一种残膜回收机防缠绕挑膜装置的制 一种秧草收获机用电力驱动行走机构

一种基于GK-2A的高频空间自适应阈值火情遥感监测方法与流程

2022-06-25 06:41:14 来源:中国专利 TAG:

一种基于gk-2a的高频空间自适应阈值火情遥感监测方法
技术领域
1.本发明涉及遥感火情监测技术领域,尤其涉及一种基于gk-2a卫星数据的高频空间自适应阈值火情遥感识别监测方法。


背景技术:

2.火灾是陆地生态系统环境和碳循环的重要影响因子,它改变整个系统的碳源/碳汇格局,影响全球气候变化,同时也严重危及社会人民生命财产安全。卫星遥感已成为当前火情监测的重要手段,近年来已经有众多国内外学者基于terra/modis、aqua/modis、noaa/avhrr、himawari-8、fy-3等众多卫星数据开展了火情识别监测研究;其中himawari-8卫星数据凭借其高时空分辨率和高数据质量优势,在火情监测业务中运用广泛,但单一数据源会面临数据传输不稳定、数据缺失、数据异常及天气因素影响等方面制约,难以完全达到火情监测全域全天候的要求,因此亟需新的高质量遥感卫星,开展多源数据的遥感火情监测,以满足全域全天候的要求。geo-kompsat-2a(简称“gk-2a”)是韩国新一代地球同步气象卫星, 2018年12月4日发射,2019年7月25日开始提供数据服务,定位于128.2
°
e的赤道上空。gk2a携带先进气象成像仪(advanced meteorological imager,ami)具有更高的辐射、光谱、时间和空间分辨率;ami的硬件配置与goes-16系列和himawari-8/9相似,每10分钟扫描一次地球完整磁盘,特定区域可每2分钟扫描一次,ami通道覆盖可见光-近红外、中红外和远红外,共16个通道,空间分辨率为0.5、1和2km,包含有利于火点判识的3.8
µ
m、11.2
µ
m和12.3
µ
m通道。因此针对以上问题,本发明公开了一种基于全新静止气象卫星gk-2a的火情探测方法,极大的拓展了遥感火情监测渠道。
3.遥感火点判识的基本原理为温度升高导致热辐射增强,以及不同热红外通道增长幅度具有差异,可以较好的开展遥感高温热源点监测,但同时受太阳高度角、复杂下垫面、云等复杂环境因素影响,遥感火点监测易出现误判和漏判,因此本发明充分考虑云覆盖、太阳高度角、下垫面类型比例等火点背景环境特征,公开了一种高频空间自适应阈值火情遥感识别监测方法,提升了遥感火情监测的准确率。
4.因此,结合两种优势,本发明公开了一种基于gk-2a卫星数据的高频空间自适应阈值火情遥感识别监测方法,极大的拓展了遥感火情监测的渠道、提升了遥感火情监测的准确率。


技术实现要素:

5.本发明的目的在于重点解决火情遥感监测高时空分辨率数据源单一、现有监测方法准确率有待提升等问题,提供一种基于全新静止气象卫星gk-2a数据的高频空间自适应阈值高精度火情遥感识别监测方法,以实现拓展火情监测渠道、提升火情监测准确性,实现高精度的遥感火情监测。
6.本发明在h8火点判识算法的基础上,结合gk-2a静止气象卫星通道特性,对算法进行了改进,提出针对基于太阳高度角、下垫面类型比例的动态阈值变化火点判识算法,实现
gk-2a静止气象卫星火点监测。具体技术方案如下:一种基于gk-2a卫星数据的高频空间自适应阈值火情遥感监测方法,包括如下步骤。
7.(1)数据预处理:gk-2a数据投影转换、辐射校正、大气校正等。
[0008] (2)晴空像元标记:判识云、水体、荒漠区等像元。
[0009]
(3)有效背景像元筛选:基于下垫面类型差异化动态筛选。
[0010]
(4)背景像元亮温计算:开窗法计算背景像元亮温。
[0011]
(5)火点像元判识:结合太阳高度角及植被比例的修正系数自适应动态处理、基于云像元比例的标准差自适应修正,火点像元动态阈值判识。
[0012]
(6)假火点剔除:对热工厂、光伏板、常年热源点、耀斑点等假火点进行剔除,筛选最终真实火点。
[0013]
作为本发明的进一步改进,所述步骤(1)中,利用卫星和太阳的天顶角、方位角,校正可见光近红外的反射率以及热红外辐射亮温值进行辐射定标;对热红外通道数据利用 6s 辐射传输模型做大气校正;并对原始gk-2a全圆盘数据进行投影。
[0014]
作为本发明的进一步改进,所述步骤(2)中,云区像元、水体像元和荒漠区像元等具有高反射特征,易引起火点监测的误判,因此利用云区可见光的高反射(白天) 特性以及热红外通道温度特性进行云检测;利用水体在近红外波段特性提取水体;利用土地利用类型数据标记荒漠区像元;以得出晴空部分像元用于疑似火点判识。
[0015]
进一步的,云区像元标记方法如式(1):r
vis
>r
vis_tcth
且t
fir
<t
fir_tcth
ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ
(1)式中,r
vis
:可见光通道反射率(%),r
vis_tcth
:可见光通道反射率云区判识阈值(%),t
fir
:远红外通道亮度温度(k),t
fir_tcth
:远红外通道亮度温度云区判识阈值(k);r
vis_tc 参考值为20%;t
fir_tcth 参考值为270 k。
[0016]
进一步的,水体像元标记方法如式(2):r
nir
<r
nir_twth 且(r
nir
﹣ r
vis
)<0
ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ
(2)式中,r
nir
:近红外通道反射率(%);r
nir_twth
:近红外通道反射率水体判识阈值(%),r
nir_twth 参考值为10%。
[0017]
进一步的,若像元所在的土地利用类型为荒漠区,标记为荒漠区像元。
[0018]
作为本发明的进一步改进,所述步骤(3)中,有效背景像元筛选。有效背景像元及其亮温是火点判识条件的一个重要物理量。背景像元亮温计算需要选取合适的像元,当出现过高亮温的像元时,若将该高温像元当做背景像元计算,则会提高背景亮温值,从而造成漏判;反之,低温像元会拉低背景像元亮温值,造成误判,因此过高或过低亮温的像元都被属于无效像元。为获取有效像元提取,提出了下垫面类型差异化的条件判断,即中红外通道亮温值需满足公式(3)判识条件时,可判定为有效背景像元。判识条件如下:
ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ
(3)式中,t-max,mean为窗口区域内与被判识像元土地利用类型不一致,且亮温高于
被判识像元时,中红外通道平均亮温;t-min,mean为窗口区域内与被判识像元土地利用类型不一致,且低于被判识像元时,中红外通道平均亮温;t
th_bg
为有效背景像元判识阈值,t-mir、
δt
mir
为窗口区域内所有中红外通道亮温平均值和标准偏差。
[0019]
作为本发明的进一步改进,所述步骤(4)中,获取有效背景像元后,采用开窗法计算待判区域有效背景像元亮温的平均值,获得背景像元亮温,即初始窗口区域取5*5个像元,若窗口区域内的有效像元数不足区域的20%,扩大窗口区域继续遍历。当窗口区域达到最大51*51个像元数时仍不满足条件,则将该待判像元标记为非火像元。背景像元亮温均值计算公式如下:
ꢀꢀꢀꢀꢀꢀ
(4)式中:t
mirbg
:中红外通道背景区亮度温度平均值(k),t
mir,i
:中红外通道背景区第i个像元亮温温度(k),t
firbg
:远红外通道背景区亮度温度平均值(k),t
fir,i
:远红外通道背景区第i个像元亮温温度(k),t
m-fbg
:背景区中红外通道和远红外通道之间亮度温度差异平均值(k)。
[0020]
作为本发明的进一步改进,所述步骤(5)中,火点像元判识。卫星火点判识中,利用被判识像元和背景有效像元在中红外通道与远红外通道的亮温的增长差异进行火点细判识,可获取火点像元。即同时满足公式(5),该像元可判定为火像元。判识条件如下:
ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ
(5)式中, t
mir
和t
mirbg
分别为被判识像元和背景像元中红外亮温值;t
mir-fir
和t
mir-firbg
分别为被判识像元和背景像元中红外与远红外亮温差值;t
th1
和t
th2
为动态阈值,由以下公式计算得到。
[0021]
ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ
(6)
ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ
(7)式中,δt
mirbg
为有效背景像元中红外亮温标准偏差;δt
mir-firbg
为有效背景像元中红外与远红外亮温差值的标准偏差。n1和n2分别为t
th1
和t
th2
判识阈值的修正系数,该系数随观测时间和区域的变化而变。
[0022]
进一步的,所述步骤(5)中,针对火情监测的复杂下垫面背景环境特征,结合太阳高度角及植被比例的自适应动态的修正系数计算处理,即对动态阈值中的修正系数n1和n2结合下垫面信息进行动态处理。
[0023]
进一步的,通过分析待判像元太阳高度角和窗口区域内非植被像元比例对背景系数的影响规律,获得修正背景系数n*i。该系数会随太阳高度角和窗口区域内非植被像元比例增而增大,以减少太阳反射信号带来的误判,详见公式(8):
ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ
(8)式中,θs为太阳高度角;pv为非植被像元比例;ni为初始背景系数,i=1或2;初始条
件下,n1取3,n2取3.5。
[0024]
进一步的,所述步骤(5)中,针对云层干扰影响处理。云层作为特殊的下垫面,通常具有亮温低、反射率高和特殊几何结构等特点,当被判识像元处于云边缘或云缝隙时,云的亮温导致有效背景亮温降低,使其易满足火点判识条件,而云的特殊结构易造成太阳辐射的镜面反射效应,两者均会造成火点误判。因此提出了针对窗口区域内像元标准差的云像元比例自适应修正方法,详见公式(9):
ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ
(9)式中,i为mir或mir-fir;δt*
ibg
和δt
ibg 分别为窗口区域的修正标准差和原始标准差;pc为窗口区域内云像元比例。随着被判识像元周边云像元数比例的增加,判识阈值会随之增大,即提高火点判识的条件,从而有效减少云边缘火点误判现象。
[0025]
作为本发明的进一步改进,所述步骤(6)中,假火点剔除指工厂、光伏发电厂以及城市等常年高温源和耀斑点是造成火点误判的主要原因,在火点判识过程中需将其剔除。常年高温点通常以人工热源为主,利用土地利用类型等辅助数据进行删选剔除。耀斑点主要采用耀斑角阈值来滤除,其中耀斑角θr计算见公式(10):
ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ
(10)式中,ψ为相对方位角,θv为观测天顶角。若可见光以及红外反射率均大于0.3,且耀斑角θr小于30
°
,则该像元为耀斑点,剔除火点属性。
[0026]
上述技术方案具有如下优点或有益效果:本方法提供了一种基于gk-2a新型静止气象卫星的高频空间自适应阈值高精度火情遥感识别监测方法。首先研发了基于新型静止气象卫星gk-2a的遥感火情判识监测方法,拓展了卫星遥感火情监测的渠道;其次本发明基于高频空间自适应阈值火情监测方法,提升了卫星遥感火情监测准确率;因此基于gk-2a新型静止气象卫星的高频空间自适应阈值火情遥感识别监测方法对遥感火情监测业务化具有极大提升作用。
附图说明
[0027]
图1是基于gk-2a卫星数据的火情遥感监测方法技术路线。
[0028]
图2是2022年1月26日13时gk-2a卫星全圆盘原始数据。
[0029]
图3是2022年1月26日13时预处理后的四川省凉山彝族自治州gk2a数据。
[0030]
图4是真彩色合成图。
[0031]
图5是2022年1月26日13时四川省凉山彝族自治州gk2a火情提取结果图。
具体实施方式
[0032]
以2022年1月26日13时四川省凉山彝族自治州火情判识监测过程为例,并结合附图说明和实施对本发明具体实施进一步说明:1火情监测区域gk2a数据预处理:gk-2a数据投影转换、辐射校正、大气校正等。
[0033]
1.1利用卫星和太阳的天顶角、方位角,校正可见光、近红外的反射率以及热红外辐射亮温值进行辐射校正,所对应gk-2a卫星数据中的第1(0.47μm)、2(0.51μm)、3(0.64μ
m)、4(0.85μm)、6(1.61μm)、7(3.83μm)、14(11.21μm)和15(12.36μm)通道;1.2对热红外通道数据利用 6s 辐射传输模型做大气校正,所对应gk-2a卫星数据中的第4、6、7、14和15通道。原始gk2a数据如图1所示,定标和大气校正后结果如图3所示;2晴空像元标记:判识云区、水体区、荒漠区等像元。
[0034]
2.1利用云区白天可见光的高反射特性以及热红外通道温度特性,进行云检测,所对应gk-2a卫星数据中的第3通道、4通道和15通道。云检测结果如图5所示,可以看出云主要分布于东北部,其余部分可以进行火情监测;2.2 利用水体在近红外波段的特性进行水体识别,所对应gk-2a卫星数据中的第3通道、4通道。水体提取结果如图5所示。
[0035]
2.3 区域内无荒漠区土地利用类型。
[0036]
3基于gk2a处理后的数据进行有效背景像元筛选。基于下垫面类型差异化的条件判断,可以看出,区域内下垫面土地利用类型主要为林地,因此除云和水体外均为有效背景像元。
[0037]
4计算背景像元亮温。采用开窗法计算待判区域有效背景像元亮温的平均值,获得背景像元亮温,计算方法如式(11):
ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ
(11)式中:t
mirbg
:中红外通道背景区亮度温度平均值(k),n:有效背景像元个数,t
mir
:中红外通道亮温(k)。
[0038] 5火点像元判识。基于以下判识条件,进行火点像元的动态阈值判识:。
[0039]
ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ
(12)
ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ
(13)
ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ
(14)
ꢀꢀꢀꢀꢀ
(15)
ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ
(16)式中, t
mir
和t
mirbg
分别为被判识像元和背景像元中红外亮温值;t
mir-fir
和t
mir-firbg
分别为被判识像元和背景像元中红外与远红外亮温差值;t
th1
和t
th2
为动态阈值。δt
mirbg
为有效背景像元中红外亮温标准偏差;δt
mir-firbg
为有效背景像元中红外与远红外亮温差值的标准偏差。n1和n2分别为t
th1
和t
th2
判识阈值的修正系数。θs为太阳高度角;pv为非植被像元比例;ni为初始背景系数,i=1或2;初始条件下,n1取3,n2取3.5。i为mir或mir-fir;δt*
ibg
和δt
ibg
分别为窗口区域的修正标准差和原始标准差;pc为窗口区域内云像元比例。
[0040]
式(12)-(14)为火点判识方法,其中动态阈值需要式(15)、(16)计算得出。
[0041]
针对火情监测的复杂下垫面背景环境特征,结合太阳高度角及植被比例的自适应动态的修正系数计算处理,即对动态阈值中的修正系数n1和n2结合下垫面信息进行动态处理。针对待判像元太阳高度角和窗口区域内非植被像元比例对背景系数的影响规律,获得修正背景系数n*i。该系数会随太阳高度角和窗口区域内非植被像元比例增而增大,以减少太阳反射信号带来的误判,式(15)。
[0042]
针对云层干扰影响处理,云层作为特殊的下垫面,通常具有亮温低、反射率高和特殊几何结构等特点,当被判识像元处于云边缘或云缝隙时,云的亮温导致有效背景亮温降低,使其易满足火点判识条件,而云的特殊结构易造成太阳辐射的镜面反射效应,两者均会造成火点误判。因此针对窗口区域内像元标准差进行云像元比例自适应修正,式(16)。
[0043]
经过对全区域gk-2a数据的逐像元计算判识,最终初步得出得出2022年1月26日13时四川省凉山彝族自治州有a、b、c、d四个疑似火点,如图5所示。火点像元亮温分别为a点306.7 k、b点313.1k、c点314.2k、d点314.5k;有效背景像元亮温分别为a点301.0k、b点302.2k、c点302.3k、d点302.7k。
[0044]
4假火点剔除。常年高温假火点点通常以人工热源为主,利用土地利用类型等辅助热源数据库数据进行删选剔除,得出a、b、c、d四个疑似火点中,d火点下垫面为人工热源点,因此判定为假火点,最终得出2022年1月26日13时四川省凉山彝族自治州共有a、b、c三处火情事件,最终判识监测判识结果如图5所示。
[0045]
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。
再多了解一些

本文用于企业家、创业者技术爱好者查询,结果仅供参考。

发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表

相关文献