一种残膜回收机防缠绕挑膜装置的制 一种秧草收获机用电力驱动行走机构

一种考虑温度效应的薄膜体声波谐振器建模方法

2022-08-13 10:57:42 来源:中国专利 TAG:


1.本发明涉及薄膜体声波谐振器建模领域,具体而言,涉及一种考虑温度效应的薄膜体声波谐振器建模方法。


背景技术:

2.中国发明专利/发明专利申请号:cn202110860347.3所提出的一种薄膜体声波谐振滤波器装配使用方法及电子设备,根据薄膜体声波谐振滤波器芯片电路模型和接地电路构建出滤波器装配之后的等效电路模型,利用三维电磁仿真软件对滤波器的接地电路进行建模、仿真、计算,分别提取出接地电路中接地焊盘以及接地键合线所对应的寄生参数,寄生参数接地键合线的寄生电感以及接地焊盘的寄生电容和寄生电感;将寄生参数带回等效电路中,利用仿真软件得到该种接地装配方式下滤波器的带外抑制和通带带宽,通过改变接地键合线的材质、直径、数量及键合弧度等参数调节接地键合线的寄生电感,将不同装配方式下的寄生电感分别带入滤波器的等效电路中,能够快速得到性能最佳的滤波器装配方式,从而缩短滤波器的调试时间。
3.随着无线通信技术的发展及智能时代的到来,射频前端对元器件性能指标、集成度的要求越来越高,薄膜体声波谐振器器件的工作频率以及温度稳定性已成为器件性能衡量的重要标准。由于薄膜体声波谐振器器件的尺寸极小,因此在其工作环境中,该器件易受环境温度的影响,当温度改变后,该器件的各膜层材料的密度、声速等参数值也会发生改变,产生温度漂移,从而影响谐振器的工作频率。但在常规的建模与仿真过程中,只考虑了薄膜体声波谐振器膜层数量、膜层材料、薄膜厚度与谐振器的谐振区域面积,尚未将温度效应考虑其中,因此我们对此做出改进,提出一种考虑温度效应的薄膜体声波谐振器建模方法。


技术实现要素:

4.本发明的目的在于:针对目前存在的背景技术提出的问题。
5.2.为了实现上述发明目的,本发明提供了以下技术方案:一种考虑温度效应的薄膜体声波谐振器建模方法,包括以下步骤:
6.s1建立薄膜体声波谐振器的仿真模型,所述薄膜体声波谐振器的仿真模型中设置有薄膜体声波谐振器,所述薄膜体声波谐振器器件的核心参数;
7.s2根据声波理论与传输线理论推导出梅森模型等效电路;
8.s3在梅森模型中需要对压电层与其他普通声学层包括上下电极层、温度补偿层等的声速v_x与声阻抗z_x参数进行添加温度值,并将温度对谐振器的影响引入到一维仿真模型中;
9.s4在一维仿真模型中加入环境温度的变化对谐振器的谐振频率、阻抗值、机电耦合系数性能参数导出薄膜体声波谐振器的建模。
10.作为本技术优选的技术方案,步骤s1所述薄膜体声波谐振器的仿真模型包括薄膜
体声波谐振器的支撑层、温度补偿层、底电极层、压电层、顶电极层,各层均设有温度参数值,所述的温度值包含在各层材料的声阻抗与声速的参数定义中,从而实现在建立的模型中仿真不同温度下薄膜体声波谐振器的谐振效应。
11.作为本技术优选的技术方案,所述温度参数值定义在各层材料的声速vs中,表示为其中tcf为膜层材料在常温状态下的频率温度系数,

t为温度变化值。
12.作为本技术优选的技术方案,所述温度参数值定义在各层材料的声阻抗z中,表示为其中ρ为膜层材料的密度。
13.作为本技术优选的技术方案,还包括膜层,所述膜层包括支撑层、温度补偿层、底电极层、压电层、顶电极层。
14.作为本技术优选的技术方案,所述薄膜体声波谐振器器件的核心参数为谐振频率,由换能器结构的材料以及厚度决定表示为:
[0015][0016]
式中的v代表压电材料纵向声波速度,d表示为压电层的厚度;当n=0时代表薄膜体声波谐振器的基频谐振当n》1时,为谐振器的高次谐振模式。
[0017]
作为本技术优选的技术方案,所述膜层中的压电材料受到外界环境温度变化的影响,温度对材料的声波速度以及厚度的影响,从而引起谐振器的谐振频率变化,其材料的声速v可以表示为弹性常数c和密度ρ的函数:
[0018][0019]
其中材料的密度ρ(t)与外界温度的关系:
[0020]
ρ(t)=ρ(t0)(1-(α
11
α
22
α
33
)δt) (3)
[0021]
上式中α
11

22

33
分别为沿着声传播的方向、垂直于声波的两个方向的热膨胀系数,在该式子中由于热膨胀系数的量级为10-6
,得到(1-(α
11
α
22
α
33
)

t)的值约等于1,代表压电材料在z方向的刚度矩阵。
[0022]
作为本技术优选的技术方案,所述压电材料
[0023]
的z方向的刚度矩阵随温度的改变的规律公式为:
[0024]cd
(δt)=cd(1 2
×
tcf
x
×
δt) (4)
[0025]
通过联立式(2)与式(4),得到材料x内的纵向声速与温度变化的关系:
[0026][0027]
其中v
x
为膜层材料在常温下的声速,tcf
x
为膜层材料在常温下的频率温度系数,在膜层材料的参数为声阻抗z,膜层的声阻抗与膜层材料的密度与声速有关公式为:
[0028]
z=ρ
·vx
(δt) (6)
[0029]
其中v
x
为膜层材料在常温下的声速,ρ为密度。
[0030]
作为本技术优选的技术方案,步骤s2根据声波理论与传输线理论所推导的梅森模型等效电路,在仿真软件中分别从压电薄膜层、电极层、支撑层构建薄膜体声波谐振器的等
效电路,电学模型中eps_x表示x材料的相对介电常数,alpha_x表示x材料的衰减因子,v_x表示x材料的纵波声速,z_x表示x材料的声特征阻抗,c0表示静态电容,area表示fbar谐振区域面积,thk_x表示x膜层厚度,接下来分别对压电薄膜层、电极层和支撑层进行电路连接并进行后续的仿真实验。
[0031]
作为本技术优选的技术方案,步骤s3在梅森模型中需要对压电层与其他普通声学层上下电极层、温度补偿层等的声速v_x与声阻抗z_x参数进行添加温度值,压电层需添加的参数公式汇总如下:
[0032][0033]
在一维梅森模型中,普通声学层需添加的参数公式汇总如下:
[0034][0035]
通过(8)(9)两式子对不包含温度效应的一维梅森模型进行优化,以常温25℃为基准,增加温度改变值

t。
[0036]
与现有技术相比,本发明的有益效果:在本技术的方案中:通过建立薄膜体声波谐振器的仿真模型,薄膜体声波谐振器的仿真模型中设置有薄膜体声波谐振器,薄膜体声波谐振器器件的核心参数,根据声波理论与传输线理论推导出梅森模型等效电路,在梅森模型中需要对压电层与其他普通声学层包括上下电极层、温度补偿层等的声速vx与声阻抗zx参数进行添加温度值,并将温度对谐振器的影响引入到一维仿真模型中,给出一种将温度参数值设置到膜层材料的纵波声速与声阻抗中的方法,从而使得在对薄膜体声波谐振器的建模和仿真过程中充分考虑环境温度的变化对谐振器的谐振频率、阻抗值、机电耦合系数等性能参数的影响进一步精确模型的仿真精度。
附图说明:
[0037]
图1考虑温度效应的压电层模型图;
[0038]
图2考虑温度效应的电极层模型图;
[0039]
图3考虑温度效应的温度补偿层模型图;
[0040]
图4考虑温度变化的一维仿真模型图;
[0041]
图5不同温度下薄膜体声波谐振器的阻抗频率曲线图。
具体实施方式
[0042]
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合附图,对本发明实施例中的技术方案进行清楚、完整的描述。显然,所描述的实施例是本发明的一种具体实施方式,不限于全部的实施例。
[0043]
因此,以下对本发明的实施例的详细描述并非旨在限制要求保护的本发明的范围,而是仅仅表示本发明的部分实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
[0044]
除非另有说明,否则本文使用的所有技术和科学术语具有本发明所述领域的常规技术人员通常理解的相同含义。虽然本发明仅描述了优选的方法和材料,但是在本发明的实施或测试中也可以使用与本文所述相似或等同的任何方法和材料,关于本文中所使用的“包含”、“包括”、“具有”、“含有”等等,均为开放性的用语,即意指包含但不限于,为详细说明本发明的具体实施过程,将各膜层材料其中上下电极层材料选用钼(mo),压电层材料选用氮化铝(aln),支撑层选用氮化硅(si3n4),温度补偿层为二氧化硅(sio2)。
[0045]
实施例,请参阅图1-图5,一种考虑温度效应的薄膜体声波谐振器建模方法,包括以下步骤:在s1建立薄膜体声波谐振器的仿真模型,所述薄膜体声波谐振器的仿真模型中设置有薄膜体声波谐振器,所述薄膜体声波谐振器器件的核心参数;s2根据声波理论与传输线理论推导出梅森模型等效电路,步骤s2根据声波理论与传输线理论所推导的梅森模型等效电路,在仿真软件中分别从压电薄膜层、电极层、支撑层构建薄膜体声波谐振器的等效电路,电学模型中eps_x表示x材料的相对介电常数,alpha_x表示x材料的衰减因子,v_x表示x材料的纵波声速,z_x表示x材料的声特征阻抗,c0表示静态电容,area表示fbar谐振区域面积,thk_x表示x膜层厚度,接下来分别对压电薄膜层、电极层和支撑层进行电路连接并进行后续的仿真实验;s3在梅森模型中需要对压电层与其他普通声学层上下电极层、温度补偿层等的声速v_x与声阻抗z_x参数进行添加温度值,压电层需添加的参数公式为:
[0046][0047]
普通声学层需添加的参数公式汇总如下:
[0048][0049]
通过(8),(9)两式子对不包含温度效应的一维梅森模型进行优化,以常温25℃为基准,增加温度改变值

t。
[0050]
s4在一维仿真模型中加入环境温度的变化对谐振器的谐振频率、阻抗值、机电耦合系数性能参数导出薄膜体声波谐振器的建模;
[0051]
步骤s1所述薄膜体声波谐振器的仿真模型包括薄膜体声波谐振器的支撑层、温度补偿层、底电极层、压电层、顶电极层,各层均设有温度参数值,所述的温度值包含在各层材料的声阻抗与声速的参数定义中,从而实现在建立的模型中仿真不同温度下薄膜体声波谐振器的谐振效应,所述温度参数值定义在各层材料的声速vs中,表示为其中tcf为膜层材料在常温状态下的频率温度系数,

t为温度变化值,所述温度参数值定义在各层材料的声阻抗z中,表示为其中ρ为膜层材料的密度。
[0052]
所述膜层包括支撑层、温度补偿层、底电极层、压电层、顶电极层,所述薄膜体声波谐振器器件的核心参数为谐振频率,由换能器结构的材料以及厚度决定表示为:
[0053][0054]
式中的v代表压电材料纵向声波速度,d表示为压电层的厚度;当n=0时代表薄膜体声波谐振器的基频谐振当n》1时,为谐振器的高次谐振模式,所述膜层中的压电材料受到外界环境温度变化的影响,温度对材料的声波速度以及厚度的影响,从而引起谐振器的谐振频率变化,其材料的声速v可以表示为弹性常数c和密度ρ的函数:
[0055][0056]
其中材料的密度ρ(t)与外界温度的关系:
[0057]
ρ(t)=ρ(t0)(1-(α
11
α
22
α
33
)δt) (3)
[0058]
上式中α
11

22

33
分别为沿着声传播的方向、垂直于声波的两个方向的热膨胀系数,在该式子中由于热膨胀系数的量级为10-6
,得到(1-(α
11
α
22
α
33
)

t)的值约等于1,代表压电材料在z方向的刚度矩阵。
[0059]
所述压电材料的z方向的刚度矩阵随温度的改变的规律公式为:
[0060]cd
(δt)=cd(1 2
×
tcf
x
×
δt) (4)
[0061]
通过联立式(2)与式(4),得到材料x内的纵向声速与温度变化的关系:
[0062][0063]
其中v
x
为膜层材料在常温下的声速,tcf
x
为膜层材料在常温下的频率温度系数,在膜层材料的参数为声阻抗z,膜层的声阻抗与膜层材料的密度与声速有关公式为:
[0064]
z=ρ
·vx
(δt) (6)
[0065]
其中v
x
为膜层材料在常温下的声速,ρ为密度。
[0066]
工作原理:本发明在使用的过程中,在薄膜体声波谐振器的阻抗模型中,引入电极对器件整体的影响,对复合状态下的薄膜体声波谐振器进行阻抗分析时,由于器件平面上的长度和宽度远远大于纵向声波传输的厚度,因此忽略横向传播的剪切波造成的影响,只考虑纵波的传播,结合薄膜体声波谐振器的边界条件,根据文献(李彦睿.薄膜体声波滤波器的研究和设计[d].电子科技大学,2011.)进行推导,
[0067]
得到薄膜体声波谐振器压电层的电学阻抗模型,将压电层的阻抗表达式变形为电感和电容的表达式,
[0068][0069]
其中z
t
和zb分别是上下两个声学层的归一化声阻抗,θ是薄膜的相位移z
x
为压电层材料的声特征阻抗,为压电层材料的声特征阻抗,为机电耦合系数,
[0070]
通过电磁场理论以及传输线阻抗方程,亦可得到普通声学层的电学阻抗表达式:
[0071][0072]
其中z
l
为负载的声阻抗;z
x
为普通声学层材料的声特征阻抗;d为薄膜厚度;是损耗后的声学传输常数,
[0073]
由于压电薄膜体声波器件在工作过程中,膜层中的压电材料受到外界环境温度变化的影响,温度对材料的声波速度以及厚度的影响,从而引起谐振器的谐振频率变化,其中材料的声速v可以表示为弹性常数c和密度ρ的函数:
[0074][0075]
材料的密度可以近似于不改变,因此可忽略温度对其的影响,式(12)中的代表压电材料在z方向的刚度矩阵,材料的z方向的刚度矩阵随温度的改变的规律可用下式表达:
[0076]cd
(δt)=cd(1 2
×
tcf
x
×
δt) (13)
[0077]
通过联立式(12)与式(13),可以得到材料x内的纵向声速与温度变化的关系:
[0078][0079]
其中v
x
为膜层材料在常温下的声速,tcf
x
为膜层材料在常温下的频率温度系数,由于在一维mason模型中,还存在膜层材料的声阻抗z,该参数与材料的密度与声速有关:
[0080]
z=ρ
·vx
(δt) (15)
[0081]
随着温度的改变,材料的密度可以近似于不改变,因此声阻抗主要是由材料的声速决定,于是可得:
[0082][0083]
由式子(15)~(17),可将温度带入到膜层材料的纵波声速和声阻抗参数中,此时若压电层为氮化铝(aln),且厚度为0.7μm,常温状态下,aln的tcf值约为25
×
10-6
ppm/℃,纵波声速为11350m/s,相对介电常数为9.5
×
10-11
,密度为3260kg/m3,衰减因子为800,则考虑温度效应的压电层核心结构参数如下式,根据式(10)建立电学阻抗模型以及完整结构参数
如图1所示,薄膜体声波谐振器的电学阻抗模型中eps_x表示x材料的相对介电常数,alpha_x表示x材料的衰减因子,v_x表示x材料的纵波声速,z_x表示x材料的声特征阻抗,c0表示静态电容,area表示fbar谐振区域面积,thk_x表示x膜层厚度,theta为薄膜的相位移。
[0084][0085]
此时若电极为氮化铝(aln),且厚度为0.12μm,常温状态下,mo的tcf值约为60
×
10-6
ppm/℃,纵波声速为6214m/s,密度为10280kg/m3,衰减因子为500,则考虑温度效应的电极层结构的核心参数如下,根据式(11)建立电学阻抗模型以及完整结构参数如图2所示:
[0086][0087]
此时若温度补偿层为二氧化硅(sio2),且厚度为0.1μm,常温状态下,sio2的tcf值约为-85
×
10-6
ppm/℃,纵波声速为6253m/s,密度为2000kg/m3,则考虑温度效应的温度补偿层结构的核心参数如下,根据式(10)建立电学阻抗模型以及完整结构参数如图3所示:
[0088][0089]
然后,将得到的上、下电极电路分别和压电层的电路串联,就可以得到薄膜体声波谐振器的一维仿真模型,从分析和推导过程中也可以看出,该模型将薄膜体声波谐振器的各层结构分别视为单独的电路,最后再进行组合得到谐振器整体的电路,可见该模型的优点是能直观地对谐振器的各膜层参数以及温度进行调整,一种考虑温度效应的薄膜体声波谐振器的一维仿真模型如图4所示;
[0090]
此时改变各膜层参数中

t的值,便可实现在薄膜体声波谐振器的一维仿真过程中,考虑温度变化对谐振器性能的影响,进一步精确模型的仿真精度,分别设置温度为-50℃、-25℃、0℃、25℃、50℃得到仿真结果如图5所示,在第一个谐振频率,即串联谐振频率处,在不同的温度下,频率并未发生改变,但阻抗值改变,随着温度升高,阻抗的绝对值逐渐增大;在第一个谐振频率,即并联谐振频率处,随着温度的升高,频率有部分增大的趋势,且阻抗的绝对值同样呈现增大的趋势,由于随着温度的改变,串联谐振频率几乎不变化,但并联谐振频率出现轻微增大的趋势,因此带宽增大,导致器件的有效机电耦合系数增大,薄膜
体声波谐振器的机械能与电能的转化效率也会变化。
[0091]
以上实施例仅用以说明本发明而并非限制本发明所描述的技术方案,尽管本说明书参照上述的各个实施例对本发明已进行了详细的说明,但本发明不局限于上述具体实施方式,因此任何对本发明进行修改或等同替换;而一切不脱离发明的精神和范围的技术方案及其改进,其均涵盖在本发明的权利要求范围当中。
再多了解一些

本文用于企业家、创业者技术爱好者查询,结果仅供参考。

发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表

相关文献