一种残膜回收机防缠绕挑膜装置的制 一种秧草收获机用电力驱动行走机构

钢轨温度监测装置及钢轨温度监测方法与流程

2022-07-23 10:39:44 来源:中国专利 TAG:


1.本发明涉及铁路轨道测量技术领域,具体而言,涉及一种钢轨温度监测装置及钢轨温度监测方法。


背景技术:

2.随着经济的发展,我国铁路运营里程逐年增加,无缝线路里程占到70%以上。环境温度的变化会导致钢轨温度也随之发生改变,此时无缝线路钢轨产生温度力,温度力的大小与轨温差成正比。钢轨温度高于锁定轨温,无缝线路钢轨内部产生压力,钢轨温度低于锁定轨温,钢轨内部产生拉力。当钢轨温度超出允许阈值,钢轨内部将会产生较大的力,对无缝线路的稳定性和安全性产生较大的影响。线路管理部门掌握无缝线路钢轨的温度至关重要,以防止高温季节长钢轨压力超限而导致线路胀轨跑道,同时防止低温季节长钢轨拉力超限而导致钢轨拉断。
3.目前,线路管理部门通常在天窗内采用温度计对某些区域的钢轨温度进行人工测量,这种方式无法实时获取钢轨温度,尤其是白天钢轨温度最高时刻无法测量,而且效率很低。
4.针对以上问题,为了实现对钢轨温度的实时监测,发明了一种钢轨温度监测装置及钢轨温度监测方法。


技术实现要素:

5.本发明的主要目的在于提供一种钢轨温度监测装置及钢轨温度监测方法,上述钢轨温度监测装置能够对钢轨进行实时监测。
6.为了实现上述目的,本发明提供了一种钢轨温度监测装置,包括:两个安装部,构造为能够沿钢轨的延伸方向间隔设置;控制部,与两个安装部均连接,控制部位于两个安装部之间;多个温度检测件,多个温度检测件能够沿竖直方向间隔设置在钢轨上,以检测钢轨的轨头、轨腰和轨底三个中的至少两个的温度,控制部与多个温度检测件均电连接,以对接收的数据进行处理。
7.进一步地,安装部包括间隔设置的两个安装件和用于连接两个安装件的连接件,每个安装件上均设有用于安装轨底的安装槽,两个安装槽相向设置。
8.进一步地,钢轨温度监测装置还包括设置在控制部上的套筒,套筒位于两个安装件之间,安装件上还设有安装通孔,连接件穿设在两个安装通孔和套筒内。
9.进一步地,安装部还包括位于连接件的外周的弹性件,套筒的至少一侧设有弹性件;或者,钢轨温度监测装置包括位于控制部的相对两侧的两个套筒,两个套筒与两个安装部对应设置。
10.进一步地,安装部还包括与连接件连接的防脱件,防脱件位于两个安装件中的一个的背离控制部的一侧;或者,多个温度检测件包括轨底温度检测件,安装件上设有与安装槽连通的保护槽,安装槽的至少一侧设有保护槽,且轨底温度检测件位于保护槽内。
11.进一步地,多个温度检测件包括轨腰温度检测件,钢轨温度监测装置还包括位于安装部一侧的第一防护件,第一防护件的一端与安装部连接,第一防护件的另一端上设有第一防护槽,轨腰温度检测件位于第一防护槽内。
12.进一步地,多个温度检测件还包括轨头温度检测件,钢轨温度监测装置还包括位于第一防护件的一侧的第二防护件,第二防护件的一端与安装部连接,第二防护件的另一端上设有第二防护槽,第二防护槽位于第一防护槽的上方,轨头温度检测件位于第二防护槽内。
13.进一步地,第一防护件至少包括依次相连接的第一板段、第二板段和第三板段,第一板段和第二板段呈夹角设置,第二板段和第三板段呈夹角设置,且沿第二板段的厚度方向,第一板段和第三板段分别位于第二板段的相对两侧;或者,第一防护件为折弯钣金件。
14.进一步地,第二板段和第三板段均与轨腰温度检测件抵接,以对轨腰温度检测件进行固定。
15.进一步地,控制部包括具有容置腔的外壳,控制部还包括:处理模块,位于容置腔内,多个温度检测件均与处理模块电连接,以对多个温度检测件检测的数据进行处理;传输模块,位于容置腔内,传输模块与处理模块电连接,传输模块用于将处理模块处理后的数据传递至终端设备;电源模块,处理模块和传输模块均与电源模块电连接。
16.根据本发明的另一方面,本发明提供了一种钢轨温度监测方法,包括:将多个温度检测件安装至钢轨的安装步骤;通过多个温度检测件获取轨头温度、轨腰温度和轨底温度三个中的至少两个的温度获取步骤;通过控制部接收温度检测件传递的数据信号并计算钢轨的平均温度的数据处理步骤。
17.进一步地,在数据处理步骤之后,钢轨温度监测方法还包括判断平均温度是否小于或等于第一预设值,且大于或等于第二预设值的第一判断步骤,如果是,则执行温度获取步骤;如果否,则执行报警步骤,其中,第一预设值大于第二预设值。
18.进一步地,数据处理步骤包括判断获取的温度是否包括轨头温度、轨腰温度和轨底温度的第二判断步骤,如果是,则执行计算轨头温度、轨腰温度和轨底温度的平均值的第一计算步骤,如果否,则执行第三判断步骤。
19.进一步地,第三判断步骤包括判断获取的温度是否包括轨腰温度,如果是,则执行计算轨腰温度的平均值的第二计算步骤,如果否,则执行计算轨底温度和轨头温度的平均值的第三计算步骤。
20.应用本发明的技术方案,通过在钢轨上沿竖直方向间隔设置多个温度检测件,且通过安装部将控制部安装在钢轨上,多个温度检测件均与控制部电连接,这样控制部可以对多个温度检测件检测的温度进行处理,从而可以对钢轨的温度的进行实时在线监测。
附图说明
21.构成本技术的一部分的说明书附图用来提供对本发明的进一步理解,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:
22.图1示出了本发明的实施例的钢轨温度监测装置的结构示意图;
23.图2示出了图1的钢轨温度监测装置的右视图;
24.图3示出了图1的钢轨温度监测装置的仰视图;
25.图4示出了图1的钢轨温度监测装置的控制部的结构示意图;
26.图5示出了图1的钢轨温度监测装置的安装件的结构示意图;
27.图6示出了图1的钢轨温度监测装置的第二防护件的结构示意图;
28.图7示出了图6的第二防护件的右视图;
29.图8示出了图1的钢轨温度监测装置的第一防护件的结构示意图;
30.图9示出了图8的第一防护件的右视图;
31.图10示出了图1的钢轨温度监测装置的控制部的各个模块的连接示意图;
32.图11示出了本发明的实施例的钢轨温度监测方法的流程示意图;以及
33.图12示出了图11的钢轨温度监测方法的数据处理步骤的流程示意图。
34.其中,上述附图包括以下附图标记:
35.1、钢轨;20、安装部;201、安装通孔;202、安装槽;203、保护槽;206、通孔;21、连接件;22、安装件;23、防脱件;30、第二防护件;301、第二安装孔;302、第二防护槽;303、第一防护段;304、第二防护段;305、第三防护段;306、第四防护段;31、第一防护件;311、第一安装孔;312、第一防护槽;313、第一板段;314、第二板段;315、第三板段;316、第四板段;40、温度检测件;41、轨底温度检测件;42、轨腰温度检测件;43、轨头温度检测件;50、控制部;501、盖板;502、壳体;503、天线;504、接头;505、螺钉;5021、套筒;60、弹性件。
具体实施方式
36.需要说明的是,在不冲突的情况下,本技术中的实施例及实施例中的特征可以相互组合。下面将参考附图并结合实施例来详细说明本发明。
37.需要说明的是,本发明的实施例中,钢轨1的延伸方向是指钢轨1的长度方向。
38.如图1至图3所示,本发明的实施例提供了一种钢轨温度监测装置。钢轨温度监测装置包括两个安装部20、控制部50和多个温度检测件40。其中,两个安装部20构造为能够沿钢轨1的延伸方向间隔设置;控制部50与两个安装部20均连接,控制部50位于两个安装部20之间;多个温度检测件40能够沿竖直方向间隔设置在钢轨1上,以检测钢轨1的轨头、轨腰和轨底三个中的至少两个的温度,控制部50与多个温度检测件40均电连接,以对接收的数据进行处理。
39.上述技术方案中,通过在钢轨1上沿竖直方向间隔设置多个温度检测件40,且通过安装部20将控制部50安装在钢轨1上,多个温度检测件40均与控制部50电连接,这样控制部50可以对多个温度检测件40检测的温度进行处理,从而可以对钢轨1的温度的进行实时在线监测。
40.进一步地,通过在钢轨1上沿竖直方向间隔设置多个温度检测件40,且多个温度检测件40均与控制部50电连接,这样,多个温度检测件40可以对钢轨1上的多个特定点进行温度检测,然后将温度检测数据传递至控制部50,以对数据进行处理,从而可以更加准确地对钢轨1的温度进行检测,进而提高检测钢轨1的温度的准确率。
41.发明人所知道的一种钢轨温度监测装置,为了避免影响行车,只设置了用于安装轨腰温度检测件和轨底温度检测件的支撑柱或支撑架,而不能实现对轨头的温度检测。
42.因此,本发明的实施例提供了一种既能够对钢轨的轨头进行温度检测,又能够降低对行车的影响的钢轨温度监测装置。具体地,本发明的实施例中,多个温度检测件40包括
轨底温度检测件41、轨腰温度检测件42和轨头温度检测件43,这样不仅可以对钢轨1的轨底、轨腰进行温度检测,还可以对钢轨1的轨头进行温度检测,从而对钢轨1在竖直方向上的多个位置进行温度检测,进而能够更加准确地检测钢轨1的温度。
43.优选地,本发明的实施例中,温度检测件40为温度传感器。
44.如图2、图3和图5所示,本发明的实施例中,安装部20包括间隔设置的两个安装件22和用于连接两个安装件22的连接件21,每个安装件22上均设有用于安装轨底的安装槽202,两个安装槽202相向设置。
45.通过上述设置,可以将钢轨1的两侧轨底卡入两个安装槽202内,然后利用连接件21将两个安装件22连接,这样可以将安装部20稳定安装在钢轨1上,从而可以使控制部50稳定地安装在钢轨1上,进而可以对钢轨1的温度的进行实时在线监测。
46.如图3至图5所示,本发明的实施例中,钢轨温度监测装置还包括设置在控制部50上的套筒5021,套筒5021位于两个安装件22之间,安装件22上还设有安装通孔201,连接件21穿设在两个安装通孔201和套筒5021内。
47.通过上述设置,可以使控制部50通过套筒5021与安装部20连接,然后再通过安装部20将控制部50稳定地安装在钢轨1上,且上述结构简单,便于安装。
48.优选地,如图3所示,本发明的实施例中,钢轨温度监测装置包括位于控制部50的相对两侧的两个套筒5021,两个套筒5021与两个安装部20对应设置。这样可以将控制部50安装在两个安装部20之间,并且使控制部50安装在钢轨1的下方,以对钢轨1的温度的进行实时在线监测。
49.当然,在附图未示出的替代实施例中,套筒5021的数量也可以为三个或者四个等等。
50.优选地,如图4所示,本发明的实施例中,钢轨温度监测装置还包括设置在控制部50上的多个接头504,多个接头504与多个温度检测件40连接,从而可以使温度检测件40与控制部50连接,以实现对轨头、轨腰和轨底温度的同时测量。
51.优选地,接头504采用防水接头,这样,可以避免水汽进入控制部50,从而保证控制部50可以正常工作。
52.如图3所示,本发明的实施例中,安装部20还包括位于连接件21的外周的弹性件60,套筒5021的至少一侧设有弹性件60。
53.通过上述设置,弹性件60可以避免了套筒5021与安装部20的直接接触,从而产生很好的防震效果;进一步地,弹性件60也可以对连接件21起到一定的防松作用。
54.优选地,本发明的实施例中,弹性件60为弹簧。
55.如图2和图3所示,本发明的实施例中,安装部20还包括与连接件21连接的防脱件23,防脱件23位于两个安装件22中的一个的背离控制部50的一侧。这样,防脱件23可以避免连接件21从安装件22上脱落,从而可以使安装部20更稳定地固定在钢轨1上。
56.具体地,本发明的实施例中,防脱件23和连接件21螺纹连接,优选地,防脱件23为螺母,连接件21为螺栓。
57.如图2和图5所示,本发明的实施例中,多个温度检测件40包括轨底温度检测件41,安装件22上设有与安装槽202连通的保护槽203,安装槽202的至少一侧设有保护槽203,且轨底温度检测件41位于保护槽203内。
58.通过上述设置,安装部20不仅可以对控制部50进行固定,还可以对轨底温度检测件41进行防护。
59.具体地,如图5所示,安装槽202的相对两侧均设有保护槽203,这样,无论轨底温度检测件41是设置在轨底的上表面还是轨底的底面,安装部20均可以对轨底温度检测件41进行保护,从而避免轨底温度检测件41受到损坏。
60.当然,在附图未示出的替代实施例中,也可以只在安装槽202的一侧设置保护槽203。
61.具体地,本发明的实施例中,安装槽202沿钢轨1的长度方向延伸,安装通孔201沿与钢轨1的长度方向垂直的宽度方向延伸,这样可以将安装件22安装在钢轨1上。
62.具体地,本发明的实施例中,安装件22上还设有沿钢轨1的长度方向延伸的通孔206,且通孔206位于安装件22的底部,通孔206可以穿设并固定铁丝或绳子,这样,可以利用铁丝或者绳子来固定与温度检测件40连接的线束,从而可以对较长的线束进行存储,避免发生线束缠绕打结的情况。
63.如图1、图2和图8所示,本发明的实施例中,多个温度检测件40包括轨腰温度检测件42,钢轨温度监测装置还包括位于安装部20一侧的第一防护件31,第一防护件31的一端与安装部20连接,第一防护件31的另一端上设有第一防护槽312,轨腰温度检测件42位于第一防护槽312内。
64.通过上述设置,第一防护件31可以对轨腰温度检测件42进行防护,从而使温度检测件40可以在比较恶劣的环境进行长期监测。
65.具体地,本发明的实施例中,轨腰温度检测件42可以安装在钢轨两侧,即工作边一侧和非工作边一侧均可以安装。这样,在不影响行车安全的情况下还可以提高钢轨1的温度检测的准确率。
66.需要说明的是,本发明的实施例中,轨腰温度检测件42安装在钢轨1的中和轴上。
67.具体地,本发明的实施例中,在第一防护件31将轨腰温度检测件42罩住并进行防护后,可以再涂上防水胶进行防水。这样可以提高防护效果,从而使温度检测件40可以在比较恶劣的环境进行长期监测。
68.具体地,本发明的实施例中,第一防护件31与安装部20连接的一端上设有第一安装孔311,连接件21穿过第一安装孔311后与防脱件23连接,可以将第一防护件31安装在安装部20上,这样,通过设置一个连接件21就可以将第一防护件31和安装部20同时安装在钢轨1上,上述结构简单,便于安装。
69.如图1、图2和图6所示,本发明的实施例中,多个温度检测件40还包括轨头温度检测件43,钢轨温度监测装置还包括位于第一防护件31的一侧的第二防护件30,第二防护件30的一端与安装部20连接,第二防护件30的另一端上设有第二防护槽302,第二防护槽302位于第一防护槽312的上方,轨头温度检测件43位于第二防护槽302内。
70.通过上述设置,第二防护件30可以对轨头温度检测件43进行防护,从而使温度检测件40可以在比较恶劣的环境进行长期监测。
71.优选地,本发明的实施例中,第二防护件30位于第一防护件31的背离安装部20的一侧,这样可以使第二防护件30对轨头温度检测件43进行防护。
72.具体地,本发明的实施例中,第二防护件30与安装部20连接的一端上设有第二安
装孔301,连接件21穿过第二安装孔301后与防脱件23连接,可以将第二防护件30安装在安装部20上,这样,通过设置一个连接件21就可以将第一防护件31、第二防护件30和安装部20同时安装在钢轨1上,上述结构简单,便于安装。
73.当然,在附图未示出的替代实施例中,也可以利用两个连接件和与两个连接件对应的防脱件对第一防护件31和第二防护件30进行固定。
74.优选地,本发明的实施例中,第二防护件30为折弯钣金,这样,在实现对温度检测件40的防护作用下,上述结构简单,一体成型,便于加工。
75.当然,在附图未示出的替代实施例中,第二防护件30也可以为注塑壳体。
76.具体地,本发明的实施例中,轨头温度检测件43安装在钢轨1的轨头的非工作边一侧,避免对行车产生影响。
77.具体地,本发明的实施例中,第二防护件30将轨头温度检测件43罩住并进行防护后,可以再涂上防水胶进行防水。这样可以提高防护效果,从而使温度检测件40可以在比较恶劣的环境进行长期监测。
78.如图8和图9所示,本发明的实施例中,第一防护件31至少包括依次相连接的第一板段313、第二板段314和第三板段315,第一板段313和第二板段314呈夹角设置,第二板段314和第三板段315呈夹角设置,且沿第二板段314的厚度方向,第一板段313和第三板段315分别位于第二板段314的相对两侧。
79.通过上述设置,第二板段314和第三板段315之间的夹角空间可以形成容纳轨腰温度检测件42的第一防护槽312,从而对轨腰温度检测件42进行防护,第一板段313可以使第二板段314和第三板段315朝轨腰温度检测件42所在的位置布置,这样可以更好地对轨腰温度检测件42进行防护。
80.上述结构简单,便于加工。
81.需要说明的是,本发明的实施例中,第二板段314的厚度方向是指图9中的左右方向。
82.具体地,本发明的实施例中,第二板段314和第三板段315均与轨腰温度检测件42抵接,以对轨腰温度检测件42进行固定。
83.通过上述设置,第二板段314和第三板段315可以将轨腰温度检测件42压紧在钢轨1上,从而对轨腰温度检测件42进行固定,这样,第一防护件31不仅能够对轨腰温度检测件42进行防护,而且第一防护件31还可以对轨腰温度检测件42进行固定。
84.如图8和图9所示,本发明的实施例中,第一防护件31还包括与第一板段313连接且呈夹角设置的第四板段316,第四板段316位于第一板段313的背离第二板段314的一侧,且第一安装孔311设置在第四板段316上,这样,便于第一防护件31与安装部20连接。
85.优选地,如图9所示,本发明的实施例中,第一板段313和第二板段314之间具有夹角b2,夹角b2大于或等于85
°
,且小于或等于95
°
,这样可以使第一板段313延伸至轨腰温度检测件42所在的位置,从而使第二板段314和第三板段315对轨腰温度检测件42进行防护。
86.优选地,如图9所示,本发明的实施例中,第二板段314和第三板段315之间具有夹角a2,夹角a2大于或等于120
°
,且小于或等于135
°
,这样,可以在第二板段314和第三板段315围成第一防护槽312的情况下,使第二板段314和第三板段315更加靠近轨腰温度检测件42,从而对轨腰温度检测件42进行更好地防护。
87.优选地,如图9所示,本发明的实施例中,第一板段313和第四板段316之间具有夹角c2,夹角c2大于或等于110
°
,且小于或等于125
°
,这样,在第四板段316与安装部20连接的情况下,可以使第一板段313延伸至轨腰温度检测件42所在的位置。
88.优选地,如图9所示,本发明的实施例中,第一板段313具有长度l2,长度l2大于或等于75mm,且小于或等于95mm,这样可以使第一板段313的一端通过第四板段316与安装部20连接,可以使第一板段313的另一端延伸至轨腰温度检测件42所在的位置,从而使第一防护槽312更好地对轨腰温度检测件42进行防护。
89.优选地,如图8和图9所示,本发明的实施例中,第一防护件31为折弯钣金件。这样,在实现对温度检测件40的防护作用下,上述结构简单,一体成型,便于加工。
90.当然,在附图未示出的替代实施例中,第一防护件31也可以为注塑壳体。
91.需要说明的是,本发明的实施例中,轨腰温度检测件42位于轨腰中和轴上,且第一防护件31根据不同轨型设计,只要保证第一防护槽312与轨腰中和轴平齐即可。
92.如图6和图7所示,本发明的实施例中,第二防护件30至少包括依次相连接的第一防护段303、第二防护段304和第三防护段305,第一防护段303和第二防护段304呈夹角设置,第二防护段304和第三防护段305呈夹角设置,且沿第二防护段304的厚度方向,第一防护段303和第三防护段305分别位于第二防护段304的相对两侧。
93.通过上述设置,第二防护段304和第三防护段305之间的夹角空间可以形成容纳轨头温度检测件43的第二防护槽302,从而对轨头温度检测件43进行防护,第一防护段303可以使第二防护段304和第三防护段305朝轨头温度检测件43所在的位置布置,这样可以更好地对轨头温度检测件43进行防护。
94.上述结构简单,便于加工。
95.需要说明的是,本发明的实施例中,第二防护段304的厚度方向是指图7中的左右方向。
96.具体地,本发明的实施例中,第二防护段304和第三防护段305均与轨头温度检测件43抵接,以对轨头温度检测件43进行固定。
97.通过上述设置,第二防护段304和第三防护段305可以将轨头温度检测件43压紧在钢轨1上,从而对轨头温度检测件43进行固定,这样,第二防护件30不仅能够对轨头温度检测件43进行防护,而且第二防护件30还可以对轨头温度检测件43进行固定。
98.如图6和图7所示,本发明的实施例中,第二防护件30还包括与第一防护段303连接且呈夹角设置的第四防护段306,第四防护段306位于第一防护段303的背离第二防护段304的一侧,且第二安装孔301设置在第四防护段306上,这样,便于第二防护件30与安装部20连接。
99.优选地,本发明的实施例中,第一防护段303和第二防护段304之间具有夹角b1,且满足:15
°
≤b1-b2≤40
°
,这样,一方面可以避免位于第一防护件31的外侧的第二防护件30干涉第一防护件31,另一方面,由于轨头温度检测件43位于轨腰温度检测件42的上方,上述设置可以使第二防护件30和第一防护件31分别延伸至与轨头温度检测件43和轨腰温度检测件42对应的位置。
100.优选地,如图7所示,本发明的实施例中,夹角b1大于或等于110
°
,且小于或等于125
°
,这样可以使第一防护段303延伸至轨头温度检测件43所在的位置,从而使第二防护段
304和第三防护段305对轨头温度检测件43进行防护。
101.优选地,如图7所示,本发明的实施例中,第二防护段304和第三防护段305之间具有夹角a1,夹角a1大于或等于110
°
,且小于或等于130
°
,这样,可以在第二防护段304和第三防护段305围成第二防护槽302的情况下,使第二防护段304和第三防护段305更加靠近轨头温度检测件43,从而对轨头温度检测件43进行更好地防护。
102.优选地,本发明的实施例中,第一防护段303和第四防护段306之间具有夹角c1,且满足:20
°
≤c1-c2≤45
°
,这样,一方面可以避免位于第一防护件31的外侧的第二防护件30干涉第一防护件31,另一方面,由于轨头温度检测件43位于轨腰温度检测件42的上方,上述设置可以使第二防护件30和第一防护件31分别延伸至与轨头温度检测件43和轨腰温度检测件42对应的位置。
103.优选地,如图7所示,本发明的实施例中,夹角c1大于或等于145
°
,且小于或等于155
°
,这样,在第四防护段306与安装部20连接的情况下,可以使第一防护段303延伸至轨头温度检测件43所在的位置。
104.优选地,本发明的实施例中,第一防护段303具有长度l1,且满足:10mm≤l1-l2≤45mm,由于轨头温度检测件43位于轨腰温度检测件42的上方,上述设置可以使第二防护件30和第一防护件31分别延伸至与轨头温度检测件43和轨腰温度检测件42对应的位置。
105.优选地,如图7所示,本发明的实施例中,长度l1大于或等于105mm,且小于或等于120mm,这样可以使第一防护段303的一端通过第四防护段306与安装部20连接,可以使第一防护段303的另一端延伸至轨头温度检测件43所在的位置,从而使第二防护槽302更好地对轨头温度检测件43进行防护。
106.需要说明的是,本实施例的第一防护件31和第二防护件30可以适用于不同的轨型。
107.具体地,本发明的实施例中,钢轨温度监测装置还包括设置于温度检测件40的一侧的粘接层,粘接层用于将温度检测件40安装在钢轨1上。这样,在实现将温度检测件40安装在钢轨1上的目的下,可以降低对行车的影响。
108.优选地,本发明的实施例中,粘接层可以为胶粘剂或胶布等等。
109.具体地,本发明的实施例中,钢轨1的相对两侧均设有温度检测件40。这样可以对钢轨1的两侧温度进行检测,从而提高温度检测的精确度。
110.优选地,本发明的实施例中,轨头温度检测件43一般只设置在钢轨1的一侧,这样可以避免影响行车运行,而轨腰温度检测件42和轨底温度检测件41均可以设置在钢轨1的相对两侧,这样在避免影响行车运行的情况下,可以提高温度的检测的精确度。
111.如图4和图10所示,本发明的实施例中,控制部50包括具有容置腔的外壳,控制部50还包括处理模块、传输模块和电源模块。其中,处理模块位于容置腔内,多个温度检测件40均与处理模块电连接,以对多个温度检测件40检测的数据进行处理;传输模块位于容置腔内,传输模块与处理模块电连接,传输模块用于将处理模块处理后的数据传递至终端设备;处理模块和传输模块均与电源模块电连接。
112.上述技术方案中,处理模块对多个温度检测件40检测的温度进行采集和处理,并将处理后的数据及结果通过传输模块传递至终端设备,从而使处理结果能够在终端设备上输出,以便技术人员及时了解钢轨1的情况。
113.具体地,本发明的实施例中,处理模块包括信号接收单元、与信号接收单元连接的计算单元和与计算单元连接的判断单元,判断单元与传输模块连接。其中,信号接收单元用于接收多个温度检测件40检测到的数据,计算单元用于计算钢轨1的平均温度,判断单元用于将第一预设值和第二预设值分别与平均温度进行比较,以得到判断结果。这样,多个温度检测件40检测后的数据经计算和比较处理后,可以经传输模块传输至终端设备,从而使判断结果以报警的方式输出。
114.优选地,本发明的实施例中,计算单元也与传输模块电连接,这样可以将数据传输至终端设备,这样,终端设备可以对数据进行统一管理,从而可以对数据进行分析、展示和历史查询。
115.具体地,本发明的实施例中,控制部50还包括位于容置腔内的数据存储模块,数据存储模块与处理模块电连接。这样可以将数据存入数据存储模块内,从而保证数据安全。
116.发明人所知道的一种在特殊地段安装的轨温监测系统,其测量系统功率大,通常采用ac220v或太阳能供电,若采用220v交流电供电,线路上需要布置信号线和电源线,这样会导致系统复杂且容易受到线路维护的影响;而监测现场不一定具备220v交流供电条件,但是,若采用太阳能供电,现场需要部署太阳能板和蓄电池等设备,安装繁琐,工作量大,而且太阳能系统对光照要求较高,应用场景受到限制。
117.因此,本发明的实施例提供了一种能够实现对钢轨温度的实时监测,同时适用于现场恶劣环境,减少线缆的铺设的钢轨温度监测装置。其中,用于向处理模块、传输模块和数据存储模块供电的电源模块,采用小容量电池,这样,电源模块占用体积小,可以实现控制部50的小型化。
118.优选地,本发明的实施例中,传输模块采用nb-iot(窄带物联网)技术,这样降低了监测装置的功率,提高了监测装置的连续工作时间,从而可以保证控制部50具有很低的功率,且能够在不更换电池的情况下对钢轨的温度持续监测2年以上。
119.如图4所示,本发明的实施例中,控制部50还包括与传输模块连接的天线503,从而实现无线传输。
120.如图4所示,本发明的实施例中,外壳包括壳体502和与壳体502连接的盖板501,壳体502和盖板501围成容置腔。这样可以便于对电源模块、处理模块、传输模块和数据存储模块进行安装,并且将上述结构集成在一起。
121.优选地,本发明的实施例中,壳体502和盖板501通过螺钉505紧固,从而实现壳体502和盖板501之间的紧密连接,以使外壳具有很好的防水性。
122.如图1和图2所示,控制部50安装在钢轨1的底部,并且盖板501位于壳体502的上方,这样可以避免螺钉505松动后脱落,从而减小对行车的影响。
123.相对于现有的结构复杂且体积较大的测温装置,本实施例的钢轨温度监测装置的体积小,且结构简单,这样,在不影响行车安全的情况下,本实施例的钢轨温度监测装置可以对钢轨的内侧进行检测。
124.如图11所示,本发明的实施例提供了一种钢轨温度监测方法。钢轨温度监测方法包括:将多个温度检测件安装至钢轨1的安装步骤;通过多个温度检测件获取轨头温度、轨腰温度和轨底温度三个中的至少两个的温度获取步骤;通过控制部接收温度检测件传递的数据信号并计算钢轨1的平均温度的数据处理步骤。
125.上述技术方案中,通过将多个温度检测件40安装至钢轨1,这样可以获取轨头温度、轨腰温度和轨底温度三个中的至少两个的温度,然后利用控制部50对多个温度检测件40检测的温度进行接收并处理,以计算钢轨1的平均温度,从而可以对钢轨1的温度的进行实时在线监测。
126.进一步地,多个温度检测件40可以对钢轨1上的轨头温度、轨腰温度和轨底温度中的至少两种温度进行检测,然后将温度检测数据传递至控制部50,以对数据进行采集和处理,从而可以更加准确地对钢轨1的温度进行检测,进而提高检测钢轨1的温度的准确率。
127.如图11所示,本发明的实施例中,在数据处理步骤之后,钢轨温度监测方法还包括判断平均温度是否小于或等于第一预设值,且大于或等于第二预设值的第一判断步骤,如果是,则执行温度获取步骤;如果否,则执行报警步骤,其中,第一预设值大于第二预设值。
128.上述技术方案中,若平均温度在第二预设值和第一预设值的范围之内,则钢轨1的温度为正常温度,这样对钢轨1进行持续监测即可,若平均温度小于第二预设值或大于第一预设值,钢轨1的温度为异常温度,这样可以执行报警步骤,向技术人员进行报警,以便于技术人员对钢轨1及时进行检查处理。
129.如图11所示,本发明的实施例中,在报警步骤之后,还需要执行温度获取步骤,以实现对钢轨1的温度进行实时监测的目的。
130.需要说明的是,本发明的实施例中,钢轨1的温度是实时获取的,即向技术人员进行报警后,技术人员对钢轨1进行检查的步骤可以和温度获取步骤同时进行。
131.如图11所示,本发明的实施例中,在数据处理步骤之后,钢轨温度监测方法还包括将平均温度传输至终端设备的传输步骤。
132.上述技术方案中,将平均温度传输至终端设备,这样,终端设备可以对数据进行统一管理,从而可以对数据进行分析、展示和历史查询。
133.如图12所示,本发明的实施例中,数据处理步骤包括判断获取的温度是否包括轨头温度、轨腰温度和轨底温度的第二判断步骤,如果是,则执行计算轨头温度、轨腰温度和轨底温度的平均值的第一计算步骤,如果否,则执行第三判断步骤。这样,可以更加精确地获取钢轨1的平均温度,从而提高获取钢轨1的温度的精确度。
134.如图12所示,本发明的实施例中,第三判断步骤包括判断获取的温度是否包括轨腰温度,如果是,则执行计算轨腰温度的平均值的第二计算步骤,如果否,则执行计算轨底温度和轨头温度的平均值的第三计算步骤。这样,可以更加精确地获取钢轨1的平均温度,从而提高获取钢轨1的温度的精确度。
135.具体地,本发明的实施例中,在数据处理步骤之后,钢轨温度监测方法还包括利用数据存储模块保存处理后的平均温度的步骤。这样可以保证数据安全。
136.需要说明的是,本发明的实施例中,第一预设值是根据钢轨1的锁定轨温和允许温升计算得到最大阈值,第二预设值是根据钢轨1的锁定轨温和允许温降计算得到最小阈值,最终得到一个温度阈值范围。
137.从以上的描述中,可以看出,本发明上述的实施例实现了如下技术效果:通过在钢轨上沿竖直方向间隔设置多个温度检测件,且通过安装部将控制部安装在钢轨上,多个温度检测件均与控制部电连接,这样控制部可以对多个温度检测件检测的温度进行处理,从而可以对钢轨的温度的进行实时在线监测。
138.以上仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。
再多了解一些

本文用于企业家、创业者技术爱好者查询,结果仅供参考。

发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表

相关文献