一种残膜回收机防缠绕挑膜装置的制 一种秧草收获机用电力驱动行走机构

一种动力学仿真引导的域对抗轴承故障诊断方法

2022-09-03 12:55:56 来源:中国专利 TAG:


1.本发明属于滚动轴承故障诊断领域,尤其涉及一种动力学仿真引导的域对抗轴承故障诊断方法。


背景技术:

2.随着机械设备在生产中的广泛应用,生产流程中对机械设备的安全性、可靠度和智能化程度也有了全新要求。轴承常承担支承、传递力和力矩的重要作用,容易在长期高负荷运行下发生疲劳失效,可能导致生产活动被迫中止影响生产效率,甚至引起设备的进一步损伤,造成严重经济损失,甚至重大安全事故。故障导致的停机时间在所有故障的停机时间中占到90%以上。因此,对轴承的状态监测,以及故障的定位、诊断,可以为机械设备的安全、平稳运行提供必要保障,并降低设备的运维成本,同时能够减少生产事故的发生。对机械设备可能故障的人为干预和监测,对保障效率、缩减成本、保护生产环境安全和参与人员人身安全具有重要的现实意义。
3.传统故障诊断方法通常遵照以下流程:先搭建模拟实验台进行模拟实验或生产环境中采集多种状态下机械各个相关组件的振动加速度信号,然后使用时域、频域和时频域信号处理方法,实现进行故障诊断的目的。由于人工智能和深度学习领域的不断发展,神经网络优秀的特征拟合和提取能力受到大量关注,智能化诊断的需求也逐渐增加,利用深度学习的故障诊断方法已经成为了热门突破性方向之一,以卷积神经网络cnn为代表,在旋转机械故障诊断领域深度学习方法已经拥有了非常普遍的应用。但在实际工业生产过程中存在故障类型不平衡、少标记的情况,同时有故障发生位置受多种因素的影响、故障信号获取难度较大且数据量稀缺、大量数据需要人为标记等客观条件限制,这带来了进行故障诊断模型训练时样本不足、数据不平衡情况的出现,很多情况下难以训练一个实用可靠的诊断模型。
4.跨工况和跨机械诊断是故障诊断算法由理论走向工程应用的关键。为了克服传统机器学习的缺陷,迁移学习被广泛应用于故障诊断,其不需要假设训练样本和测试样本的分布相同。迁移学习可以通过学习映射将源域的一些特征转换到目标域,以满足机器学习模型使用不同训练样本对故障进行分类和预测的需求。尽管迁移学习方法在故障诊断领域取得了良好的进展,但实用场景中的故障诊断方法仍然受到多限制,大多数迁移学习方法在跨机械迁移等域分布差异较大且样本数量少的情况下难以取得良好效果。现实故障诊断场景中能够轻易获取大量健康轴承的振动数据,然而故障数据的样本量很少。实验环境中常采用人为制造故障的方式获取故障数据,在实际生产环境中可能并不适用。为了充分利用健康数据样本,实现对潜在故障的有效识别,将轴承动力学模型仿真结果与真实场景下的健康运行数据结合,利用健康轴承数据,缩小仿真模型与真实数据间的差异,并解决缺少故障数据的问题。


技术实现要素:

5.本发明所要解决的技术问题是:针对实用场景中,在跨机械迁移等域分布差异较大且样本数量少的情况下迁移学习故障诊断效果不佳;大量健康状态样本没有充分利用的问题。提出基于动力学仿真的域对抗轴承故障诊断方法。
6.本发明包含以下步骤:
7.s1:通过轴承故障试验台采集滚动轴承在正常状态以及内圈、外圈故障状态下来自振动传感器的轴承故障数据,构造轴承故障诊断样本集;
8.s2:根据轴承型号确定轴承几何参数和形状参数;
9.s3:构建基于轴承-转子动力学理论多自由度故障动力学模型;
10.优选地,步骤s3具体包括:
11.s31:构建多自由度故障动力学模型公式如下:
[0012][0013]
m是轴承内圈和主轴的集中质量,x、y表示内圈和主轴在x和y方向上的位移,c表示等效阻尼,w
x
、wy分别表示内圈滚道和主轴在x和y方向上承受的径向载荷力,ω表示主轴转速,t表示过程已用时间,表示f
x
和fy表示z个滚动体总接触力在x方向和y方向上的分力
[0014][0015]
k指表面接触刚度,δ表示滚动体的接触变形,j表示第j个滚动体,fu表示轴承不平衡质量引起的不平衡力:
[0016]fu
=meω2(4)
[0017]
e表示转子不平衡量。
[0018]fm
表示不对中量影响下的激振力:
[0019]fm
=-2mcδeω2(5)
[0020]
mc表示联轴器质量,δe表示不对中量。
[0021]
s32:向动力学模型中引入轴承缺陷,模拟轴承滚道存在单点缺陷的情况。定义缺陷宽度为l,深度为h。缺陷轴承滚动体接触变形表示为
[0022]
δj=xcosθj ysinθ
j-γ-h'(6)
[0023]
其中h'表示滚动体附加位移。
[0024]
设置开关函数判断滚动体是否滚进缺陷中,当缺陷位于轴承外圈时,附加位移的开关函数如下:
[0025][0026]
表示轴承外圈缺陷的角位置,ζ指外圈缺陷对应的圆弧大小,ζ=l/ro,ro表示轴承外圈半径。
[0027]
轴承外圈缺陷的位移激励函数ho定义为
[0028][0029]
δho表示外圈故障下滚动体的最大附加位移:
[0030][0031]
当缺陷位于轴承内圈时,附加位移的开关函数如下:
[0032][0033]
表示轴承外圈缺陷的角位置,ζ=l/ri,ri指轴承内圈半径。
[0034]
轴承内圈缺陷的位移激励函数hi表示为
[0035][0036]
δhi表示滚动体的最大附加位移:
[0037][0038]
s4:引入轴承的几何参数和形状参数,采用龙格库塔法计算动力学模型的仿真结果;
[0039]
s5:通过tlcc时滞互相关算法,将仿真信号与真实信号进行相位对齐,然后通过仿真信号叠加真实数据中的健康轴承样本引入真实场景中的工况和背景噪声信息,生成具有真实样本场景特征的源域故障数据集;
[0040]
优选地,步骤s5具体包括:
[0041]
s51:按不同比例对仿真信号进行缩放,然后再与真实样本的正常信号进行叠加,生成信号的表达式为:
[0042][0043][0044]
其中,分别表示所构建的源域内的外圈故障、内圈故障信号,表示真实轴承信号,分别表示数值模拟的外圈故障和内圈故障信号,tlcc(
·
)表示使用时滞互相关算法计算互相关并作滑移处理,a、b表示比例系数。
[0045]
s6:通过少样本域对抗迁移学习故障诊断模型对包含真实故障的目标域数据集进行故障识别,输出诊断结果。
[0046]
优选地,步骤s6具体包括;
[0047]
s61:使用多个一维卷积层的一维卷积神经网络和全连接层构造特征提取器g和分
类器h,使用源数据集初始化训练特征提取器g和分类器h,该步骤的损失函数为:
[0048]
lc(f)=e[l(f(xs),y)](15)
[0049]
(
·
)表示交叉熵损失函数,xs表示源域数据集,y表示数据样本对应的标签。
[0050]
s62:使用源域数据集和目标域有标签数据集构造四组样本对其中由多对来自源域的相同类别标签的样本组成;的成对样本具有相同的类别标签,分别来自源域和目标域;对目标域训练样本的标签和域信息进行编码。将负样本对分为和两组,来自具有不同类别标签的源分布的样本;类别标签和域分布都不同。然后使用四组样本训练组类别判别器d,该环节中会冻结g来完成,该步骤的损失函数为:
[0051][0052]
是的标签,d是判别器d。φ是特征提取模块。
[0053]
s63:冻结d,更新特征模块g和预测函数h,以混淆d并保持较高的分类精度。这一步骤执行过程中需要冻结d,该步骤的损失函数为:
[0054][0055]
其中γ在样本分类和域混淆之间取得平衡。模型优化的结果是将中的样本对错误地分类为错误地分类为即判别器d不再能够将不同分布的正负对与源分布的样本对区分开来,而分类器仍然能够区分正样本对和负样本对,通过联合优化源域分类损失、目标域分类损失和判别器分类损失使模型达到最优。
[0056]
s64:根据收敛性反复进行第二步和第三步。
[0057]
本发明的优点与积极效果在于:
[0058]
本发明采用轴承故障动力学模型,求解动力学仿真数据,并通过与实际运行数据结合的方法,充分利用实际运行过程中的数据进行数据扩增,有效降低了域分布差异,提高了数据间的可迁移性;采用深度域对抗适应网络,实现有效少样本故障诊断。
[0059]
本发明在滚动轴承故障诊断中具有良好的效果。
附图说明
[0060]
图1是本发明方法流程图;
[0061]
图2是本发明优选实施例中轴承动力学示意图;
[0062]
图3是本发明优选实施例中时滞互相关算法示意图;
[0063]
图4是本发明优选实施例中的深度域对抗诊断模型。
具体实施方案
[0064]
下面对照附图并结合优选的实施方案对本发明作进一步说明。
[0065]
如图1所示,本发明的实施例公开了一种少样本域对抗的滚动轴承故障诊断方法,
包含以下步骤:
[0066]
s1:通过轴承故障试验台采集滚动轴承在正常状态以及内圈、外圈故障状态下来自振动传感器的轴承故障数据,构造轴承故障诊断样本集;
[0067]
s2:根据轴承型号确定轴承几何参数和形状参数,优选地,本例中选用的轴承型号为n306,实施例中的模型参数如下表所示,
[0068][0069]
s3:构建基于轴承-转子动力学理论的2自由度故障动力学模型,模型简化如图2所示;
[0070]
在进一步的实施例中,步骤s3具体包括:
[0071]
s31:构建2自由度故障动力学模型公式如下:
[0072][0073]
m是轴承内圈和主轴的集中质量,x、y表示内圈和主轴在x和y方向上的位移,c表示等效阻尼,w
x
、wy分别表示内圈滚道和主轴在x和y方向上承受的径向载荷力,ω表示主轴转速,t表示过程已用时间,表示f
x
和fy表示z个滚动体总接触力在x方向和y方向上的分力
[0074][0075]
k指表面接触刚度,δ表示滚动体的接触变形,j表示第j个滚动体,fu表示轴承不平衡质量引起的不平衡力:
[0076]fu
=meω2(4)
[0077]
e表示转子不平衡量。
[0078]fm
表示不对中量影响下的激振力:
[0079]fm
=-2mcδeω2(5)
[0080]
mc表示联轴器质量,δe表示不对中量。
[0081]
s32:向动力学模型中引入轴承缺陷,模拟轴承滚道存在单点缺陷的情况。定义缺陷宽度为l,深度为h。缺陷轴承滚动体接触变形表示为
[0082]
δj=xcosθj ysinθ
j-γ-h'(6)
[0083]
其中h'表示滚动体附加位移。
[0084]
设置开关函数判断滚动体是否滚进缺陷中,当缺陷位于轴承外圈时,附加位移的开关函数如下:
[0085][0086]
表示轴承外圈缺陷的角位置,ζ指外圈缺陷对应的圆弧大小,ζ=l/ro,ro表示轴承外圈半径。
[0087]
轴承外圈缺陷的位移激励函数ho定义为
[0088][0089]
δho表示外圈故障下滚动体的最大附加位移:
[0090][0091]
当缺陷位于轴承内圈时,附加位移的开关函数如下:
[0092][0093]
表示轴承外圈缺陷的角位置,ζ=l/ri,ri指轴承内圈半径。
[0094]
轴承内圈缺陷的位移激励函数hi表示为
[0095][0096]
δhi表示滚动体的最大附加位移:
[0097][0098]
s4:引入轴承的几何参数和形状参数,采用4阶龙格库塔法计算动力学模型的仿真结果;
[0099]
s5:通过如图3所示的tlcc时滞互相关算法,找到两信号最大相关的位置,然后将仿真信号与真实信号进行相位对齐,然后通过仿真信号叠加真实数据中的健康轴承样本引入真实场景中的工况和背景噪声信息,生成具有真实样本场景特征的源域故障数据集;
[0100]
在进一步的实施例中,步骤s5具体包括:
[0101]
s51:按不同比例对仿真信号进行缩放,然后再与真实样本的正常信号进行叠加,生成信号的表达式为:
[0102][0103][0104]
其中,分别表示所构建的源域内的外圈故障、内圈故障信号,表示真实轴承信号,分别表示数值模拟的外圈故障和内圈故障信号,tlcc(
·
)表示使用时滞互相关算法计算互相关并作滑移处理,a、b表示比例系数。
[0105]
s6:通过少样本域对抗迁移学习故障诊断模型对包含真实故障的目标域数据集进行故障识别,输出诊断结果。
[0106]
在进一步的实施例中,步骤s6具体包括;
[0107]
s61:使用源数据集初始化训练特征提取器g和分类器h,该步骤的损失函数为:
[0108]
lc(f)=e[l(f(xs),y)](15)
[0109]
l(
·
)表示交叉熵损失函数,xs表示源域数据集,y表示数据样本对应的标签。
[0110]
s62:使用源域数据集和目标域有标签数据集构造四组样本对然后使用四组样本训练组类别判别器d,该环节中会冻结g来完成,该步骤的损失函数为:
[0111][0112]
是的标签,d是判别器d。φ是特征提取模块。
[0113]
s63:冻结d,更新特征模块g和预测函数h,以混淆d并保持较高的分类精度。这一步骤执行过程中需要冻结d,该步骤的损失函数为:
[0114][0115]
其中γ在样本分类和域混淆之间取得平衡。模型优化的结果是将中的样本对错误地分类为错误地分类为即判别器d不再能够将不同分布的正负样本对与源分布的正负样本区分开来,而分类器仍然能够区分正样本和负样本。
[0116]
s64:根据收敛性反复进行第二步和第三步。
[0117]
下述采用本发明的优选实施例的滚动轴承故障的诊断方法来对滚动轴承的已知轴承型号和少量故障数据来建立故障诊断模型,并采用滚动轴承的故障数据来对本发明的优选实施例的滚动轴承故障的诊断方法进行验证。
[0118]
本发明优选实施例中采集机械系统在有缺陷和无缺陷情况下的滚动轴承的振动信号,以完成滚动轴承损伤部位的确定。滚动轴承发生故障的部位分为外圈、内圈,故障尺寸大小具有轴承早期、中期、晚期情况,为了说明本发明的滚动轴承故障的诊断方法的有效性,下述同时采集了滚动轴承未发生故障的正常状态下的振动信号,与故障情况下的信号对比进行处理;以保证本发明提出的滚动轴承故障诊断方法可以检测滚动轴承是否处于正常状态。
[0119]
实验所用的故障诊断实验台包括振动实验台的主体系统、润滑辅助系统以及数据
采集系统。该实验台数据采集系统由机载在线监测系统原理样机、加速度传感器等组成,主要完成对轴承振动数据的采集与处理、数据显示与记录等功能。故障类型一共分为正常轴承、外圈缺陷、内圈缺陷3类,正常轴承包含200个样本,共600个样本。信号的采样频率为10khz。
[0120]
本发明优选实施例的滚动轴承故障诊断的方法流程包括:
[0121]
s101:通过轴承故障试验台采集滚动轴承在正常状态以及内圈、外圈故障状态下来自振动传感器的轴承故障数据,构造轴承故障诊断样本集;
[0122]
s102:根据轴承型号确定轴承几何参数和形状参数;
[0123]
s103:构建基于轴承-转子动力学理论的2自由度故障动力学模型;
[0124]
s104:引入轴承的几何参数和形状参数,采用4阶龙格库塔数值计算法计算动力学模型的仿真结果;
[0125]
s105:通过tlcc时滞互相关算法,将仿真信号与真实信号进行相位对齐,然后通过仿真信号叠加真实数据中的健康轴承样本引入真实场景中的工况和背景噪声信息,生成具有真实样本场景特征的源域故障数据集;
[0126]
s106:通过少样本域对抗迁移学习故障诊断模型对包含真实故障的目标域数据集进行故障识别,输出诊断结果。本实施例中不同初始带标签样本数训练下模型的故障诊断结果如下
[0127]
每一类有标签样本数12510方法1诊断结果(%)47.650.277.290.7本发明诊断结果(%)74.189.191.193.5
[0128]
选择卷积神经网络作为分类器构成方法1,比较不同标签量的情况,可以看出随着标签数量的提高,诊断精度也不断提高,且本发明方法的准确率一直高于方法1,。当有标签样本量达到5个以上时,诊断精度达到较高水平。
[0129]
以上所述,仅为本发明的具体实施方式之一,但本发明的保护范围并不局限于此,凡在本发明的精神和原则之内所做的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。
再多了解一些

本文用于企业家、创业者技术爱好者查询,结果仅供参考。

发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表

相关文献