一种残膜回收机防缠绕挑膜装置的制 一种秧草收获机用电力驱动行走机构

超声速流场气动光学效应风洞综合测试平台

2022-07-16 14:58:03 来源:中国专利 TAG:


1.本发明涉及超声速流场实验装置技术领域,特别地,涉及一种超声速流场气动光学效应风洞综合测试平台。


背景技术:

2.现有的超声速流场气动光学效应风洞测试装置主要是使用波前传感器记录光束穿过流场后的畸变波前信息,其中,波前传感器可以是哈特曼波前传感器或者剪切干涉仪波前传感器,然后基于畸变波前信息,研究人员可以评估流场气动光学效应的强弱和分布特性,进而为气动光学效应研究和校正提供依据。
3.但是,由于波前传感器受自身传感器性能限制,一般测试的帧频比较低,无法进行高频帧(malley probe,mp技术)光束抖动信息的获取。即无法进行mp测试。另外,也没有同步采集相应的流场参数信息,无法从流动机理本身出发研究气动光学效应相关规律的物理内涵。因此,现有的超声速流场气动光学效应风洞测试装置只能进行波前测试这一单一测试手段,而无法采集流场参数信息和mp测试所需信息,无法深入分析气动光学效应内在的流动机理。


技术实现要素:

4.本发明提供了一种超声速流场气动光学效应风洞综合测试平台,以解决现有的超声速流场气动光学效应风洞测试装置只能进行波前测试这一单一测试手段,而无法采集流场参数信息和mp测试所需信息,无法深入分析气动光学效应内在的流动机理的技术问题。
5.根据本发明的一个方面,提供一种超声速流场气动光学效应风洞综合测试平台,包括第一隔腔、第二隔腔、激光光源、激光器、半透半反镜、波前探测装置、第一位置探测器、光阑和ccd相机,所述第一隔腔密封安装在风洞设备实验段的上侧板上,所述第二隔腔密封安装在风洞设备实验段的下侧板上,且所述第一隔腔和第二隔腔相对设置,所述激光光源位于所述第二隔腔的外侧,用于发出连续激光,所述光阑设置在所述第二隔腔内并位于连续激光的传输路径上,用于调节光学孔径的大小,所述半透半反镜位于所述第一隔腔的外侧,用于将穿过第二隔腔和第一隔腔后的连续激光分为两条传输光路,所述第一位置探测器和波前探测装置分别位于两条光路上,所述第一位置探测器用于获取mp测试所需的信息,所述波前探测装置用于获取波前测试所需的信息,所述激光器位于所述第一隔腔的外侧,用于发出激光脉冲,ccd相机位于所述第二隔腔的外侧,用于拍摄超声速气流中示踪粒子的粒子图像并获取npls测试和piv测试所需的信息。
6.进一步地,还包括多通道高精度同步控制器,所述多通道高精度同步控制器分别与ccd相机、波前探测装置、第一位置探测器和风洞的压力传感器连接,在进行测试时,所述多通道高精度同步控制器利用风洞的压力传感器检测到风洞开始运行时的压力跃升信号作为同步控制触发信号,并延长预设时间后控制ccd相机、波前探测装置、第一位置探测器进行同步采集。
7.进一步地,所述激光器发出的激光脉冲波长为532nm,所述激光光源发出的连续激光波长为632.8nm,所述ccd相机的镜头前方安装有包含632.8nm波段的陷波滤光片,用于消除连续激光对npls测试和piv测试的干扰。
8.进一步地,所述激光光源和光阑之间还设置有用于缩束和滤波的空间滤波器。
9.进一步地,还包括用于记录环境及测试系统噪声的第二位置探测器,为后期对第一位置探测器的记录数据进行数据噪声滤除提供依据。
10.进一步地,所述第一隔腔包括实验模型、立刀、光学隔腔和光学玻璃,所述光学隔腔的顶部密封安装在风洞实验段的上侧板上,所述立刀安装在所述风洞实验段的上侧板上并位于所述光学隔腔的前方,所述实验模型密封安装在所述立刀和光学隔腔的底部,所述实验模型上开设有玻璃安装孔,所述光学玻璃密封安装在所述玻璃安装孔内。
11.进一步地,所述立刀的前缘夹角为15
°
~30
°

12.进一步地,所述光学玻璃带有台阶,所述实验模型上的玻璃安装孔为台阶孔,所述光学玻璃的台阶面与所述玻璃安装孔的台阶面之间设置有第一密封圈,所述光学玻璃的顶面与所述光学隔腔的底面之间设置有第二密封圈。
13.进一步地,所述光学隔腔的顶面与风洞实验段的上侧板之间设置有第三密封圈,所述光学隔腔的底面与所述实验模型之间设置有第四密封圈。
14.进一步地,所述实验模型为超声速气膜实验板,所述超声速气膜实验板包括带后台阶的实验板、超声速气膜形成喷管和超声速气膜供气管路,所述带后台阶的实验板密封安装在所述光学隔腔和立刀上,所述超声速气膜形成喷管可拆卸地密封安装在所述带后台阶的实验板上,所述超声速气膜供气管路安装在所述带后台阶的实验板上,所述超声速气膜供气管路分别与外部气源、所述超声速气膜形成喷管连通,用于为超声速气膜形成喷管提供冷却气体。
15.本发明具有以下效果:
16.本发明的超声速流场气动光学效应风洞综合测试平台,在同一风洞运行车次下可以同时进行波前测试、mp测试、npls测试和piv测试,单次测量获取的信息量大,有效节约了风洞运行车次,降低了实验成本,并且可以同步获取流场参数信息和气动光学效应相关参数,有助于分析气动光学效应内在的流动机理。并且,利用半透半反镜可以获取相同区域内不同类型的气动光学效应信息,有利于提高气动光学效应测试的准确性和可靠性。另外,还通过在测试区域上方设置密封安装的第一隔腔,可以消除风洞上壁面湍流边界层的影响,通过在测试区域下方设置密封安装的第二隔腔,可以消除风洞下壁面湍流边界层的影响,从而保证风洞上下壁面湍流边界层不会对光线传输产生干扰,大大提升了气动光学效应测试的准确性。
17.除了上面所描述的目的、特征和优点之外,本发明还有其它的目的、特征和优点。下面将参照图,对本发明作进一步详细的说明。
附图说明
18.构成本技术的一部分的附图用来提供对本发明的进一步理解,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:
19.图1是本发明优选实施例的超声速流场气动光学效应风洞综合测试平台的结构布
置示意图。
20.图2是本发明优选实施例的超声速流场气动光学效应风洞综合测试平台的的时序控制示意图。
21.图3是本发明优选实施例中利用光电探测器确定的npls/piv测试的记录数据时刻。
22.图4是本发明优选实施例的第一隔腔安装在实验段的上侧板上的结构示意图。
23.图5是本发明优选实施例的第一隔腔的光学隔腔和光学玻璃的安装结构示意图。
24.图6是本发明优选实施例的第一隔腔的光学隔腔和光学玻璃的爆炸结构示意图。
25.图7是本发明优选实施例的带后台阶的实验板的结构示意图。
26.图8是本发明优选实施例的超声速气膜形成喷管的结构示意图。
27.附图标记说明
28.1、第一隔腔;2、第二隔腔;3、激光光源;4、激光器;5、半透半反镜;6、波前探测装置;7、第一位置探测器;8、光阑;9、空间滤波器;10、第二位置探测器;11、实验模型;12、立刀;13、光学隔腔;14、光学玻璃;141、第一密封圈;142、第二密封圈;131、第三密封圈;132、第四密封圈;111、带后台阶的实验板;112、超声速气膜形成喷管;113、超声速气膜供气管路;1121、密封条;1111、前板体;1112、后板体;1113、凹槽;1114、进气孔;100、气体供给转接接头。
具体实施方式
29.以下结合附图对本发明的实施例进行详细说明,但是本发明可以由下述所限定和覆盖的多种不同方式实施。
30.如图1至图6所示,本发明的优选实施例提供一种超声速流场气动光学效应风洞综合测试平台,用于设置在风洞的实验段进行气动光学效应测试,其包括第一隔腔1、第二隔腔2、激光光源3、激光器4、半透半反镜5、波前探测装置6、第一位置探测器7、光阑8和ccd相机(图未示),所述第一隔腔1密封安装在风洞设备实验段的上侧板上,所述第二隔腔2密封安装在风洞设备实验段的下侧板上,且所述第一隔腔1和第二隔腔2相对设置,第一隔腔1和第二隔腔2之间的流场即为测试区域。所述激光光源3位于所述第二隔腔2的外侧,用于发出连续激光,所述光阑8设置在所述第二隔腔2内并位于连续激光的传输路径上,用于调节光学孔径的大小。所述半透半反镜5位于所述第一隔腔1的外侧,用于将穿过第二隔腔2和第一隔腔1后的连续激光分为两条传输光路,所述第一位置探测器7和波前探测装置6分别位于两条光路上,所述第一位置探测器7用于获取mp测试所需的信息,所述波前探测装置6用于获取波前测试所需的信息。所述激光器4位于所述第一隔腔1的外侧,用于发出激光脉冲,ccd相机位于所述第二隔腔2的外侧,用于拍摄超声速气流中示踪粒子的粒子图像并获取npls(nano-tracer-based planar laser scattering,平面激光散射)测试和piv测试所需的信息。
31.其中,所述激光光源3为连续激光光源,连续激光在依次穿过第二隔腔2、测试区域流场、第一隔腔1后被半透半反镜5分成两条传输光路,波前探测装置6设置在其中一条光路上,用于采集波前测试所需的畸变波前信息,以便于进行波前测试,第一位置探测器7设置在另一条光路上,用于采集光学孔径内流场导致的光线偏移信息,以便于进行mp测试,利用
半透半反镜5可以获取相同区域内不同类型的气动光学效应信息,有利于提高气动光学效应测试的准确性和可靠性。所述激光器4为双腔nd:yag激光器,其可以发出激光脉冲,激光脉冲在依次穿过第一隔腔1、测试区域流场、第二隔腔2后被ccd相机所捕捉,而风洞的超声速气流内部署有微量的纳米示踪粒子,ccd相机可以拍摄纳米示踪粒子的粒子图像,从而获得npls测试所需的平面激光散射信息和piv测试所需的粒子图像速度场信息,以便于进行npls测试和piv测试。其中,平面激光散射信息和粒子图像速度场信息为流场参数信息,畸变波前信息和光线偏移信息则为气动光学效应参数信息。
32.另外,考虑到气动光学效应测试受到光路积分效应影响,本发明设计特定的结构来消除风洞壁面边界层对于测试结果的影响,以保证测试结果的准确性,具体通过在测试区域上方设置密封安装的第一隔腔1,可以消除风洞上壁面湍流边界层的影响,通过在测试区域下方设置密封安装的第二隔腔2,可以消除风洞下壁面湍流边界层的影响,从而保证风洞上下壁面湍流边界层不会对光线传输产生干扰,大大提升了气动光学效应测试的准确性。
33.可以理解,本实施例的超声速流场气动光学效应风洞综合测试平台,在同一风洞运行车次下可以同时进行波前测试、mp测试、npls测试和piv测试,单次测量获取的信息量大,有效节约了风洞运行车次,降低了实验成本,并且可以同步获取流场参数信息和气动光学效应相关参数,有助于分析气动光学效应内在的流动机理。并且,利用半透半反镜5可以获取相同区域内不同类型的气动光学效应信息,有利于提高气动光学效应测试的准确性和可靠性。另外,还通过在测试区域上方设置密封安装的第一隔腔1,可以消除风洞上壁面湍流边界层的影响,通过在测试区域下方设置密封安装的第二隔腔2,可以消除风洞下壁面湍流边界层的影响,从而保证风洞上下壁面湍流边界层不会对光线传输产生干扰,大大提升了气动光学效应测试的准确性。
34.可以理解,所述超声速流场气动光学效应风洞综合测试平台还包括多通道高精度同步控制器(图未示),所述多通道高精度同步控制器分别与ccd相机、波前探测装置6、第一位置探测器7和风洞的压力传感器连接。如图2所示,在进行测试时,所述多通道高精度同步控制器利用风洞的压力传感器检测到风洞开始运行时的压力跃升信号作为同步控制触发信号,并延长预设时间后控制ccd相机、波前探测装置6、第一位置探测器7进行同步采集。其中,进行数据采集时,风洞处于稳定运行阶段。另外,如图3所示,还可以利用光电探测器记录双腔nd:yag激光器的出光时刻,即定位npls/piv技术测试数据时刻。
35.其中,所述激光器4发出的激光脉冲波长为532nm,所述激光光源3发出的连续激光波长为632.8nm,为了避免波前测试和mp测试采用的连续激光对npls/piv测试造成干扰,所述ccd相机的镜头前方安装有包含632.8nm波段的陷波滤光片,从而可以消除连续激光对npls测试和piv测试的干扰,保证了npls/piv测试的准确性。
36.可选地,所述激光光源3和光阑8之间还设置有用于缩束和滤波的空间滤波器9,一方面便于根据实验要求改变光束的大小,另一方面可以滤除激光中的高频成本,保证光斑质量。另外,所述光阑8为一个可以连续调节的圆形光阑,其可以调节波前测试的光学孔径,测试光学孔径可以在0.1mm~20mm范围内变化。
37.可选地,所述超声速流场气动光学效应风洞综合测试平台还包括用于记录环境及测试系统噪声的第二位置探测器10,为后期对第一位置探测器7的记录数据进行数据噪声
滤除提供依据。当对第一位置探测器7采集的数据进行处理时,需要以第二位置探测器10采集的数据作为数据噪声,对第一位置探测器7采集的数据进行数据噪声去除,消除环境及测试系统噪声对于mp测试的干扰,从而保证mp测试的准确性。
38.可以理解,所述第一隔腔1和第二隔腔2的结构相同,两者结构呈镜像,故在此以第一隔腔1的结构来做示例性说明,第二隔腔2的结构在此不再赘述。如图4至图8所示,所述第一隔腔1包括实验模型11、立刀12、光学隔腔13和光学玻璃14,所述光学隔腔13为两端敞口的腔体结构,所述光学隔腔13的顶部密封安装在风洞实验段的上侧板上,所述立刀12安装在所述风洞实验段的上侧板上并位于所述光学隔腔13的前方,所述实验模型11密封安装在所述立刀12和光学隔腔13的底部,所述实验模型11上开设有玻璃安装孔,所述光学玻璃14密封安装在所述玻璃安装孔内,激光穿过光学玻璃14进入测试区域流场。其中,所述立刀12和光学隔腔13可以是一体式结构,也可以是分体式结构,本发明优选采用分体式结构,比于整体加工而言可以显著降低加工成本。可以理解,所述第一隔腔1通过设置密封的光学隔腔13来传输激光,激光的传输不会受到风洞上壁面湍流边界层的影响,保证了气动光学效应测试的准确性。
39.另外,所述立刀12的前缘需要削尖,并使前缘夹角尽可能的小,以减小其在风洞的超声速气流流场中产生斜基波的强度,避免实验模型11的下部流动压力过高造成直连式风洞溢流堵塞,作为优选的,所述立刀12的前缘夹角为15
°
~30
°
,一方面便于进行立刀12的设计加工,另一方面也有效减小了斜基波的强度。
40.可以理解,所述光学玻璃14带有台阶,所述实验模型11上的玻璃安装孔为台阶孔,所述光学玻璃14的台阶面与所述玻璃安装孔的台阶面之间设置有第一密封圈141,所述光学玻璃14的顶面与所述光学隔腔13的底面之间设置有第二密封圈142。通过第一密封圈141来保证光学玻璃14与实验模型11之间的密封需求,通过第二密封圈142可以使得光学玻璃14与光学隔腔13压紧,保证了两者之间的密封性。
41.另外,所述光学隔腔13的顶面与风洞实验段的上侧板之间设置有第三密封圈131,所述光学隔腔13的底面与所述实验模型11之间设置有第四密封圈132。通过第三密封圈131实现光学隔腔13与风洞实验段的上侧板之间的密封,通过第四密封圈132实现光学隔腔13与实验模型11之间的密封,保证光学隔腔13的内部不会与流场连通。
42.可以理解,气动光学效应测试主要研究的是风洞内超声速气流经过实验模型11后产生的流场结构对于光线传输的影响,其中,实验模型11的结构设计不同,对于光线传输的影响也不同。其中,所述实验模型11可以选择层流平板、超声速气膜实验板或者其它结构的实验板。在本发明中,以第一隔腔1的实验模型11为层流平板,第二隔腔2的实验模型11为超声速气膜实验板来做示例性说明。当然,在本发明的其它实施例中,两个隔腔的实验模型11也可以均采用层流平板,此时主要研究平板边界层对于光线传输的影响,或者,第一隔腔1采用超声速气膜实验板,第二隔腔2采用层流平板。另外,本发明也对超声速气膜实验板的结构进行了创新性设计,具体地,所述超声速气膜实验板包括带后台阶的实验板111、超声速气膜形成喷管112和超声速气膜供气管路113,所述带后台阶的实验板111密封安装在所述光学隔腔13和立刀12的顶部,所述带后台阶的实验板111在对应光学隔腔13顶部敞口的位置处开设了带台阶的玻璃安装孔,所述光学玻璃14即安装在该玻璃安装孔内。所述超声速气膜形成喷管112可拆卸地密封安装在所述带后台阶的实验板111上,所述超声速气膜供
气管路113安装在所述带后台阶的实验板111上,所述超声速气膜供气管路113分别与外部气源、所述超声速气膜形成喷管112连通,用于为超声速气膜形成喷管112提供冷却气体,其中,外部气源可以选择与风洞共用一个气源。在进行气动光学效应测试时,所述超声速气膜形成喷管112可以在测试区域形成超声速冷却气膜流场,当激光穿过超声速冷却气膜流场时会受到流场影响而发生偏移,然后通过相关传感器采集信息同步进行波前测试、mp测试、npls测试和piv测试。具体地,所述超声速气膜形成喷管112在周向上开设有多个安装螺孔,所述超声速气膜形成喷管112与所述带后台阶的实验板111通过螺钉连接,装拆十分方便。所述超声速气膜形成喷管112的喷管型面通常采用b样条曲线喷管设计方法进行设计,可以根据不同的马赫数设计不同的喷管型面,当需要适用于不同的马赫数时,只需要单独更换超声速气膜形成喷管112即可,而无需更换整个实验模型11。另外,所述超声速气膜形成喷管112的底面上沿周向布设有密封条1121,从而对超声速气膜形成喷管112进行有效密封,仅允许超声速冷却气膜从出口处喷出,同时也保证了喷管型面的安装精度。
43.可选地,所述带后台阶的实验板111包括一体式结构的前板体1111和后板体1112,所述前板体1111和后板体1112之间设计有台阶过渡,所述玻璃安装孔即开设在所述后板体1112上,所述超声速气膜形成喷管112安装在所述前板体1111上,所述前板体1111在所述超声速气膜形成喷管112的安装位置处设置有凹槽1113,用于形成大容积扁平喷管驻室,大容积扁平喷管驻室的结构设计可以满足上台阶部分区域的内部冷却需求,从而保证形成的超声速冷却气膜流场分布更加均匀。所述凹槽1113内设置有进气孔1114,所述进气孔1114与所述超声速气膜供气管路113密封连接,冷却气体经超声速气膜供气管路113、进气孔1114进入到凹槽1113内,然后通过超声速气膜形成喷管112喷出形成超声速冷却气膜。
44.可选地,风洞实验段的上侧板和/或下侧板上还设置有气体供给转接接头100,所述气体供给转接接头100分别与所述超声速气膜供气管路113、气源连接。由于整个测试平台放置在风洞设备的实验段内,为了便于供气管路的布置,在风洞实验段的上侧板和/或下侧板上设置气体供给转接接头100来实现气源与超声速气膜供气管路113之间的连通。
45.另外,所述风洞实验段的上侧板和/或下侧板上还设置有穿线板,用于供传感器线路穿过,一方面满足了多样化的测试需求,另一方面也保证了密封性。
46.以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。
再多了解一些

本文用于企业家、创业者技术爱好者查询,结果仅供参考。

发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表

相关文献