单元的更长寿命和/或耐用性。
39.本文所述的实施例可利用可称为自旋电流的东西来切换或帮助切换mtj或类似mtj的装置中的自由区域的磁性状态。通过与自由区域相邻(和/或接触)的sh材料的电流导致作用在自由区域上的自旋力矩,这是由于源自sh材料中的电子的自旋相关散射的自旋电流到自由区域中的注入。通过sh材料的电流的极性和sh材料本身的极性可以确定施加自旋电流的方向。自旋电流以与自由区域和sh材料相交的边界(或界面)垂直并与电流流动的方向正交的方向注入自由区域。由自旋电流施加到自由区域的自旋扭矩以类似于在传统stt磁性隧道结中流过mtj的自旋极化隧穿电流的方式影响自由区域的磁性状态。由于stt磁性隧道结的功能作用是本领域公知的,在此不再赘述。
40.与传统stt mtj装置中的写入电流一样,在使用sot切换机制的装置中,通过自旋电流施加的扭矩的方向取决于sh材料中的电流方向。换言之,sh材料内邻近自由区域的电流方向决定了施加到自由区域的扭矩的方向。因此,自由区域能够基于由在邻近的sh材料中在一个方向或另一个方向上流动的电流所施加的扭矩在两个稳定状态之间切换。在一些实施例中,自由区域能够基于由沿任一方向流过mtj的stt电流施加的扭矩在两个稳定的磁性状态之间切换。自由区域的磁性状态也可以通过由施加电流通过mtj比特的stt电流导致的扭矩和通过施加电流通过一个或多个sh材料而从一个或多个sh材料注入的自旋电流(spin current)产生的自旋扭矩来切换。
41.在一些实施例中,由自旋电流(即,sot电流)单独施加的扭矩用于将自由区域切换到特定的磁性状态,而在其他实施例中,自旋电流起到“辅助”作用,以降低切换自由区域的磁性状态所需的stt写入电流的幅度,其中所述stt写入电流流经整个mtj叠层以在自由区域和固定区域之间产生自旋极化隧穿电流。mtj叠层存储的数据的读取与在传统stt mtj装置中一样地进行。例如,将幅度小于mtj叠层的临界电流的读电流施加到mtj叠层,以感测mtj叠层的电阻。如本领域普通技术人员将认识到的,有许多技术可用于检测或感测mtj叠层的电阻。在一些实施例中,可以将基于读取电流感测的电阻与参考电阻进行比较以确定自由区域的状态。在一些实施例中,执行自参考读取操作,其中感测通过mtj的电阻,然后写
入(或复位)mtj,使得自由区域处于已知状态,然后再次感测电阻并将其与初始感测的电阻进行比较。然后可以基于电阻感测是否已经基于写入或复位操作而改变来确定自由区域的初始状态。在又一些实施例中,可以执行中点参考读取操作。
42.为简洁起见,与半导体工艺相关的常规技术在此可能不详细描述。可以使用已知的光刻工艺来制造示例性实施例。集成电路、微电子装置、微电子机械装置、微流体装置和光子装置的制造涉及以某种方式相互作用的若干材料层或区域(例如,包括一层或多层)的创建。这些区域中的一个或多个可以被图案化,使得层的各种区域具有不同的电学或其他特性,它们可以在该区域内互连或与其他区域互连以形成电气部件和电路。这些区域可以通过选择性地引入或去除各种材料来创建。定义此类区域的图案通常由光刻工艺创建。例如,将光致抗蚀剂层施加到覆盖晶片衬底的层上。光掩模(包含透明和不透明区域)用于通过辐射形式(例如紫外光、电子或x射线)选择性地曝光光致抗蚀剂。暴露于辐射或未暴露于辐射的光致抗蚀剂通过显影剂的应用被去除。然后可以使用/施加蚀刻,由此将未被剩余抗蚀剂保护的层(或材料)被图案化。或者,可以使用添加性工艺,其中使用光致抗蚀剂作为模板来构建结构。
43.如上所述,在一个方面,所描述的实施例涉及制造磁阻叠层的方法,所述磁阻叠层在磁性材料叠层的任一侧上具有一个或多个导电电极、通孔或导体。如下文进一步详细描述的,磁性材料叠层可以包括许多不同的材料区域,其中这些区域中的一些包括磁性材料,而其他不包括。在一个实施例中,所述制造方法包括顺序地沉积、生长、溅射、蒸镀和/或提供(在本文中可以统称为“沉积”)在进一步处理(例如,蚀刻)之后形成磁阻叠层的区域。
44.在一些实施例中,所公开的磁阻叠层可以形成在顶部电极/通孔/线和底部电极/通孔/线之间,并且其通过允许与磁阻装置的电路和其他元件的连接(例如,电连接)而允许访问叠层。电极/通孔/线之间为多个区域,包括至少一个固定磁性区域(以下可称为固定区域)和至少一个自由磁性区域(以下可称为自由区域),以及一个或多个中间层(例如,介电层),其在固定区域和自由区域之间形成隧道势垒。固定区域和自由区域中的每一个可以包括,除其他外,多个铁磁层。在一些实施例中,固定区域(例如,下面讨论的固定区域160)可以包括合成反铁磁体(saf)。在一些实施例中,可以去除顶部电极(和/或)底部电极,并且可以在叠层的顶部上形成位线和/或sh材料。此外,每个磁阻叠层可以设置成邻近sh材料。sh材料可以被配置为在写入和复位操作期间在自由区域上承载电流和赋予自旋电流。在一个或多个实施例中,磁阻叠层的一个或多个电极可以包括sh材料。在其他实施例中,磁阻叠层可以形成在顶部电极和底部电极之间并且邻近sh材料,sh材料独立地连接到电流源。在这样的实施例中,磁阻结构或装置可以被称为三端磁阻装置。
45.根据一个或多个实施例,磁阻结构可以包括参考层、过渡层和/或帽盖区域。例如,过渡层可以促进、提升或以其他方式辅助在中间层(例如,介电层)上方形成参考层,而不对参考层或中间层的性质造成有害影响。过渡层可以包括非铁磁性过渡金属,例如钽(ta)、钛(ti)、钨(w)、钼(mo)或它们的组合和合金。
46.参考层可以包括一层或多层材料,所述一层或多层材料在磁阻结构100的制造过程中促进和改善一个或多个上覆区域(例如,包括saf的固定区域)的生长。参考层可以包括,例如,钴(co)、铁(fe)和硼(b),例如钴-铁-硼合金(cofeb)、钴-铁-硼-钽合金(cofebta)、钴-铁-钽合金(cofeta)或其组合。在一些实施例中,参考层可以包括一种或多
种合金,该合金包括铁(fe)、钴(co)或镍(ni),以及其他相对电负性的元素(例如,电负性大于铁(fe)的电负性的元素))。例如,参考层可以包括一种或多种合金,例如,具有式xy的合金,其中x选自包括以下的列表:钴(co)、铁(fe)、镍(ni)、钴-铁(cofe)、铁-镍(feni)和钴-镍(coni),y选自包括以下的列表:硅(si)、铜(cu)、铼(re)、锡(sn)、硼(b)、钼(mo)、钌(ru)、钯(pd)、锇(os)、铱(ir)、铑(rh)、铂(pt)、钨(w)和碳(c)。合金中包含一种或多种其电负性大于铁(fe)的电负性的元素(例如硅(si)、铜(cu)、铼(re)、锡(sn)、硼(b)、钼(mo)、钌(ru)、钯(pd)、锇(os)、铱(ir)、铑(rh)、铂(pt)、钨(w)、碳(c))。
47.现在参考图1-16,示出了各种磁阻结构(例如,自由区域、中间层、固定区域、一个或多个sh材料和/或一个或多个其他层或区域的相对位置和取向)。图1-16中的简化图示不一定显示示例性磁阻结构的所有区域和层,而是旨在说明若干示例性区域的相对位置和定位。此外,尽管图1-16中描绘的区域是矩形的,然而这只是为了简单明了。本文所述的磁阻结构可以具有矩形、梯形、金字塔形、圆柱形或其他形状。
48.仍然参考图1-16,磁阻结构100可以包括在sh材料110的线、条或区域与顶部电极180之间的一个或多个区域或层。例如,如图1所示,自由区域120可以设置在sh材料110上并与之接触。中间层130可以设置在自由区域120上并与自由区域120接触。固定区域160可以设置在中间层130的远离自由区域120的另一侧。在一些实施例中,固定区域160可以设置在中间层130上并且与中间层130接触。磁阻结构100可以包括一个或多个附加区域或层,例如帽盖区域170。帽盖区域170可以设置在固定区域160上方并与固定区域160接触。顶部电极180可以设置在固定区域160上方,例如设置在帽盖区域170上方并与帽盖区域170接触。
49.再次参考图1-16,对于读取操作,电流可以从sh材料110通过磁阻结构100到达顶部电极180。对于写入和/或复位操作,电流可以沿着sh材料110通过,将自旋电流传递到自由区域120。另外,写入电流也可以从sh材料110通过磁阻结构100到达顶部电极180,以帮助切换自由区域120的磁性状态。
50.根据一个或多个实施例,磁阻结构100可以包括与帽盖区域170和/或过渡层150相邻的一个或多个插入层。一个或多个插入层中的每一个可以包括一个或多个反铁磁(afm)材料层,例如铂-锰(ptmn)合金、铱-锰(irmn)合金、铁-锰(femn)合金、铬(cr)和/或它们的组合。在磁阻结构100包括多于一个的插入层的实施例中,一个插入层的成分可以与另一插入层的成分相同,和/或一个插入层的成分可以不同于至少一个其他插入层.
51.参考图2-5,磁阻结构100可以包括设置在参考层140和顶部电极180之间的插入层201。例如,参照图2,磁阻结构100可以包括设置在帽盖区域170和顶部电极180之间的插入层201。在一些实施例中,例如如图3所示的实施例中,磁阻结构100可以包括设置在固定区域160和帽盖区域170之间的插入层201。参考图4,磁阻结构100可以包括设置在过渡层150和固定区域160之间的插入层201。另外地或替代地,磁阻结构100可以包括设置在参考层140和过渡层150之间的插入层201,如图5所示。
52.插入层201可以具有小于或等于约2纳米(nm)的厚度,例如小于或等于约1.5nm、小于或等于约1nm、约1nm至约2nm、约1nm至约1.5nm、约0.5nm至约1.5nm、约0.5nm至约1.0nm、约0.7nm、约0.5nm或不会有害地影响电流从sh材料110至顶部电极180的双向传输的任何其他合适的厚度。
53.参考图6-11,磁阻结构100可以包括第一插入层201和第二插入层202。如上所述,
术语“第一”、“第二”等在这里不表示任何顺序、数量或重要性,而是用于区分一个元素和另一个元素。第一插入层201可以具有与第二插入层202相同的成分,或者插入层201、202可以具有不同的成分。如上所述,第二插入层202可以具有与第一插入层201相似的厚度。在一些实施例中,第二插入层202的厚度可以小于第一插入层201的厚度。在其他实施例中,第二插入层202的厚度可以大于第一插入层201的厚度。
54.例如,参考图6,磁阻结构100可以包括设置在固定区域160和帽盖区域170之间的第一插入层201和设置在帽盖区域170和顶部电极180之间的第二插入层202。在一些实施例中,例如图7所示的实施例中,磁阻结构100可以包括设置在过渡层150和固定区域160之间的第一插入层201,以及设置在帽盖区域170和顶部电极180之间的第二插入层202。参考图8,磁阻结构100可以包括设置在参考层140和过渡层150之间的第一插入层201,以及设置在帽盖区域170和顶部电极180之间的第二插入层202。在一些实施例中,磁阻结构100可以包括:第一插入层201,设置在过渡层150和固定区域160之间;以及第二插入层202,设置在固定区域160和帽盖区域170之间,如图9所示。参考图10,磁阻结构100可以包括设置在参考层140和过渡层150之间的第一插入层201,以及设置在固定区域160和帽盖区域170之间的第二插入层202。另外地或替代地,磁阻结构100可以包括:第一插入层201,设置在参考层140和过渡层150之间;以及第二插入层202,设置在过渡层150和固定区域160之间,如图11所示。
55.参考图12-15,磁阻结构100可以包括第一插入层201、第二插入层202和第三插入层203。第一插入层201可以具有与第二插入层202和第三插入层203相同的成分,或者一个或多个插入层201、202、203可以具有与至少一个其他插入层201、202、203不同的组成。第三插入层203可以具有与第一插入层201或第二插入层202相似的厚度,如上所述。在一些实施例中,第三插入层203的厚度可以小于第一插入层201和/或第二插入层202的厚度。另外地或替代地,第三插入层203的厚度可以大于第一插入层201和/或第二插入层202的厚度。
56.例如,参考图12,磁阻结构100可以包括设置在过渡层150和固定区域160之间的第一插入层201、设置在固定区域160和帽盖区域170之间的第二插入层202、以及设置在帽盖区域170和顶部电极180之间的第三插入层203。在另一个示例中,如图13所示,磁阻结构100可以包括设置在参考层140和过渡层150之间的第一插入层201、设置在过渡层150和固定区域160之间的第二插入层202、以及设置在帽盖区域170和顶部电极180之间的第三插入层203。参照图14,在一些实施例中,磁阻结构100可以包括设置在参考层140和过渡层150之间的第一插入层201、设置在固定区域160和帽盖区域170之间的第二插入层202、以及设置在帽盖区域170和顶部电极180之间的第三插入层203。在一些示例中,磁阻结构100可以包括设置在参考层140和过渡层150之间的第一插入层201、设置在过渡层150和固定区域160之间的第二插入层202、以及设置在固定区域160和帽盖区域170之间的第三插入层203,如图15所示。
57.参考图16,磁阻结构100可以包括四个插入层(例如,第一插入层201、第二插入层202、第三插入层203和第四插入层204)。在一些实施例中,第四插入层204可以具有与第一插入层201、第二插入层202和/或第三插入层203相同的成分。另外地或替代地,一个或多个插入层201、202、203、204可以具有与至少一个其他插入层201、202、203、204不同的组成。如上所述,第四插入层204可以具有与第一插入层201、第二插入层202或第三插入层203相似
的厚度。在一些实施例中,第四插入层204的厚度可以小于第一插入层201、第二插入层202和/或第三插入层203的厚度。另外地或替代地,第四插入层204的厚度可以大于第一插入层201、第二插入层202和/或第三插入层203的厚度。
58.仍然参考图16,磁阻结构100可以包括设置在参考层140和过渡层150之间的第一插入层201、设置在过渡层150和固定区域160之间的第二插入层202、设置在固定区域160和帽盖区域170之间的第三插入层203、以及设置在帽盖区域170和顶部电极180之间的第四插入层204。
59.不受理论限制地,包含一个或多个插入层201、202、203、204可以感生局部磁场。例如,在形成磁阻结构100之后,可以执行一个或多个后续处理步骤(例如,退火),在一个或多个插入层201、202、203、204中感生出磁矩,从而产生局部磁场。所感生的局部磁场可以促进、改善和/或维持自旋电流从sh材料110到自由区域120的转移。
60.例如,参考图17a,磁阻结构100可以包括插入层201。插入层201的磁矩(由箭头301表示)可以感生局部杂散磁场304。局部杂散磁场304可以具有大约10奥斯特的幅度(oe)至大约600oe。当电流(由箭头302表示)通过sh材料110时,自旋电流(由箭头303表示)从sh材料110传递到自由区域120。当一个或多个插入层(例如,插入层201)的磁矩如果与通过sh材料110的电流302平行或反平行时,感生的局部杂散磁场304可以改善自旋电流303从sh材料110到自由区域120的传递。
61.图17b示出了沿线17b-17b截取的图17a所示的磁阻结构100的横截面。如图17b所示,一个或多个插入层(例如,插入层201)可以是卵形的、伸长的、椭圆形的或其他非矩形形状。磁阻结构100的一个或多个其他层和/或区域(例如,自由区域120、中间层130、参考层140、过渡层150、固定区域160、帽盖区域170)可以是卵形的、伸长的、椭圆形的或其他的非长方形形状。包括具有非矩形形状的一个或多个层和/或区域的磁阻结构100可以具有形状各向异性,其有助于磁阻结构100的一个或多个磁性或反铁磁性层的磁矩。
62.在形成磁阻结构100的一个或多个层和/或区域之后,可以进行进一步的处理步骤以确保磁阻装置结构具有期望的磁特性。例如,进一步的处理步骤可以包括固定一个或多个插入层201、202、203、204和/或一个或多个磁性层(例如,固定区域160的磁性层)的磁性的退火步骤。在退火期间,可以施加外部磁场。由一个或多个插入层201、202、203、204感生的局部杂散磁场304的幅度和/或方向可以至少部分地取决于在退火期间施加的磁场的角度。在退火期间,可以在x-y平面中以大约35
°
到大约55
°
(例如,大约40
°
到50
°
,或大约45
°
)入射的方向向sh材料110的线施加磁场(例如,电流行进通过sh材料110的方向)。可以使用其他合适的入射角,使得所得插入层201、202、203、204具有与电流流过sh材料110的方向平行或反平行的磁矩。
63.如前所述,一个或多个装置或系统可以包括一系列磁阻结构100,沿着线性sh材料110定位。每个磁阻结构100的在连接的sh材料110上方的层和区域可以称为叠层200。例如,参考图18所示的磁阻结构100,叠层200包括自由区域120、中间层130、参考层140、过渡层150、固定区域160、帽盖区域170和顶部电极180。在其他实施例中,叠层200可以包括一个或多个插入层201,202、203、204。sh材料110的区段可以连接到排列成线或其他阵列的一系列叠层200。
64.在上述方法中,在退火期间需要外部磁场以破坏磁阻结构100的对称性,并在叠层
200的一个或多个层和/或区域中感生出磁矩。另外地或替代地,可以以某种方式蚀刻磁阻结构100的一个或多个层和/或区域以产生不对称磁阻结构100,将期望的磁性赋予叠层200的一个或多个层和/或区域。在图18-24c中,所示的叠层200类似于图1所示的叠层100。然而,这只是为了便于说明,实施例方法可以与本文描述的任何叠层200或磁阻结构100一起使用。
65.参考图18-24c,类似于图17a和17b,每个磁阻结构100被绘制成使得sh材料110位于x-y平面中并且每个叠层200的每个层和/或区域位于沿z轴移位的大致平行的x-y平面中。图18-24c中所示的每个区域、层和结构的这种取向,仅是为了描述清楚。还构思了层和/或区域的其他配置、放置和取向。
66.现在将参考图18-24c讨论制造具有sot切换的磁阻叠层(例如,包括上述讨论的几何特征之一的磁阻叠层)的示例性方法。如前所述,本文可能不具体描述与半导体加工相关的常用的常规技术。相反,这里的描述旨在突出制造这里描述的磁阻结构的示例方法的一些方面。
67.图18示出了根据本公开的一个或多个实施例的在制造过程中的磁阻结构。例如,在至少一个实施例中,图18示出了在已经形成sh材料110、自由区域120、中间层130、参考层140、过渡层150、固定区域160、帽盖区域170和顶部电极180之后的磁阻结构。如上所述,每个层或区域可以位于x-y平面中,沿z轴与每个相邻的层或区域移位。
68.在一些实施例中,在已经形成sh材料110、自由区域120、中间层130、参考层140、过渡层150、固定区域160、帽盖区域170和顶部电极180之后,可以去除(例如,蚀刻)顶部电极180、帽盖区域170、固定区域160、过渡层150、参考层140和/或中间层130的至少一部分。例如,参考图图19,在顶部电极180、帽盖区域170、固定区域160、过渡层150、参考层140和/或中间层130的至少一部分被去除之后,参考层140、过渡层150固定区域160、帽盖区域170和顶部电极180的剩余部分的直径(例如,沿x和/或y轴的宽度)可以具有小于自由区域120的直径。在一些实施例中,参考层140的部分被去除直到中间层130的边缘。在其他实施例中,参考层140的这些部分可以被“过蚀刻”。换言之,中间层130的一部分可以与顶部电极180、帽盖区域170、固定区域160、过渡层150、参考层140和/或中间层130的所述部分一起去除。
69.在一些实施例中,在顶部电极180、帽盖区域170、固定区域160、过渡层150、参考层140和/或中间层130的至少一部分被去除之后,一个或多个氧化物(例如,辅助氧化物、二氧化硅等)或氮化物(例如si
x
ny)可以通过例如物理气相沉积(pvd)、化学气相沉积(cvd)、其他薄膜制造工艺和/或本领域已知的其他技术施加到叠层(例如,蚀刻的磁阻叠层)。图20示出了根据一个或多个实施例的已经涂覆有辅助氧化物的蚀刻的磁阻结构(即,氧化物涂覆的磁阻叠层)。
70.仍然参考图20,在一个或多个实施例中,在中间层130、参考层140、过渡层150、固定区域160、帽盖区域170和/或顶部电极180上方形成氧化物区域190。如在此所用的,氧化物区域190可以表示包含“氧化物”(例如,辅助氧化物、二氧化硅等)和/或氮化物(例如,si
x
ny)的区域。在一些实施例中,氧化物涂覆的磁阻叠层可以包括一个或多个氧化物区域190,该氧化物区域190设置在中间层130上方并与中间层130接触。氧化物区域190可以覆盖衬底顶部电极180和/或中间层130的整个顶部表面。在其他实施例中,仅顶表面中间层130的部分被氧化物区域190覆盖。在一些实施例中,可以施加氧化物以使得氧化物区域190接
触或完全覆盖参考层140、过渡层150、固定区域160、帽盖区域170和/或顶部电极180的厚度。氧化物区域190可以围绕磁阻叠层共形,并且覆盖磁阻叠层的一个或多个区域(例如,参考层140、过渡层150、固定区域160、帽盖区域170和/或顶部电极180)的竖直侧壁。
71.在一些实施例中,在形成氧化物区域190之后,可以在覆有氧化物的磁阻叠层上执行一个或多个蚀刻工艺(例如,蚀刻、研磨和/或以其他方式抛光一个或多个层的工艺)。例如,参考图21,可以从氧化物涂覆的磁阻结构中去除氧化物区域190、中间层130和/或自由区域120的至少一部分。在一些实施例中,可以去除自由区域120的至少一部分,使得自由区域120的一个或多个侧壁具有锥形边缘(即,自由区域120包括渐缩的侧壁)。例如,自由区域120的底面(例如,接触sh材料110的表面)的直径(例如,在x或y方向上的宽度)可以大于自由区域120的顶面(例如,接触中间层130的表面)的直径。
72.参考图22a-22c,在形成包括锥形侧壁的自由区域120之后,可以去除中间层130、自由区域120和/或sh材料110的至少一部分,以形成关于sh材料110的纵轴不对称的叠层200。例如,叠层200顶部附近的横截面(例如,包括顶部电极180和氧化物区域190的横截面)可以具有比叠层200的底部附近的横截面(例如,包括自由区域120的横截面)小的直径的横截面。在一些实施例中,自由区域120可以被“过蚀刻”。换句话说,自由区域120的蚀刻部分下方的sh材料110的一部分也可以通过蚀刻去除。
73.参考图22a,在去除中间层130、自由区域120和/或sh材料110的至少一部分之后,叠层200的在z-y平面中的横截面关于叠层200的纵轴对称。如前所述,当电流302通过sh材料110时,自旋电流303从sh材料110注入自由区域120。如图22b所示,在去除中间层130、自由区域120和/或sh材料110的至少一部分之后,叠层200的在z-y平面中的横截面关于叠层200的纵轴是不对称的。如图22b所示,朝向自由区域120的被移除部分(例如,朝向不再是锥形的侧壁),自由区域120的磁矩305组合以在自由区域120中形成总磁矩。该不对称磁矩可以有助于将期望的磁特性赋予到叠层200,和/或促进、提升、维持或以其他方式帮助自旋电流303从sh材料110转移到自由区域120。尽管自由区域120的右壁在图22b中被示为垂直的,但这仅是一个示例。在其他实施例中,只要自由区域120的复合磁矩305是不对称的,自由区域120仍可以具有锥形侧壁。
74.图22a-22c中所示的叠层的形状例如可以通过在包括具有锥形侧壁的自由区域120的磁阻叠层200上执行选择性角度蚀刻来形成。如本领域技术人员将认识到的,典型地,被蚀刻的衬底在蚀刻(例如,通过离子束蚀刻(ibe))期间旋转。在一些实施例中,当执行有角度的蚀刻时,磁阻结构不旋转,从而在叠层200的一侧上相比叠层200的相对侧去除更多的材料。
75.再次参考图20所示的涂有氧化物的磁阻叠层,可以在涂覆有氧化物的磁阻叠层上执行选择性角度蚀刻以去除氧化物区域190的至少一部分。在一些实施例中,在执行角度蚀刻时不旋转磁阻结构,从而在叠层200的一侧相比叠层200的相反的另一侧去除更多材料。在从涂覆有氧化物的磁阻叠层去除氧化物区域190的一部分之后,可以形成不对称磁阻叠层200,例如图23中所示的叠层200。
76.仍然参考图23,在氧化物区域190的至少一部分被去除之后,磁阻叠层200可以包括一个或多个氧化物区域190,其设置在中间层130上方并与中间层130接触。氧化物区域190可以覆盖中间层130和/或衬底顶部电极180的整个顶部表面。在其他实施例中,仅顶表
面中间层130的一部分被氧化物区域190覆盖。在一些实施例中,氧化物区域190接触或完全覆盖参考层140、过渡层150、固定区域160、帽盖区域170和/或顶部电极180的厚度。即使在氧化物区域190的至少一部分被去除之后,氧化物区域190也可以在磁阻叠层周围保形,并覆盖磁阻叠层的一个或多个区域(例如,参考层140、过渡层150、固定区域160、帽盖区域170和/或顶部电极180)的垂直侧壁。
77.在对涂覆有氧化物的磁阻叠层执行选择性角度蚀刻(导致例如图23中所示的不对称结构)之后,sh材料110、自由区域120、中间层130、参考层140、过渡层150、固定区域160、帽盖区域170、顶部电极180和/或帽盖区域190的至少一部分可以被去除,从而产生不对称的磁阻结构,例如图24a-24c中所示的结构。在一些实施例中,可以去除自由区域120的至少一部分,使得自由区域120的一个或多个侧壁具有锥形边缘(即,自由区域120包括锥形侧壁)。例如,自由区域120的底面(例如,接触sh材料110的表面)的直径(例如,在x或y方向上的宽度)可以大于自由区域120的顶面(例如,接触中间层130的表面)的直径。
78.参考图24a-24c,在形成包括锥形侧壁的自由区域120之后,叠层200可以是相对于sh材料110的纵轴不对称的。例如,叠层200顶部附近的横截面(例如,包括顶部电极180和氧化物区域190的横截面)可以具有比靠近叠层200底部的横截面(例如,包括自由区域120的横截面)小的直径。在一些实施例中,自由区域120可以被“过蚀刻”。换句话说,自由区域120的蚀刻部分下方的sh材料110的一部分也可以被通过蚀刻去除。
79.参考图24a所示,在形成具有锥形侧壁的自由区域120之后,叠层200的在z-y平面中的横截面关于叠层200的纵轴对称。如前所述,当电流302通过sh材料110时,自旋电流303从sh材料110注入自由区域120。参考图24b,在形成具有锥形侧壁的自由区域120之后,叠层200的在z-y平面中的横截面相对于叠层200的纵轴是不对称的。如图24b所示,自由区域120的磁矩305组合以在自由区域120中朝向自由区域120的被移除部分(例如朝向不再渐缩的侧壁)形成总磁矩。如上所述,该不对称磁矩可以有助于将期望的磁特性赋予到叠层200,和/或促进、提升、保持或以其他方式帮助自旋电流303从sh材料110转移到自由区域120。虽然自由区域120的右壁被示为相对于垂直轴成角度并且不平行于中间层130的右壁,但这仅仅是一个示例。在其他实施例中,自由区域120可以具有一个或多个垂直侧壁,只要自由区域120的复合磁矩305是不对称的即可。
80.图25是根据本公开的一个或多个实施例的制造利用stt和/或sot切换的磁阻结构100的方法400的流程图。方法400可以包括形成sh材料110段(步骤401)。方法400可以进一步包括形成包括一个或多个插入层201、202、203、204的磁阻叠层200,其中每个插入层201、202、203、204包括反铁磁材料(步骤402)。在一些实施例中,方法400可以包括向磁阻叠层200施加磁场(步骤403)。方法400还可以包括对磁阻叠层200进行退火,其中,在退火之后,一个或多个插入层201、202、203、204具有与sh材料段平行或反平行的磁矩(步骤404)。
81.图26是根据本公开的一个或多个实施例的制造利用stt和/或sot切换的磁阻结构100的方法500的流程图。方法500可以包括在sh材料110的段上形成包括介电层(例如,中间层130)和自由区域120的磁阻叠层200(步骤501)。方法500还可以包括去除磁阻叠层200的一个或多个层的至少一部分,使得暴露介电层(例如,中间层130)的至少一部分,并形成蚀刻的磁阻叠层(步骤502)。在一些实施例中,方法500可以包括在蚀刻的磁阻叠层上沉积辅助氧化物,形成氧化物区域190(步骤503)。方法500可以进一步包括去除辅助氧化物(例如,
从氧化物区域190)、介电层和自由区域120中的每一个的至少一部分,形成包括锥形侧壁的自由区域120(步骤504)。在一些示例中,方法500还可以包括使用选择性角度蚀刻来去除包括锥形侧壁的自由区域120的至少一部分(步骤505)。
82.图27是根据本公开的一个或多个实施例的制造利用stt和/或sot切换的磁阻结构100的方法600的流程图。方法600可以包括在sh材料110的段上形成包括介电层(例如,中间层130)和自由区域120的磁阻叠层200(步骤601)。方法600可以进一步包括去除磁阻叠层200的一个或多个层的至少一部分,使得暴露介电层(例如,中间层130)的至少一部分,并形成蚀刻的磁阻叠层(步骤602)。在一些实施例中,方法600可以包括在蚀刻的磁阻叠层上沉积辅助氧化物,形成氧化物区域190(步骤603)。方法600还可以包括使用选择性角度蚀刻去除辅助氧化物的至少一部分(例如,从氧化物区域190去除)(步骤604)。在一些示例中,方法600还可以包括去除辅助氧化物(例如,从氧化物区域190)、介电层(例如,中间层130)和自由区域120的至少一部分,形成包括锥形侧壁的自由区域120。
83.如上所述,本公开的磁阻装置,其包括本文描述的一个或多个切换几何结构,可以在传感器架构或存储器架构(以及其他架构等)中实现。例如,在存储器配置中,磁阻装置可以电连接到存取晶体管,并且被配置为耦合或连接到可以携带一个或多个控制信号的各种导体,如图28所示。本公开的磁阻装置可以用于任何合适的应用中,包括例如在存储器配置中。在这种情况下,根据本文公开的某些实施例的某些方面,磁阻装置可以形成为集成电路,该集成电路包括分立存储装置(例如,如图29a所示),或形成为其中具有逻辑的嵌入式存储装置(例如,如图29b所示),每个都包括mram,,在一个实施例中其代表具有多个磁阻叠层的一个或多个mram阵列。
84.在一个实施例中,公开了一种磁阻装置。该装置包括顶部电极、磁性固定区域、位于磁性固定区域上方或下方的磁性自由区域、以及位于磁性固定区域和磁性自由区域之间的中间区域(例如,介电层)。磁阻装置还可以包括邻近自由区域的至少一部分的自旋霍尔材料和设置在sh材料和顶部电极之间的插入层,其中插入层包括反铁磁材料。
85.所公开的磁阻装置的各种实施例可以附加地或替代地还包括以下特征中的一个或多个:插入层可以包括锰;sh材料可以包括下列中的至少一个:铂,β-钨,钽,钯,铪,金,包含金的合金,包含铋和硒的合金,包含铜的合金,包含锰、铱、硒的合金,或其一种或多种组合;插入层可以具有小于或等于大约2.0纳米的厚度;所述插入层可以是第一插入层,并且所述装置还可以包括第二插入层;介电层与固定区域之间的过渡层,以及固定区域与顶部电极之间的帽盖区域,其中第一插入层、第二插入层或两者与帽盖区域或过渡层接触;和/或第三插入层与帽盖区域或过渡层接触。
86.在另一个实施例中,公开了一种磁阻装置。磁阻装置可以包括磁性固定区域、位于磁性固定区域上方或下方的磁性自由区域、以及位于磁性固定区域和磁性自由区域之间的中间区域(例如,介电层)。自旋霍尔沟道材料可以邻近磁性自由区域的至少一部分。帽盖区域可以与自由区域相对地在固定区域上。该装置可以包括在中间层和固定区域之间的过渡层以及与帽盖区域或过渡层相邻的至少一个插入层,其中该至少一个插入层包括反铁磁材料。
87.所公开的磁阻装置的各种实施例可以附加地或替代地还包括以下特征中的一个或多个:插入层可以包括锰;插入层还可以进一步包括铱或铂;插入层可以具有小于或等于
大约2.0纳米的厚度;沿第一方向流过sh材料的电流可以将自由区域切换到第一磁性状态,沿第二方向流动的电流可以将自由区域切换到第二磁性状态;固定区域可以包括合成反铁磁结构(saf);所述至少一个插入层可以是第一插入层,并且所述装置还可以包括与所述帽盖区域或所述过渡层相邻的第二插入层;和/或该装置还可以包括在过渡层和介电层之间的参考层。
88.在另一个实施例中,公开了一种制造磁阻装置的方法。该方法可以包括形成sh材料的段,以及形成与sh材料接触的磁阻叠层,其中磁阻叠层包括介电层和被配置为在第一磁性状态和第二磁性状态之间切换的自由区域。该方法还可以包括去除磁阻叠层的一个或多个层的至少一部分以形成蚀刻的磁阻叠层。该方法还可以包括沉积氧化物(和/或氮化物),从而形成至少一个氧化物区域。该方法还可以包括去除氧化物区域的至少一部分和/或去除自由区域的至少一部分,形成包括锥形侧壁的自由区域。
89.所公开的方法的各种实施例还可以包括以下特征中的一个或多个:第二蚀刻步骤,包括:去除氧化物区域的至少一部分的步骤,去除自由区域的至少一部分的步骤,或两者;选择性角度蚀刻;去除磁阻叠层的一个或多个层的至少一部分以形成蚀刻的磁阻叠层可以包括暴露介电层的至少一部分;和/或在形成包括锥形侧壁的自由区域之后,磁阻叠层可以是关于垂直于sh材料的与自由区域接触的表面的磁阻叠层的纵轴不对称的。
90.尽管已经详细说明和描述了本公开的各种实施例,但是对于本领域的技术人员来说显而易见的是,在不背离本公开的情况下可以进行各种修改。
再多了解一些

本文用于创业者技术爱好者查询,仅供学习研究,如用于商业用途,请联系技术所有人。

发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表

相关文献