一种残膜回收机防缠绕挑膜装置的制 一种秧草收获机用电力驱动行走机构

包括微透镜的用于红外成像的生物计量成像装置的制作方法

2022-07-10 14:05:08 来源:中国专利 TAG:


1.本发明涉及生物计量(biometric)成像装置和电子设备。


背景技术:

2.生物计量系统被广泛用作用于提高诸如移动电话等的个人电子设备的便利性和安全性的工具。特别地,指纹感测系统现在包括在所有新发布的消费电子设备诸如移动电话中的大部分消费电子设备中。
3.光学指纹传感器为人所知已有一段时间,并在某些应用中可以是例如电容式指纹传感器的可行替代。光学指纹传感器可以例如基于针孔成像原理和/或可以采用微通道即准直器或微透镜以将入射光聚焦至图像传感器上。
4.最近,将光学指纹传感器布置在电子设备的显示器下方已经引起了人们的兴趣。针对光学指纹传感器,重要的是当捕获位于显示器上的手指的图像时向手指提供足够的照射。
5.为了避免将其他光源添加至显示器下方已经狭窄的空间,来自显示器本身的光可以用作光源。然而,在某些情况下例如在黑暗的房间中,这可能让用户感到烦扰,其中在黑暗的房间中,当光从显示器中泄漏出时,光可能是可见的。
6.因此,需要提供较少令人烦扰的用户干扰并可以组装在电子设备的显示器下方的生物计量传感器。


技术实现要素:

7.鉴于现有技术的上述缺点和其他缺点,本发明的目的是提供改进的生物计量成像装置。
8.根据本发明的第一方面,提供了一种生物计量成像装置,生物计量成像装置被配置成布置在至少部分透明的显示面板下方并获取位于至少部分透明的显示面板的相对侧的对象的红外图像,生物计量成像装置包括:图像传感器,图像传感器包括检测器像素阵列,检测器像素阵列被配置成检测从对象发送的红外光以捕获图像;以及至少部分透明的基板,至少部分透明的基板包括微透镜阵列,其中,每个微透镜被配置成将光重定向为穿过至少部分透明的基板并重定向至检测器像素阵列上,其中,至少部分透明的基板还包括光学解耦区域,光学解耦区域被配置成当对象被放置用于成像时将从至少部分透明的基板的侧面接收到的红外光朝向对象正交地重定向。
9.本发明基于使用红外光照射手指并获取对象的红外图像的认识。这提供了人眼不可见的照射。此外,发明人认识到使用布置有微透镜的至少部分透明的基板作为波导,以将从至少透明的基板的侧面接收到的红外光经由解耦区域引导至对象。以这种方式,即使在通常围绕生物计量传感器的狭窄空间中,也可以以相当低的成本进行生物计量成像装置的组装。
10.此外,发明人认识到设计包括微透镜的至少部分透明的基板以正交地重定向红外
光。换言之,用于照射对象的红外光可以从侧面射入,随后由保持微透镜的相同基板朝向对象正交地重定向,而无需用于将光朝向对象引导的额外部件。这还提供了以传统方式组装生物计量成像装置,例如将生物计量成像装置组装在电子设备的显示器下方通常狭窄的空间中。
11.虽然光学解耦区域可以以各种方式配置,但是其目的是当对象被放置在显示面板上用于成像时,将从至少部分透明的基板的侧面接收到的光朝向对象正交地重定向离开至少部分透明的基板,以对象的照射。基板适于作为红外光的波导。至少部分透明的基板被布置成在其侧面接收光,并通过光学耦合将光引导至光学解耦区域。
12.至少部分透明的基板可以通过全内反射引导红外光。光学解耦区域可以因此被配置成将红外光从全内反射引导中正交地解耦出。
13.本文中,红外光被理解成包括波长在覆盖“近红外”光至“远红外”光并包括“远红外”光的范围内的光。因此,红外光可以是波长为大约700纳米(大约430thz)至大约50微米(大约2thz)的光。优选地,用于本文实施方式的红外光在大约900纳米至大约1微米的范围内,诸如在930nm至960nm的范围内。红外光可以是大约940nm。
14.图像传感器可以是连接至关联控制电路系统的任何合适类型的图像传感器,诸如cmos或ccd传感器。在一种可能的实现中,图像传感器是基于薄膜晶体管(tft)的图像传感器,其为显示器下方的生物计量成像传感器提供了成本有效的解决方案。这种用于检测红外光的图像传感器的操作和控制可以认为是已知的,并且本文中不进行讨论。tft图像传感器可以是背照式tft图像传感器或前照式tft图像传感器。可以按热区、大区域或全显示器解决方案布置tft图像传感器。
15.可以借助于例如光刻技术或纳米压印技术来制造包括微透镜和解耦区域的至少部分透明的基板。而且,可以使用例如本身已知的薄膜技术来执行材料的沉积。
16.检测器像素阵列可以被认为是光电检测器像素阵列。
17.在实施方式中,光学解耦区域可以是用于将光重定向至检测器像素阵列上和用于将红外光朝向对象正交地重定向的微透镜。因此,可以有利地定制微透镜以提供双重功能,即,将从对象发送的红外光聚焦至光电检测器像素阵列上,并将从至少部分透明的基板的侧面接收到的红外光朝向对象正交地重定向,从而照射对象。这为可以被布置在电子设备的显示器下方的生物计量红外成像装置提供了非常紧凑的解决方案,而无需或减少了对光学堆叠中的附加光学组件的需要。
18.在实施方式中,生物计量成像装置可以包括被布置在至少部分透明的基板与检测器像素阵列之间的光学偏振器,光学偏振器被配置成至少部分地阻挡具有从光学解耦区域朝向对象发送的光的偏振的光。换言之,与从光学解耦区域朝向对象发送的光具有相同偏振的光被光学偏振器阻挡。这有利地提供减少了从解耦区域直接朝向光电检测器像素阵列解耦的红外光的量,并从而增加了从对象发送到达光电检测器阵列的光的比例。对于具有从解耦区域朝向对象发送的光的偏振的光,光学偏振器是不可透射的。
19.优选地,光学偏振器可以被配置成透射具有与由光学解耦区域朝向对象发送的光的偏振正交的偏振的光。换言之,对于与射入至至少部分透明的基板中的光正交的偏振的光,光学偏振器有利地是可透射的。
20.在实施方式中,光学偏振器可以是第一光学偏振器,生物计量成像装置还可以包
括光学圆偏振器,光学圆偏振器被布置在至少部分透明的基板与检测器像素阵列之间。
21.光学圆偏振器可以被布置在第一光学偏振器和包括微透镜的至少部分透明的基板之间。
22.第一光学偏振器可以是线偏振器。
23.透明的显示面板可以包括偏振器装置,偏振器装置被配置成接收来自对象的光并使光圆偏振,使得圆偏振光朝向至少部分透明的基板发送。这使得能够改变由对象反射并朝向至少部分透明的基板发送的光的偏振。与由光源发射并从至少部分透明的基板解耦出的光相反,圆偏振光被至少部分地允许穿过被布置在图像传感器和至少部分透明的基板之间的光学偏振器。
24.因此,本发明的实施方式以单层提供了将红外光朝向对象有效解耦和将从对象反射的光聚焦至光电检测器像素阵列上,该单层即由包括微透镜的至少部分透明的基板提供的单层。
25.在实施方式中,光栅图案可以适于形成光学解耦区域,以将红外光朝向对象重定向为穿过显示面板中的开口。优选地,至少部分透明的基板的解耦区域可以被布置成与显示面板中的开口对准。这提高了充分照射对象以成像的能力。
26.光栅图案的尺寸可以基本上与红外光的波长相同。这提供了将光朝向对象有效解耦。
27.光栅图案可以是提供折射率变化的任何图案。因此,它可以是材料或物理结构的变化。通常,光栅图案是能够借助于例如分光和/或衍射来重定向红外光的结构。光栅图案可以包括由至少部分透明的基板的材料制成的结构。光栅图案可以是周期性的或可以包括非周期性图案。
28.光栅图案优选地形成在至少部分透明的基板中并与微透镜邻近。
29.生物计量成像装置可以包括用于产生红外光的红外光源。红外光与至少部分透明的基板的主平面平行地输入。这种光源优选地被布置在图像传感器或显示面板的外周边或边缘处。因此,光源被布置成使得它不覆盖图像传感器像素。可以布置波导以将来自光源的光引导至图像传感器上的至少部分透明的基板。
30.红外光源可以被布置成与至少部分透明的基板邻近。
31.根据本发明的第二方面,提供了一种电子设备,电子设备包括:至少部分透明的显示面板、根据本发明的实施方式的生物计量成像装置以及处理电路系统,处理电路系统被配置成:从生物计量成像装置接收指示生物计量对象触摸透明的显示面板的信号;基于检测到的指纹执行生物计量认证过程。
32.电子设备可以是例如移动设备,诸如移动电话(例如智能电话)、平板电脑、平板手机等。
33.本发明第二方面的其他效果和特征在很大程度上类似于上面结合本发明的第一方面描述的效果和特征。
34.当研究权利要求和以下描述时,本发明的其他特征和优点将变得明显。技术人员认识到,在不脱离本发明的范围的情况下,可以组合本发明的不同特征以创建不同于以下描述的实施方式的实施方式。
附图说明
35.现在将参照示出了本发明的示例实施方式的附图更详细地描述本发明的这些方面和其他方面,在附图中:
36.图1示意性地示出了根据本发明的实施方式的电子设备的示例;
37.图2是根据本发明的实施方式的电子设备的示意性框图;
38.图3示意性地示出了根据本发明的实施方式的生物计量成像装置;
39.图4示意性地示出了根据本发明的实施方式的包括偏振器的生物计量成像装置;
40.图5a示意性地示出了根据本发明的实施方式的包括偏振器的生物计量成像装置;
41.图5b示意性地示出了根据本发明的实施方式的包括偏振器的生物计量成像装置;
42.图6概念性地示出了根据本发明的实施方式的包括微透镜和光栅图案的至少部分透明的基板;
43.图7示意性地示出了根据本发明的实施方式的生物计量成像装置;
44.图8a概念性地示出了根据本发明的实施方式的在基板中形成的光栅图案形式的示例解耦区域;
45.图8b概念性地示出了根据本发明的实施方式的在基板中形成的光栅图案形式的示例解耦区域;
46.图8c概念性地示出了根据本发明的实施方式的在基板中形成的光栅图案形式的示例解耦区域;
47.图8d概念性地示出了根据本发明的实施方式的在基板中形成的光栅图案形式的示例解耦区域;
48.图8e概念性地示出了根据本发明的实施方式的在基板中形成的光栅图案形式的示例解耦区域;以及
49.图9概念性地示出了根据本发明的实施方式的包括微透镜的聚合物膜形式的至少部分透明的基板。
具体实施方式
50.在本详细描述中,主要参考布置在显示面板下方的生物计量成像装置来描述根据本发明的生物计量成像装置的各种实施方式。然而,应当注意,所描述的成像设备也可以其他生物计量成像应用,例如用于位于盖玻璃等下方的光学指纹传感器。
51.现在转至附图,尤其是转至图1,图1示意性地示出了被配置成应用根据本公开内容的构思的呈移动设备101的形式的电子设备的示例,移动设备101具有集成的显示器内光学生物计量成像装置100和具有触摸屏界面106的显示面板102。光学生物计量成像装置100可以例如用于解锁移动设备101和/或用于授权使用移动设备101进行的交易等。
52.虽然此处光学生物计量成像装置100被示为比显示面板102小,但是光学生物计量成像装置100仍然相对较大,例如,大面积实现。在另一个有利的实现中,光学生物计量成像装置100可以与显示面板102尺寸相同,即全显示器解决方案。因此,在这种情况下,用户可以将他/她的手指放置在显示面板上的任何位置以进行生物计量认证。在其他可能的实现中,光学生物计量成像装置100可以比所描绘的光学生物计量成像装置小,例如从而提供热区(hot-zone)实现。
53.优选地并对技术人员而言明显的是,图1中所示的移动设备101还可以包括用于wlan/wi-fi通信的第一天线、用于电信通信的第二天线、麦克风、扬声器和电话控制单元。其他硬件元件当然可能包括在移动设备中。
54.还应当注意,对于包括透明显示面板的任何其他类型的电子设备,诸如膝上型计算机、平板计算机等,本发明可以适用。
55.图2是根据本发明的实施方式的电子设备的示意性框图。电子设备200包括透明显示面板204和根据本发明的实施方式的光学生物计量成像装置100,光学生物计量成像装置100在概念上示出为布置在透明显示面板204下方。此外,电子设备200包括诸如控制单元202的处理电路系统。控制单元202可以是电子设备202的独立控制单元,例如设备控制器。可替选地,控制单元202可以被包括在光学生物计量成像装置100中。
56.控制单元202被配置成从光学生物计量成像装置100接收指示检测到的对象的信号。接收到的信号可以包括图像数据。
57.基于接收到的信号,控制单元202被布置成检测指纹。基于所检测的指纹,控制单元202被配置成执行指纹认证过程。这种指纹认证过程本身被认为是技术人员已知的,并且本文中将不再进一步描述。
58.图3示意性地示出了根据本发明的实施方式的生物计量成像装置100。生物计量成像装置100被布置在至少部分透明的显示面板102下方,并获取位于至少部分透明的显示面板102的相对侧的对象304的红外图像。
59.应当理解,生物计量成像装置100可以被布置在足够透明的任何盖结构下方,只要图像传感器接收到足够量的光以捕获与该盖结构的外表面接触的生物计量对象(诸如指纹或掌纹)的图像。然而,在下文中,描述了被配置成捕获与显示面板102的外表面107接触的手指304的图像的生物计量成像装置100。
60.生物计量成像装置包括图像传感器308,图像传感器308包括检测器像素阵列309,检测器像素阵列309被配置成检测从对象304发送的红外光以捕获图像。
61.每个像素310是单独可控的光电检测器,该光电检测器被布置成检测入射光的量并产生指示由检测器接收的光的电信号。图像传感器308可以是连接至关联控制电路系统的任何合适类型的图像传感器,诸如cmos或ccd传感器。然而,在一些实现中,图像传感器308可以是提供成本有效的解决方案的基于薄膜晶体管(tft)的图像传感器。这种图像传感器的操作和控制可以认为是已知的,并且本文中不进行讨论。
62.生物计量成像装置还包括至少部分透明的基板312,基板312包括微透镜318的阵列。至少部分透明的基板312被布置成覆盖图像传感器308。每个微透镜318被配置成将光重定向通过至少部分透明的基板312并重定向至检测器像素阵列309上,优选地至相应的像素子阵列320上。
63.使用合适的粘合剂322将至少部分透明的基板312附接至显示面板102,粘合剂322优选地具有比至少部分透明的基板312和微透镜318的折射率低的折射率。
64.至少部分透明的基板312还包括光学解耦区域319,光学解耦区域319被配置成当对象被放置用于成像时将从至少部分透明的基板的侧面326接收到的红外光324朝向对象正交地重定向。
65.红外光源323被布置成与至少部分透明的基板312和图像传感器309邻近,以从侧
面326例如在至少部分透明的基板312的边缘326处将红外光324发射至至少部分透明的基板312中。红外光324与至少部分透明的基板的主平面平行地被输入。主平面与显示面板102和/或像素阵列309平行。
66.红外光324由起波导作用的至少部分透明的基板312引导。当红外光324到达解耦区域319时,所述光朝向对象304从至少部分透明的基板312正交地解耦出,参见从基板312正交地解耦的概念性的光束337。优选地,并如在图3中概念性地示出的,光学解耦区域319是微透镜318,微透镜318既用于将由对象反射的光重定向至检测器像素阵列上,又用于将红外光324朝向对象304垂直地重定向。这可以通过将微透镜设计成既将光聚焦至像素上又将在用作波导的基板312中行进的红外光324解耦来实现。此外,这也可以通过针对微透镜和基板312选择适当的材料来实现。
67.在此,正交是相对于由引导光的至少透明的基板提供的波导的主平面而言的。可以想到当光朝向对象从基板解耦出时光的一些扩散。这些扩散将提供以相对于基板的平面偏离90度的角度解耦的一些光。因此,允许偏离正交,即90度。然而,所解耦的光的至少一部分从引导光324的基板312的平面正交地透射。所解耦的光的主要部分朝向对象重定向。换言之,解耦区域适于将由波导引导的光的至少一部分朝向对象意在位于的位置重定向,以成像。可以认为重定向光的光轴与波导结构的主平面正交。
68.通常,光可以通过全内反射在波导中传播。只要光在波导内的入射角小于基于波导的折射率(n1)和周围介质的折射率(n2)的临界角δ=arcsine(n2/n1),光将在波导内无损耗地反射。然而,使用以上描述的微透镜,在微透镜的位置处入射角将改变,从而导致光的有损反射和光朝向对象304从微透镜解耦出。为了有效地发生这种情况,光324的模式至少部分地穿透微透镜,如框325概念性地示出的,框325指示穿透至微透镜318中的概念性模式325。
69.还应注意,附图的部件诸如微透镜318和显示像素未按比例绘制。微透镜318被示出为接收由对象304反射的光,该光在到达微透镜318之前已经传播穿过显示面板102,并且由微透镜318接收到的光被聚焦至图像传感器308上。
70.显示面板102包括显示器330,显示器330包括单独可控的发光单元,例如像素,发光单元之一表示为332。像素可以提供例如红光、绿光和蓝光。可以根据实施方式使用各种类型的显示器。例如,基于具有任何类型的三刺激发射如rgb、cmy或其他的oled、u-led的显示器。
71.存在穿过颜色可控的光源330的合适的开口或光学路径,使得从对象304发送的光束可以到达图像传感器308。例如,颜色可控的光源可以是光源不完全密集的显示器。换言之,这允许来自显示器和对象的反射光到达传感器。
72.解耦区域319可以被布置成将红外光324朝向对象304重定向为穿过显示器330中的开口。
73.解耦区域319可以被布置成与显示器330中的开口对准。
74.图4示意性地示出了根据本发明的实施方式的生物计量成像装置400。生物计量成像装置400包括具有微透镜318的至少部分透明的基板312,以及包括如参照图3所描述的检测器像素阵列309的图像传感器308。
75.此外,生物计量成像装置400包括被布置在至少部分透明的基板312和检测器像素
阵列309之间的光学偏振器402。光学偏振器402被配置成阻挡与从光学解耦区域319朝向对象304发送的光325具有相同的偏振的光。
76.如上所述,红外光源323被布置成将红外光324发射至用作波导的基板312中。光324具有横电模式,即它沿着横向于传播方向的方向线偏振。基板312的由微透镜318或由基板上的光栅图案提供的解耦区域将光朝向位于显示面板102的相对侧的对象304重定向。
77.光324的一部分329从基板312朝向图像传感器308重定向。然而,偏振器402被设计成阻挡具有由光源323发射的红外光324的偏振的光。例如,偏振器402可以是透射的,以透射具有与由光学解耦区域朝向对象304发送的光325的偏振正交的偏振的光。杂散光329与光325具有相同的偏振,并且因此被偏振器402阻挡。因此,偏振器有利地减少或甚至消除了来自光源和基板312的杂散光,所述杂散光要被直接发送至图像传感器而没有被对象304反射。这有利地提供了改善的图像对比度。
78.此处,至少部分透明的显示面板102包括偏振器装置,偏振器装置被配置成接收来自对象304的光,并使光圆偏振,使得圆偏振光327朝向至少部分透明的基板312发送。因此,穿过至少部分透明的显示面板102的光在到达至少部分透明的基板312时是圆偏振的。这有利地提供线偏振器402以允许反射光327的一个线偏振穿过偏振器402并到达图像传感器308,同时阻挡杂散光329。还可以设想,从显示面板透射的光是线偏振的,并包括镜面分量和漫射分量,这取决于显示面板102的具体配置。
79.图5a概念性地示出了生物计量成像装置400和可以基于来自对象304的光提供圆偏振光的可能的偏振器装置500。显示面板102包括诸如oled显示器的显示器330、λ/4偏振器502和线偏振器504。λ/4偏振器502和线偏振器504在显示面板102的堆叠方向上平行布置。简而言之,朝向对象304发送并穿过λ/4偏振器502的光325变成圆偏振的325a,随后在被对象304反射之前被线偏振器504线偏振325b。
80.从位于盖玻璃501对面的对象304返回的光334被线偏振器504线偏振334a,随后被λ/4偏振器502圆偏振,以提供朝向基板312和线偏振器402发送的圆偏振光327。包括λ/4偏振器502和线偏振器504的显示器本身是技术人员已知的。本发明的实施方式利用由这种显示器102提供的偏振效应,以同时有效地提供从基板有效解耦光,并由此提供对对象的照射和将反射光聚焦至检测器像素阵列309上。
81.此处讨论并在附图中指示的光主要是镜面光。然而,在光学堆叠中还存在自然漫射光。例如,在被对象反射之后,也产生漫射光分量340。漫射光分量340是非偏振的,并至少部分地被显示面板102中的偏振器装置500的偏振器过滤掉。然而,漫射光340的一部分到达光学传感器302,并与已经穿过线偏振器402并最终到达图像传感器308的光333具有相同的偏振。
82.图5a概念性地示出了生物计量成像装置,该生物计量成像装置包括图像传感器308、线偏振器402和用作波导并包括微透镜318的至少部分透明的基板312的堆叠。
83.图5b概念性地示出了包括光学圆偏振器403的生物计量成像装置400,光学圆偏振器403被布置在用作波导的至少部分透明的基板312和检测器像素阵列309之间。此外,线偏振器402被布置在光学圆偏振器403和检测器像素阵列309之间。光学圆偏振器403被布置在线偏振器402和至少部分透明的基板312之间。以这种方式,从对象304返回并被偏振器装置500偏振的光327被圆偏振器403即λ/4板接收,由此线偏振光336被朝向线偏振器402发送。
在线偏振器402和至少部分透明的基板312之间包括λ/4板403的优点在于,与仅具有线偏振器402(例如参见图4或图5a)相比,较少地抑制到达图像传感器308的光333的强度,然而代价是少量的杂散光341。
84.图5b概念性地示出了生物计量成像装置,该生物计量成像装置包括图像传感器308、线偏振器402、圆偏振器403和用作波导并包括微透镜318的至少部分透明的基板312的堆叠。
85.图6概念性地示出了包括微透镜318并还包括解耦区域的至少部分透明的基板312,解耦区域包括在至少部分透明的基板312中形成的光栅图案604。此处,光栅图案604被布置成靠近或邻近至少一个微透镜318。此外,包括光栅图案604的解耦区域与微透镜318在同一主平面中,该平面是至少部分透明的基板312的平面。
86.转至图7,光栅图案604适于形成光学解耦区域,以将红外光朝向对象重定向为穿过显示面板中的开口620。光栅图案604可以与显示器330中的开口620对准。
87.光栅图案的尺寸基本上与红外光的波长相同。这提供了将光从波导结构有效地解耦出来。光栅图案的尺寸可以与光栅图案的结构的线宽有关。
88.光栅图案可以以各种形式提供,现在将描述其中的几个示例。
89.如图8a中概念性示出的,解耦区域812可以包括借助于不同材料形成在基板结构800中的光栅图案802。结构804形成在波导结构800上,例如借助于在波导材料中形成的腔或沟槽中提供具有合适光学特性的材料将结构804形成在波导结构800上。因此,基板材料由第一材料制成,光栅图案802包括与第一材料不同的第二材料。通过根据合适的折射率选择第二材料,可以实现对入射光束822的正交重定向。光栅的材料应该对于具有由光源发射的红外光的波长的光是透明的。这提供了所发射的红外光的波前至少部分地在微透镜和光栅中传播,从而实现光的解耦。
90.在图8b至图8c中,解耦区域812包括光栅图案802,该光栅图案802是借助于在波导结构上表面810中形成的沟槽806、808提供的。如概念性所示,沟槽可以呈不同的截面形状。例如,矩形状截面如图8b中的沟槽806那样或者三角形状截面如图4c中的沟槽808那样。优选实施方式是基板800、光栅和微透镜由相同材料制成。
91.图8d概念性地示出了借助于光栅图案802提供的另一个设想的解耦区域812。此处,光栅图案包括从波导结构800的上表面810突出的突出结构811。突出结构811与波导结构800的本体801可以由相同的材料制成,或者突出结构811可以包括与波导结构800的本体的材料不同的第二材料。
92.光栅图案802可以是周期性的,从而形成为在沟槽和/或腔之间具有等距分布的周期性图案。在图8a至图8d中概念性地示出了周期性。
93.然而,在其他可能的实现中,光栅图案可以是非周期性的,如图8e中概念性地示出的,在图8e中光栅结构806不是等距分布的,即在整个光栅图案802中诸如沟槽的光栅结构806之间的距离变化。
94.至少部分透明的基板可以是形成有微透镜的膜的一部分。转至图9,图9概念性地示出了包括微透镜318的聚合物膜922形式的至少部分透明的基板。聚合物膜922被布置在第二至少部分透明的基板932上,以随后布置在生物计量成像装置中。聚合物膜922被配置为水平波导,并且如上所述,微透镜被配置成将光聚焦至图像传感器上,并且将在聚合物膜
922中引导的光朝向对象正交地重定向。
95.以合适的聚合物制造波导膜922可以利用纳米印刷技术来进行,甚至以卷到卷批量制造进行,其中,波导膜922具有通过微透镜或通过单独的光栅图案实现的解耦区域。纳米压印技术被认为是技术人员已知的。膜芯924的厚度优选地为大约5微米至50微米,例如大约10微米。
96.不管相同类型的结构即微透镜是否被配置成用于针对将从手指反射的光聚焦在图像传感器上以成像而将来自波导的光重定向,本文公开的实施方式提供了在相同膜922上制造所需结构的可能性,从而降低了系统成本。
97.优选地,例如由膜芯924或由例如基板922的另一个基板提供的波导结构、透镜318的折射率与堆叠中使用的任何粘合剂的折射率相对良好地匹配,以确保由光源923提供的输入光的模式垂直地覆盖透镜318。
98.微透镜在本文中被示为具有朝向透明基板定向的平坦表面的平凸透镜。也可以使用其他透镜配置和形状。平凸透镜可以例如被布置成平坦表面朝向显示面板,即使与微透镜的反向取向相比,成像性能可能降低。还可以使用其他类型的透镜,诸如凸透镜。使用平凸透镜的优点是容易进行通过具有平坦表面的透镜提供的制造和组装。
99.控制单元可以包括微处理器、微控制器、可编程数字信号处理器或其他可编程装置。控制单元还可以包括或替代地包括专用集成电路、可编程门阵列或可编程阵列逻辑、可编程逻辑装置或数字信号处理器。在控制单元包括可编程装置诸如以上提及的微处理器、微控制器或可编程数字信号处理器的情况下,处理器还可以包括控制可编程装置的操作的计算机可执行代码。应当理解,借助于控制单元(或通常称为“处理电路系统”)提供的功能中的全部功能或某些部分可以至少部分地与生物计量成像装置集成。
100.尽管已经参考本发明的具体例示实施方式描述了本发明,但是许多不同的改变、修改等对于本领域技术人员来说将变得明显。此外,应当注意,可以省略、互换或以各种方式布置成像设备的部分,成像设备仍然能够执行本发明的功能。
101.另外,通过研究附图、本公开内容和权利要求,技术人员在实践所要求保护的发明时可以理解和实现所公开的实施方式的变型。在权利要求中,词语“包括(comprising)”不排除其他元素或步骤,并且不定冠词“一(a)”或“一个(an)”不排除多个。在相互不同的从属权利要求中记载某些措施的事实不表示不能有利地使用这些措施的组合。
再多了解一些

本文用于企业家、创业者技术爱好者查询,结果仅供参考。

发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表

相关文献