一种残膜回收机防缠绕挑膜装置的制 一种秧草收获机用电力驱动行走机构

无损方阻及绒面测量装置的制作方法

2022-09-03 05:15:53 来源:中国专利 TAG:


1.本发明涉及半导体检测技术领域,尤其涉及无损方阻及绒面测量装置。


背景技术:

2.半导体制绒是半导体生产制造过程中不可或缺的一步,制绒的目的主要如下:去除机械损伤层——主要来自原片切割过程中的表面损伤;增加电池片表面面积——为扩散增加制结面积准备;陷光原理——大大降低电池片表面反射率;去除杂质——hf可以去除电池片表面油污、hcl去除金属杂质;由此可见,电池片制绒过程的好坏直接影响到半导体电池片成品的效率。
3.此外,在半导体上还必须进行各种检测,以确定它是否适合进一步的器件加工或进行工艺调整,检测包括半导体方阻检测,现有技术中的半导体方阻检测大多利用4探针测量装置,由于4探针测量采用接触式测量,必须将探针扎在半导体表面,这就必然导致4探针对半导体绒面产生不可逆的损伤。
4.现有技术中缺少对方阻进行无损测量的同时能够检测绒面品质的装置,且当前的绒面检测装置多数为离线测试装置,测试装置设备大,操作烦琐,无法针对产线现场的半导体进行实时测量。在离线测试过程中,既费时间又费人力。


技术实现要素:

5.本发明的技术问题是提供无损方阻及绒面测量装置,能够在无损测量方阻的同时在线检测绒面的品质。
6.为实现上述目的,本发明采取的技术方案为:
7.无损方阻及绒面测量装置,包括:传感装置和采样测量装置;传感装置包括激光发射器、反射率检测片、电容线圈组和第一放大器板;激光发射器用于发射激光至待测半导体上产生光电压;电容线圈组用于接收待测半导体表面光电压产生的静电荷;反射率检测片用于接收待测半导体反射的激光,将光信号转换为电信号;第一放大器板用于接收静电荷和电信号,分别对静电荷和电信号进行预处理得到第一中间数据和反射率检测片接收功率;采样测量装置用于接收第一中间数据和反射率检测片接收功率,并分别对第一中间数据和反射率检测片接收功率进行计算得到待测半导体的方阻值和绒面反射率。
8.进一步地,电容线圈组中心设置有挖空区,激光发射器的发射端和反射率检测片的接收端均通过挖空区垂直朝向待测半导体;电容线圈组和反射率检测片均通过连接线连接第一放大器板的输入端;第一放大器板的输出端电性连接采样测量装置的输入端。
9.进一步地,第一放大器板包括:电荷感应放大器和脉冲光源驱动器;脉冲光源驱动器的输出端电性连接激光发射器的输入端;电容线圈组和反射率检测片均电性连接电荷感应放大器的输入端;电荷感应放大器的输出端通过通讯连接装置连接采样测量装置的输入端。
10.进一步地,采样测量装置包括:电源、第二放大器和处理器;电源电性连接第二放
大器和处理器;电荷感应放大器的输出端电性连接第二放大器的输入端,第二放大器的输出端电性连接处理器的输入端。
11.进一步地,电容线圈组包括至少两个电容线圈;两个电容线圈同心设置,两个电容线圈内径大小不同,两个电容线圈的底面位于同一平面;两个电容线圈的底面分别为第一接收平面和第二接收平面,第一接收平面用于获取第一电压,第二接收平面用于获取第二电压;第一接收平面、第二接收平面与待测半导体之间的距离大于0且小于预设阈值。
12.进一步地,采样测量装置测量待测半导体的绒面反射率的方法为:获取激光发射器的发射功率,并引入绒面标定系数对反射率检测片接收功率进行修正,得到绒面反射率;其中,绒面标定系数指,反射率检测片通过测量已知反射率的标准电池片得到的耗散因子和耗散常数。
13.进一步地,采样测量装置测量待测半导体的方阻的方法为:从电荷感应放大器接收一级放大后的第一电压和第二电压,通过第二放大器对第一电压和第二电压进行二级放大;通过adc采样分别获取二级放大后的第一电压和第二电压的电压幅度和相位;根据第一电压和第二电压的电压幅度和相位差,以及两个电容线圈半径之差,通过线性拟合的方式计算得到待测半导体的方阻值。
14.进一步地,采样测量装置的输出端连接有上位机;上位机包括显示模块和优化模块;显示模块通信连接优化模块;显示模块用于接收并显示待测半导体的方阻值和绒面反射率;优化模块用于进行方阻值与绒面反射率测量的参数校准。
15.进一步地,优化模块包括:功率检测装置、测距装置和控制器;控制器电性连接功率检测装置、激光发射器、测距装置和处理器;功率检测装置电性连接激光发射器;功率检测装置用于检测激光发射器的功率并发送功率数据至控制器;测距装置用于检测激光发射器的激光头到半导体表面的距离并发送距离数据至控制器;控制器用于检测到激光发射器的功率数据发生衰减后调节激光发射器的功率;控制器还用于通过距离数据实时将距离因子补偿到处理器中的方阻值测量因子与绒面反射率测量因子中。
附图说明
16.通过阅读参照以下附图对非限制性实施例所作的详细描述,本发明及其特征、外形和优点将会变得更加明显。在全部附图中相同的标记指示相同的部分。并未刻意按照比例绘制附图,重点在于示出本发明的主旨。
17.图1是本发明提供的无损方阻及绒面测量装置的框图;
18.图2是本发明提供的无损方阻及绒面测量装置的简要结构示意图;
19.图3是本发明提供的方阻计算方法示意图。
具体实施方式
20.下面结合附图和具体的实施例对本发明作进一步的说明,但是不作为本发明的限定。
21.本发明为了能够无损检测半导体方阻,同时实时在线监测半导体绒面品质,提供了一种无损方阻及绒面测量装置,如图1及图2所示,包括:传感装置1、采样测量装置2和上位机3;传感装置1包括激光发射器11、反射率检测片12、电容线圈组13和第一放大器板4;第
一放大器板4包括:电荷感应放大器41和脉冲光源驱动器42;脉冲光源驱动器42的输出端电性连接激光发射器11的输入端;电容线圈组13和反射率检测片12均电性连接电荷感应放大器41的输入端;电荷感应放大器41的输出端通过通讯连接装置连接采样测量装置2的输入端。采样测量装置2包括:电源21、第二放大器22和处理器23;电源21电性连接第二放大器22和处理器23;电荷感应放大器41的输出端电性连接第二放大器22的输入端,第二放大器22的输出端电性连接处理器23的输入端。
22.在实施时,激光发射器11发射的脉冲光垂直照射在待测半导体上,电容线圈组13接收待测半导体表面光电压产生的静电荷,并传送至电荷感应放大器41的输入端,经过信号处理电路处理后,获取到交流光电压的衰减和相移,即第一中间数据;
23.同时反射率检测片12接收待测半导体反射的激光进行分析,将光信号转换为电信号并传送至电荷感应放大器41,经过信号处理电路处理后,获取反射率检测片12接收功率;
24.接着电荷感应放大器41传输第一中间数据和反射率检测片12接收功率至第二放大器22,再次进行信号处理后,并分别对第一中间数据和反射率检测片12接收功率进行计算得到待测半导体的方阻值和绒面反射率,并发送到上位机3。
25.从而实现了不损伤半导体绒面进行方阻测量的同时能够实时在线对绒面反射率进行检测,既规避了现有的方阻测量给绒面带来的损伤,也能实时检测绒面的质量,提高了半导体质量检测效率。且对静电荷和反射的激光信号进行两级放大,大大提高了检测结果的准确性。且相比于现有技术中的反射率测试仪的体积大、操作繁琐的问题,本发明提供的无方阻及绒面测量装置体积小,操作便捷,大大节约了人力成本与时间成本。
26.具体地,本发明中采样测量装置2测量待测半导体的绒面反射率的方法为:获取激光发射器11的发射功率p,并引入绒面标定系数对反射率检测片12接收功率p1进行修正,得到绒面反射率λ=(k1×
p1 b1)/p;其中,k1为反射率检测片12通过测量已知反射率的标准电池片得到的耗散因子;b1为反射率检测片12通过测量已知反射率的标准电池片得到的耗散常数。通过该方法测得的绒面反射率对设备距离、环境光线及环境噪声产生的干扰进行了处理,大大提高了测量的绒面反射率的准确性。
27.采样测量装置2测量待测半导体的方阻的方法为:从电荷感应放大器41接收一级放大后的第一电压和第二电压,通过第二放大器22对第一电压和第二电压进行二级放大;通过adc采样分别获取二级放大后的第一电压和第二电压的电压幅度和相位;根据第一电压和第二电压的电压幅度和相位差,以及两个电容线圈半径之差,通过线性拟合的方式计算得到待测半导体的方阻值。
28.如图3所示,激光照射在待测半导体上,在半导体表面四周会形成正态分布的光电压,当距离d在2.5mm以内的时候标定半导体的第一电压v1、第二电压v2之差v
1-v2与d具有良好的线性关系,可以用已知方阻rs的标定电池片和已知的距离d,以及测出的v
1-v2的差值,得到待测半导体的方阻r
s1
=rs×
(v
11-v
21
)/(v
1-v2)
×
k b,其中,v
11
和v
12
分别为待测半导体的第一电压及第二电压,k和b均为方阻标定系数。
29.进一步地,电容线圈组13中心设置有挖空区,激光发射器11的发射端和反射率检测片12的接收端均通过挖空区垂直朝向待测半导体;电容线圈组13和反射率检测片12均通过连接线连接第一放大器板4的输入端;第一放大器板4的输出端电性连接采样测量装置2的输入端。电容线圈组13包括至少两个电容线圈;两个电容线圈同心设置,两个电容线圈内
径大小不同,两个电容线圈的底面位于同一平面;
30.当激光发射器11的激光照射在待测半导体上时,待测半导体反射的光电压呈波纹效应向外散射,因此本技术利用环状的电容线圈对该光电压的静电荷收集,电容线圈为环状结构,在实际设计中,通过两个电容线圈即可实现待测半导体的电压测量,但为了提高电压测量的准确性,通常会设置多个电容线圈,测得更多的电压值,减小测量误差,每个电容线圈的内径大小不同且每个电容线圈依次间隔嵌套安装,每两个电容线圈的底面分别为第一接收平面和第二接收平面,第一接收平面与第二接收平面位于同一平面,该设置能够保证获取同一平面上的电压值。第一接收平面用于获取第一电压,第二接收平面用于获取第二电压;第一接收平面、第二接收平面与待测半导体之间的距离大于0且小于预设阈值,预设阈值通常设置为2.5mm,每个电容线圈通过连接线连接至电荷感应放大器41。
31.进一步的,每个电容线圈的中心线和激光发射器11的中心线处于同一个直线上,同时,激光发射器11发射的激光与待测半导体所在的平面垂直,第一接收平面、第二接收平面与待测半导体所在的平面相平行,由此能够进一步提高测量的准确性和电容线圈的测量同步性。
32.进一步地,上位机3包括显示模块31和优化模块5;显示模块31通信连接优化模块5;显示模块31用于接收并显示待测半导体的方阻值和绒面反射率;优化模块5用于进行方阻值与绒面反射率测量的参数校准。优化模块5包括:功率检测装置51、测距装置52和控制器53;控制器53电性连接功率检测装置51、激光发射器11、测距装置52和处理器23;功率检测装置51电性连接激光发射器11;功率检测装置51用于检测激光发射器11的功率并发送功率数据至控制器53;测距装置52用于检测激光发射器11的激光头到半导体表面的距离并发送距离数据至控制器53;控制器53用于检测到激光发射器11的功率数据发生衰减后调节激光发射器11的功率;控制器53还用于通过距离数据实时将距离因子补偿到处理器23中的方阻值测量因子与绒面反射率测量因子中。
33.以上对本发明的较佳实施例进行了描述;需要理解的是,本发明并不局限于上述特定实施方式,其中未尽详细描述的设备和结构应该理解为用本领域中的普通方式予以实施;任何熟悉本领域的技术人员,在不脱离本发明技术方案作出许多可能的变动和修饰,或修改为等同变化的等效实施例,这并不影响本发明的实质内容;因此,凡是未脱离本发明技术方案的内容,依据本发明的技术实质对以上实施例所做的任何简单修改、等同变化及修饰,均仍属于本发明技术方案保护的范围内。
再多了解一些

本文用于企业家、创业者技术爱好者查询,结果仅供参考。

发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表

相关文献