一种残膜回收机防缠绕挑膜装置的制 一种秧草收获机用电力驱动行走机构

掺杂钴酸锂材料的循环性能的评估方法、系统以及计算机设备

2022-07-13 13:05:13 来源:中国专利 TAG:

掺杂钴酸锂材料的循环性能的评估方法、系统以及计算机设备
【技术领域】
1.本发明涉及锂电池电池材料技术领域,特别涉及一种掺杂元素特征参数的钴酸锂循环性能的评估方法、系统、计算机设备。


背景技术:

2.钴酸锂作为正极材料的锂离子电池由于其高能量密度、高离子导电率、大压实密度、充放电电压稳定且工作电压高等特点,但是高截止电压会使得钴酸锂的层状结构不稳定,其循环寿命会急剧地下降。为解决高截止电压下钴酸锂材料循环性能衰减过快的问题,目前已有学者提出使用不同元素对钴酸锂进行掺杂改性。掺杂元素进入钴酸锂晶格后的优化机制是一个复杂的问题,目前虽然不同的元素掺杂后能够抑制钴酸锂容量衰减的问题,但是掺杂元素特性与优化效果之间的关联仍然是一个亟待研究的问题。
3.目前针对掺杂钴酸锂的研究基本都是传统的方法,所耗费的资源和时间都很巨大。此外,自然界中存在的能够掺杂进入钴酸锂晶格中的元素很多,单元素掺杂钴酸锂的研究就是一个很庞大的工作,更不用说多元素的掺杂,因此对于掺杂元素的研究,需要耗费大量的资源与时间。


技术实现要素:

4.针对上述问题,本发明的目的在于克服现有技术评估掺杂元素特征参数的钴酸锂循环性能耗费大量资源以及时间的问题,提供一种掺杂元素特征参数的钴酸锂循环性能的评估方法。
5.本发明解决技术问题的方案是提供一种掺杂钴酸锂材料的循环性能的评估方法,所述评估方法包括如下步骤:获取待评估掺杂钴酸锂材料的描述符参数;将待评估掺杂钴酸锂材料的描述符参数输入预设的描述符参数跟循环性能参数关系的预测模型中;基于所述预设预测模型得到待评估掺杂钴酸锂材料的循环性能参数。
6.优选地,所述预设预测模型采用以下步骤建立:提供预设的初始预测模型:从数据库中获取历史掺杂钴酸锂材料的循环性能参数以及对应的历史描述符参数;以历史掺杂钴酸锂材料的循环性能参数以及对应的历史描述符参数训练所述初始预测模型得到所述预测模型。
7.优选地,所述初始预测模型采用以下步骤建立:从数据库中获取至少一组所述历史循环性能参数及所述历史描述符参数,通过预设的算法,得到初始预测模型。
8.优选地,训练所述初始预测模型包括以下步骤:将历史掺杂钴酸锂材料的循环性能参数以及对应的历史描述符参数按照一定比例分为训练集和测试集,依据所述训练集迭代训练所述预测模型,得到中间预测模型;通过所述测试集计算所述中间预测模型的准确性直到达到预设的准确性要求,则此时中间预测模型为所述预测模型。
9.优选地,在得到待评估掺杂钴酸锂材料的循环性能参数后还包括以下步骤:将所
述待评估掺杂钴酸锂材料的描述符参数以及对应的所述待评估掺杂钴酸锂材料的循环性能参数作为训练样本,对所述预测模型进行更新。
10.优选地,所述算法为随机森林。
11.优选地,所述评估所述准确性的指标包括:均方根误差(rmse)和确定系数(r2),所述均方根误差(rmse)和所述确定系数(r2),计算公式如下:
[0012][0013][0014]
其中,yi为历史掺杂钴酸锂材料的循环性能参数,为中间预测模型预测的数据,为预测数据的平均值,i为训练集或测试集中数据样本的序号,n为训练集或测试集中数据样本的总数量。
[0015]
优选地,所述待评估材料的描述符参数包括掺杂元素本身具有的特征参数、掺杂钴酸锂的理化性能参数、实验参数的任一种或多种组合,所述待评估材料的循环性能参数包括容量保留率、循环后的放电比容量、单圈容量损失率、单圈比容量损失的任一种或多种组合。
[0016]
本发明为解决上述技术问题,提供又一技术方案如下:一种掺杂钴酸锂材料的循环性能的评估系统,包括:获取模块,用于获取待评估掺杂钴酸锂材料的描述符参数;
[0017]
输入模块,用于将待评估掺杂钴酸锂材料的描述符参数输入预设的描述符参数跟循环性能参数关系的预测模型中;生成模块,基于所述预设预测模型得到待评估掺杂钴酸锂材料的循环性能参数。
[0018]
本发明为解决上述技术问题,提供又一技术方案如下:一种计算机设备,其特征在于,包括存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,所述处理器执行所述程序时,实现如前所述的掺杂钴酸锂材料的循环性能的评估方法。
[0019]
与现有技术相比,本发明提供一种掺杂钴酸锂材料的循环性能的评估方法,具有以下优点:
[0020]
1.本发明实施例提供一种掺杂钴酸锂材料的循环性能的评估方法,评估方法包括如下步骤:获取待评估掺杂钴酸锂材料的描述符参数;将待评估掺杂钴酸锂材料的描述符参数输入预设的描述符参数跟循环性能参数关系的预测模型中;基于预设预测模型得到待评估掺杂钴酸锂材料的循环性能参数。通过进行如上步骤,无需对单元素掺杂或多元素掺杂钴酸锂的进行多次研究,克服了现有技术评估掺杂元素特征参数的钴酸锂循环性能耗费精力大、时间长的问题。进一步地,本发明实施例提供的评估方法基于预测模型,得到的待检测掺杂钴酸锂的循环性能参数准确度高,误差小。
[0021]
2.本发明实施例的预测模型采用以下步骤建立:提供预设的初始预测模型:从预设的数据库中获取历史掺杂钴酸锂材料的循环性能参数以及对应的历史描述符参数;以历史掺杂钴酸锂材料的循环性能参数以及对应的历史描述符参数训练初始预测模型得到预
测模型。现有的技术评估掺杂钴酸锂的本就是一个很庞大的工作,需要浪费大量资源和时间,通过直接从预设的数据库中获取历史掺杂钴酸锂材料的循环性能参数以及对应的历史描述符参数,无需耗费大量精力去收集未评估的掺杂钴酸锂材料的循环性能参数,避免了采集新数据造成的资源浪费。
[0022]
3.本发明实施例的初始预测模型采用以下步骤建立:从预设的数据库中获取至少一组历史循环性能参数及历史描述符参数,结合预设的算法,得到初始预测模型。通过直接从预设数据库中选取数据通过预设的算法构建初始预测模型,建立的初始预测模型可靠性高。
[0023]
4.本发明实施例的训练初始预测模型包括以下步骤:将历史掺杂钴酸锂材料的循环性能参数以及对应的历史描述符参数按照一定比例分为训练集和测试集,依据训练集迭代训练预测模型,得到中间预测模型;通过测试集计算中间预测模型的准确性直到达到预设的准确性要求,则此时中间预测模型为预测模型。通过采用训练集对初始预测模型进行训练,提升了中间预测模型的可靠性,测试集对中间预测模型进行测试,准确度不满足预设要求,则重复进行迭代,上述迭代操作既筛选出了不满足预设要求的数据,保证了输出到预测模型数据的准确性。另外,在此比值范围下,在保证测试集对中间预测模型的准确性的基础上,训练集对初始预测模型的训练效率最佳,效果最好,进一步提升了整个评估的效率。另外,通过限定训练集和测试集的比值范围,进而数据库中的数据得到合理运用,避免了数据库中资源因分配不合理而造成的浪费。
[0024]
5.本发明实施例在得到待评估掺杂钴酸锂材料的循环性能参数后还包括以下步骤:将所述待评估掺杂钴酸锂材料的描述符参数以及对应的所述待评估掺杂钴酸锂材料的循环性能参数作为训练样本,对所述预测模型进行更新。基于预测模型,将每次待评估掺杂钴酸锂材料的描述符参数以及待评估掺杂钴酸锂材料的循环性能参数存储数据库中,扩大了数据库的数据量,进一步地通过数据库里的数据,优化本发明实施例中的预测模型,提高了预设预测模型的准确度。
[0025]
6.本发明实施例的算法为随机森林。随机森林对于数据可以产生高精准度的分类器,在处理输入参数时,学习过程快,处理准确度高,通过对于算法的限定,可以更符合历史掺杂钴酸锂材料的循环性能参数以及对应的历史描述符参数特征,以获得更准确的初始预测模型。
[0026]
7.本发明的评估准确性的指标包括:均方根误差(rmse)和确定系数(r2),均方根误差(rmse)和确定系数(r2),计算公式如下:
[0027][0028][0029]
其中,yi为历史掺杂钴酸锂材料的循环性能参数,为中间预测模型预测的数据,为预测数据的平均值,i为训练集或测试集中数据样本的序号,n为训练集或测试集中数
据样本的总数量。只需参考评估过程中均方根或确定系数的值,就可以清晰的知道评估中间预测模型的准确性的结果,方法直观,便捷性高。
[0030]
8.本发明的待评估材料的描述符参数包括掺杂元素本身具有的特征参数、掺杂钴酸锂的理化性能参数、实验参数的任一种或多种组合,待评估材料的循环性能参数包括容量保留率、循环后的放电比容量、单圈容量损失率、单圈比容量损失的任一种或多种组合,其中描述符参数中的掺杂量、掺杂后材料摩尔质量、c轴、初始电压、截止电压、电流大小、元素摩尔质量、离子半径、离子电负性、电子亲和能对待检测掺杂钴酸锂循环性能关联度较大,基于对描述符参数的进一步限定,可以将与待检测掺杂钴酸锂循环性能关联度较大的数据进行划分,进而可以提高预设预测模型的准确度。
[0031]
9.本发明实施例还提供一种系统,具有与上述一种掺杂钴酸锂材料的循环性能的评估方法相同的有益效果,在此不做赘述。
[0032]
10.本发明实施例还提供一种计算机设备,具有与上述一种掺杂钴酸锂材料的循环性能的评估方法相同的有益效果,在此不做赘述。
【附图说明】
[0033]
图1是本发明第一实施例提供的评估掺杂钴酸锂材料的循环性能参数方法的步骤流程示意图一。
[0034]
图2是本发明第一实施例提供的评估掺杂钴酸锂材料的循环性能的方法的的步骤流程示意图二。
[0035]
图3是本发明第一实施例提供的评估掺杂钴酸锂材料的循环性能的方法的的步骤流程示意图三。
[0036]
图4是本发明第一实施例提供的一种算法流程图。
[0037]
图5是本发明第一实施例提供的评估掺杂钴酸锂材料的循环性能的方法的的步骤流程示意图四。
[0038]
图6是本发明第一实施例提供的误差分析图。
[0039]
图7是本发明第二实施例提供的系统的结构示意图。
[0040]
图8是本发明第三实施例提供的计算机设备的就够示意图
[0041]
附图标识说明:
[0042]
1、评估方法;2、系统;3、计算机设备;201、获取模块;202、输入模块;203、生成模块;301、存储器;302、处理器;303、计算机程序。
【具体实施方式】
[0043]
为了使本发明的目的,技术方案及优点更加清楚明白,以下结合附图及实施实例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
[0044]
需要说明的是,本发明的说明书和权利要求书中的术语“第一”和“第二”等是用于区别不同的对象,而不是用于描述特定顺序。
[0045]
需要说明的是,当元件被称为“固定于”另一个元件,它可以直接在另一个元件上或者也可以存在居中的元件。当一个元件被认为是“连接”另一个元件,它可以是直接连接
到另一个元件或者可能同时存在居中元件。本文所使用的术语“垂直的”、“水平的”、“左”、“右”以及类似的表述只是为了说明的目的。
[0046]
在本发明中,术语“上”、“下”、“左”、“右”、“前”、“后”、“顶”、“底”、“内”、“外”、“中”、“竖直”、“水平”、“横向”、“纵向”等指示的方位或位置关系为基于附图所示的方位或位置关系。这些术语主要是为了更好地描述本发明及其实施例,并非用于限定所指示的系统、元件或组成部分必须具有特定方位,或以特定方位进行构造和操作。
[0047]
并且,上述部分术语除了可以用于表示方位或位置关系以外,还可能用于表示其他含义,例如术语“上”在某些情况下也可能用于表示某种依附关系或连接关系。对于本领域普通技术人员而言,可以根据具体情况理解这些术语在本发明中的具体含义。
[0048]
此外,术语“安装”、“设置”、“设有”、“连接”、“相连”应做广义理解。例如,可以是固定连接,可拆卸连接,或整体式构造;可以是机械连接,或电连接;可以是直接相连,或者是通过中间媒介间接相连,又或者是两个装置、元件或组成部分之间内部的连通。对于本领域普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。
[0049]
为便于理解,在此对现有的掺杂钴酸锂材料的循环性能的评估方法进行说明,在现有技术中,研究者需要用实验仪器对每一种掺杂元素的钴酸锂材料的循环性能进行实验,得到实验数据才能对该掺杂元素的钴酸锂材料的循环性能进行评估,对单元素掺杂钴酸锂的循环性能的评估就是一个很庞大的工作,更不用说多元素掺杂钴酸锂材料的循环性能评估,具体地,研究者测得在研究掺杂单元素ba、mn、ni、al的的钴酸锂材料的循环性能时,需要选用武汉蓝电电池测试系统分别去测每一种元素钴酸锂的循环放电比容量,耗时耗力,仅仅是单元素掺杂钴酸锂的循环性能的评估就已经需要耗费大量时间,对于多元素掺杂钴酸锂的循环性能评估耗费的时间和资源更加庞大。
[0050]
请参阅图1,本发明第一实施例提供一种掺杂钴酸锂材料的循环性能的评估方法1,评估方法包括如下步骤:
[0051]
s1,获取待评估掺杂钴酸锂材料的描述符参数;
[0052]
s2,将待评估掺杂钴酸锂材料的描述符参数输入预设的描述符参数跟循环性能参数关系的预测模型中;
[0053]
s3,基于预设预测模型得到待评估掺杂钴酸锂材料的循环性能参数。
[0054]
可以理解地,通过本发明实施例提供的掺杂钴酸锂材料的循环性能的评估方法1,可直接通过预测模型直接且快速地得到待评估掺杂钴酸锂材料的循环性能参数,而无需对单元素掺杂或多元素掺杂钴酸锂的进行多次重复性的研究,克服了现有技术评估掺杂元素特征参数的钴酸锂循环性能耗费精力大、时间长的问题。可见,本发明实施例提供的评估方法基于预测模型,得到的待检测掺杂钴酸锂的循环性能参数准确度高,误差小。
[0055]
可选地,待评估材料的描述符参数包括掺杂元素本身具有的特征参数、掺杂钴酸锂的理化性能参数、实验参数。
[0056]
优选地,掺杂元素本身具有的特征参数为元素摩尔质量、原子半径、离子半径、电负性、离子电负性、最外层电子数、元素存在价态数量、电子亲和能的任一种或多种组合。掺杂钴酸锂的理化性能参数为掺杂后材料的摩尔质量、晶格常数中的a轴、c轴以及c/a的值中的任一种或多种组合。实验参数为掺杂量、初始电压、截止电压、电流大小的任一种或多种组合。具体地,描述符参数中的掺杂量、掺杂后材料摩尔质量、c轴、初始电压、截止电压、电
流大小、元素摩尔质量、离子半径、离子电负性、电子亲和能对待检测掺杂钴酸锂循环性能关联度较大,基于对待评估掺杂钴酸锂材料的描述符参数的进一步限定,可以将与待检测掺杂钴酸锂循环性能关联度较大的数据进行划分,进而可以提高预设预测模型的准确度。
[0057]
可选地,待评估材料的循环性能参数包括容量保留率、循环后的放电比容量、单圈容量损失率、单圈比容量损失的任一种或多种组合。
[0058]
具体地,在本发明实施例中的待评估材料的循环性能参数为循环后的放电比容量。
[0059]
进一步地,请参阅图2,在上述步骤s2中,预测模型采用以下步骤建立:
[0060]
s21,提供预设的初始预测模型:从预设的数据库中获取历史掺杂钴酸锂材料的循环性能参数以及对应的历史描述符参数;
[0061]
s22,以历史掺杂钴酸锂材料的循环性能参数以及对应的历史描述符参数训练初始预测模型得到预测模型。
[0062]
可以理解地,现有的技术评估掺杂钴酸锂的本就是一个很庞大的工作,需要浪费大量资源和时间,通过直接从预设的数据库中获取历史掺杂钴酸锂材料的循环性能参数以及对应的历史描述符参数,无需耗费大量精力去收集未评估的掺杂钴酸锂材料的循环性能参数,避免了采集新数据造成的资源浪费。
[0063]
进一步地,请结合图3和图4,在上述步骤s21中,预设的初始预测模型采用以下步骤建立:从预设的数据库中获取至少一组历史循环性能参数及历史描述符参数,通过预设的算法,得到初始预测模型。通过直接从预设数据库中选取数据结合预设的算法构建初始预测模型,建立的初始预测模型可靠性高。
[0064]
可选地,构建初始预测模型结合的预设的算法为算法可以是但不限制于线性回归、决策树、随机森林、支持向量机、k近邻、梯度提升、人工神经网络的任一种或几种组合。具体地,根据从预设数据库中选取历史掺杂钴酸锂材料的循环性能参数以及对应的历史描述符参数进行选择。
[0065]
在本实施例中,算法具体可为随机森林,随机森林是一个包含多个决策树的分类器,并且其输出的类别是由个别树输出的类别的众数而定。如图5中所示,基于历史掺杂钴酸锂材料的循环性能参数以及对应的历史描述符参数建立训练样本集s,抽样建立训练数据集,基于训练数据集中的s1、s2、......、sk可训练获得多个初始预测模型,其中,初始预测模型均为决策树模型。通过对于算法的限定,可以更符合历史掺杂钴酸锂材料的循环性能参数以及对应的历史描述符参数特征,以获得更准确的初始预测模型。
[0066]
进一步地,结合图2和图3,在上述步骤s22中,将历史掺杂钴酸锂材料的循环性能参数以及对应的历史描述符参数按照一定比例分为训练集和测试集,依据训练集迭代训练预测模型,得到中间预测模型;通过测试集计算中间预测模型的准确性直到达到预设的准确性要求,则此时中间预测模型为预测模型。通过采用训练集对初始预测模型进行训练,提升了中间预测模型的可靠性,测试集对中间预测模型进行测试,准确度不满足预设要求,则重复进行迭代,上述迭代操作既筛选出了不满足预设要求的数据,保证了输出到预测模型数据的准确性。具体地,比例的范围为2-4,在此范围下,在保证测试集对中间预测模型的准确性的基础上,训练集对初始预测模型的训练效率最佳,效果最好,进一步提升了整个评估的效率。另外,通过限定训练集和测试集的比值范围,进而数据库中的数据得到合理运用,
避免了数据库中资源因分配不合理而造成的浪费。
[0067]
可以理解地,本实施例可以是训练集先训练初始预测模型,训练完后得到中间预测模型,再用测试集对中间进行测试,训练和测试的步骤按先后顺序依次进行,也可以是训练和测试的步骤同时进行。通过采用训练集对初始预测模型进行训练,提升了中间预测模型的可靠性,测试集对中间预测模型进行测试,准确度不满足预设要求,则重复进行迭代,上述迭代操作既筛选出了不满足预设要求的数据,又保证了输出到预测模型数据的准确性。
[0068]
具体地,评估准确性的指标包括:均方根误差(rmse)和确定系数(r2)。
[0069]
可以理解地,均方根误差(rmse)和确定系数(r2),计算公式如下:
[0070][0071][0072]
其中,yi为历史掺杂钴酸锂材料的循环性能参数,为中间预测模型预测的数据,为预测数据的平均值,i为训练集或测试集中数据样本的序号,n为训练集或测试集中数据样本的总数量。
[0073]
请参阅表1,历史掺杂钴酸锂材料的循环性能参数和预测模型预测数据表
[0074]
表1,历史掺杂钴酸锂材料的放电容量和中间预测模型预测的放电容量
[0075]
[0076][0077]
具体地,将表一数据输入均方根误差(rmse)和确定系数(r2)的计算公式得到均方根误差rmse值为15.27574mah/g,确定系数(r2)值为0.846354,可知模型预测结果与实际结果偏差较小,循环性能预测模型的可靠性较高。
[0078]
可以理解地,继续参考图6,对于预测模型的偏差分布情况,以某一误差区间内的样品个数为纵坐标,对应的误差区间为横坐标,绘制模型预测结果的误差分布直方图,如图6所示,误差直方图应呈单峰形式,且预测结果准确,预测模型的精准度高。
[0079]
进一步地,请参阅图5,得到待评估掺杂钴酸锂材料的循环性能参数后还包括以下步骤:将待评估掺杂钴酸锂材料的描述符参数以及待评估掺杂钴酸锂材料的循环性能参数存储到数据库中。基于预测模型,将每次待评估掺杂钴酸锂材料的描述符参数以及待评估掺杂钴酸锂材料的循环性能参数存储数据库中,扩大了数据库的数据量,进一步地通过数据库里的数据,优化本发明实施例中的预测模型,提高了预设预测模型的准确度。
[0080]
表2,待评估的待评估掺杂钴酸锂材料的描述符参数
[0081]
[0082]
[0083]
[0084][0085]
在本发明的实施例中,基于预测模型,输入表2中待评估的待评估掺杂钴酸锂材料的描述符参数得到表3中待评估掺杂钴酸锂材料的循环性能参数。
[0086]
表3,待评估掺杂钴酸锂材料的25圈放电容量
[0087]
[0088][0089]
在本发明中,为了更好地体现出利用上述评估掺杂钴酸锂材料的循环性能的方法评估待评估掺杂钴酸锂材料的循环性能的准确性,本发明中进一步提供如下的实验组及比较组:其中实验组1-4不同为不同掺杂元素的钴酸锂电池通过本发明方法预测的循环放电比容量,对照组采用同样掺杂元素下钴酸锂电池使用武汉蓝电电池测试系统测得的循环放电比容量。
[0090]
表4,实验组1-4及对比组1-4所获得的循环放电比容量表
[0091][0092]
基于表4中的内容,可知,上述实验组1-4中预测模型所预测的循环放电比容量和对比组1-4中的循环放电比容量误差较小,可见在本发明的实施例中一种评估方法在保证了预测结果精确性的同时解决了现有技术评估掺杂元素特征参数的钴酸锂循环性能耗费大量资源以及时间的技术问题。
[0093]
本发明的第二实施例还提供一种系统2,用于执行上述掺杂钴酸锂材料的循环性能的评估方法,请参阅图7,包括用于获取待评估掺杂钴酸锂材料的描述符参数的获取模块201、用于将待评估掺杂钴酸锂材料的描述符参数输入预设的描述符参数跟循环性能参数关系的预测模型中的输入模块202以及基于预设预测模型得到待评估掺杂钴酸锂材料的循环性能参数的生成模块203。
[0094]
本发明的第三实施例提供一种计算机设备3,请参阅图8,包括存储器301、处理器302及存储在存储器301上并可在处理器302上运行的计算机程序303,所述处理器302执行所述程序时,实现通过输入待评估掺杂钴酸锂材料的描述符参数即可输出该待评估掺杂钴酸锂材料的循环性能参数。
[0095]
与现有技术相比,本发明提供的一种评估掺杂钴酸锂材料的循环性能的方法,具有以下优点:
[0096]
1.本发明实施例提供一种掺杂钴酸锂材料的循环性能的评估方法,评估方法包括如下步骤:获取待评估掺杂钴酸锂材料的描述符参数;将待评估掺杂钴酸锂材料的描述符参数输入预设的描述符参数跟循环性能参数关系的预测模型中;基于预设预测模型得到待评估掺杂钴酸锂材料的循环性能参数。通过进行如上步骤,无需对单元素掺杂或多元素掺杂钴酸锂的进行多次研究,克服了现有技术评估掺杂元素特征参数的钴酸锂循环性能耗费精力大、时间长的问题。进一步地,本发明实施例提供的评估方法基于预测模型,得到的待检测掺杂钴酸锂的循环性能参数准确度高,误差小。
[0097]
2.本发明实施例的预测模型采用以下步骤建立:提供预设的初始预测模型:从预设的数据库中获取历史掺杂钴酸锂材料的循环性能参数以及对应的历史描述符参数;以历史掺杂钴酸锂材料的循环性能参数以及对应的历史描述符参数训练初始预测模型得到预测模型。现有的技术评估掺杂钴酸锂的本就是一个很庞大的工作,需要浪费大量资源和时间,通过直接从预设的数据库中获取历史掺杂钴酸锂材料的循环性能参数以及对应的历史描述符参数,无需耗费大量精力去收集未评估的掺杂钴酸锂材料的循环性能参数,避免了采集新数据造成的资源浪费。
[0098]
3.本发明实施例的初始预测模型采用以下步骤建立:从预设的数据库中获取至少一组历史循环性能参数及历史描述符参数,结合预设的算法,得到初始预测模型。通过直接从预设数据库中选取数据通过预设的算法构建初始预测模型,建立的初始预测模型可靠性高。
[0099]
4.本发明实施例的训练初始预测模型包括以下步骤:将历史掺杂钴酸锂材料的循环性能参数以及对应的历史描述符参数按照一定比例分为训练集和测试集,依据训练集迭代训练预测模型,得到中间预测模型;通过测试集计算中间预测模型的准确性直到达到预设的准确性要求,则此时中间预测模型为预测模型。通过采用训练集对初始预测模型进行训练,提升了中间预测模型的可靠性,测试集对中间预测模型进行测试,准确度不满足预设要求,则重复进行迭代,上述迭代操作既筛选出了不满足预设要求的数据,保证了输出到预测模型数据的准确性。另外,在此比值范围下,在保证测试集对中间预测模型的准确性的基础上,训练集对初始预测模型的训练效率最佳,效果最好,进一步提升了整个评估的效率。另外,通过限定训练集和测试集的比值范围,进而数据库中的数据得到合理运用,避免了数据库中资源因分配不合理而造成的浪费。
[0100]
5.本发明实施例在得到待评估掺杂钴酸锂材料的循环性能参数后还包括以下步骤:将所述待评估掺杂钴酸锂材料的描述符参数以及对应的所述待评估掺杂钴酸锂材料的循环性能参数作为训练样本,对所述预测模型进行更新。基于预测模型,将每次待评估掺杂钴酸锂材料的描述符参数以及待评估掺杂钴酸锂材料的循环性能参数存储数据库中,扩大了数据库的数据量,进一步地通过数据库里的数据,优化本发明实施例中的预测模型,提高了预设预测模型的准确度。
[0101]
6.本发明实施例的算法为随机森林。随机森林对于数据可以产生高精准度的分类器,在处理输入参数时,学习过程快,处理准确度高,通过对于算法的限定,可以更符合历史掺杂钴酸锂材料的循环性能参数以及对应的历史描述符参数特征,以获得更准确的初始预测模型。
[0102]
7.本发明的评估准确性的指标包括:均方根误差(rmse)和确定系数(r2),均方根
误差(rmse)和确定系数(r2),计算公式如下:
[0103][0104][0105]
其中,yi为历史掺杂钴酸锂材料的循环性能参数,为中间预测模型预测的数据,为预测数据的平均值,i为训练集或测试集中数据样本的序号,n为训练集或测试集中数据样本的总数量。只需参考评估过程中均方根或确定系数的值,就可以清晰的知道评估中间预测模型的准确性的结果,方法直观,便捷性高。
[0106]
8.本发明的待评估材料的描述符参数包括掺杂元素本身具有的特征参数、掺杂钴酸锂的理化性能参数、实验参数的任一种或多种组合,待评估材料的循环性能参数包括容量保留率、循环后的放电比容量、单圈容量损失率、单圈比容量损失的任一种或多种组合,其中描述符参数中的掺杂量、掺杂后材料摩尔质量、c轴、初始电压、截止电压、电流大小、元素摩尔质量、离子半径、离子电负性、电子亲和能对待检测掺杂钴酸锂循环性能关联度较大,基于对描述符参数的进一步限定,可以将与待检测掺杂钴酸锂循环性能关联度较大的数据进行划分,进而可以提高预设预测模型的准确度。
[0107]
9.本发明实施例还提供一种系统,具有与上述一种掺杂钴酸锂材料的循环性能的评估方法相同的有益效果,在此不做赘述。
[0108]
10.本发明实施例还提供一种计算机设备,具有与上述一种掺杂钴酸锂材料的循环性能的评估方法相同的有益效果,在此不做赘述。
[0109]
以上仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的原则之内所作的任何修改,等同替换和改进等均应包含本发明的保护范围之内。
再多了解一些

本文用于企业家、创业者技术爱好者查询,结果仅供参考。

发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表

相关文献