一种残膜回收机防缠绕挑膜装置的制 一种秧草收获机用电力驱动行走机构

一种烹饪器具烹饪米饭的控制方法及烹饪器具与流程

2022-06-25 04:57:14 来源:中国专利 TAG:


1.本技术属于厨房用具技术领域,具体涉及一种烹饪器具烹饪米饭的控制方法及烹饪器具。


背景技术:

2.现有电饭煲的米饭烹饪过程中,一般具有对大米进行浸泡吸水的阶段,即在电饭煲的烹饪初期,通过控制内胆内米饭的水温在吸水温度下一定时长,使得大米缓慢吸水。
3.现有的吸水阶段,由于温度检测的滞后性,使得胆内米水的温度升温速度慢,进而影响米饭烹饪效果。


技术实现要素:

4.本技术提供了一种烹饪器具烹饪米饭的控制方法及烹饪器具,以解决烹饪器具的控温准确性差的问题。
5.本技术实施例的技术方案是这样实现的:
6.一方面,本技术的实施例提供了一种烹饪器具烹饪米饭的控制方法,所述烹饪器具包括用于烹饪米饭的内胆、加热装置、底部温度传感器以及供气装置,所述控制方法包括如下步骤:
7.接收烹饪指令,控制烹饪装置执行预设烹饪曲线至吸水阶段;
8.获取所述内胆胆壁的第一温度;
9.控制所述供气装置产生的风吹向所述内胆的外壁形成风流,所述风流被内胆外壁和/或加热装置加热形成的热风流,所述热风流与加热装置联动控制内胆内的吸水温度至设定温度;其中,所述设定温度不大于第一温度。
10.另一方面,本技术的一种实施例提供了一种烹饪装置,包括用于烹饪米饭的内胆、加热装置、底部温度传感器、供气装置以及存储器和处理器,所述存储器中存储有可在处理器上运行的计算机程序;所述处理器执行所述程序时实现任一项所述方法中的步骤。
11.本技术实施例中,通过供气装置的风流在内胆外壁和/或加热装置的加热下形成热风流,并在加热装置和供气装置联动控制内胆内吸水温度至设定的温度,能够使得温度控制更为准确,使得内胆内的吸水温度更快速的升高。
附图说明
12.此处所说明的附图用来提供对本技术的进一步理解,构成本技术的一部分,本技术的示意性实施例及其说明用于解释本技术,并不构成对本技术的不当限定。在附图中:
13.图1为本技术一些实施方式下提供的烹饪器具制作米饭的烹饪方法的一个实施例的流程图;
14.图2为本技术一些实施方式下提供的供气装置降温过程工作温度随时间变化曲线图;
15.图3为本技术一些实施方式下提供的供气装置降温及升温过程工作温度随时间变化曲线图;
16.图4为本技术一些实施方式下提供的米饭烹饪全流程曲线图;
17.图5为本技术一些实施方式下提供的烹饪器具的结构框图;
18.图6为本技术一些实施方式下提供的烹饪器具的结构示意图。
19.其中:
20.10煲体;101保温内罩;105加热装置;106容置腔;
21.20煲盖;
22.30内胆;301烹饪腔;
23.40风扇。
具体实施方式
24.为了更清楚的阐释本技术的整体构思,下面结合说明书附图以示例的方式进行详细说明。
25.在下面的描述中阐述了很多具体细节以便于充分理解本技术,但是,本技术还可以采用其他不同于在此描述的其他方式来实施,因此,本技术的保护范围并不受下面公开的具体实施例的限制。
26.另外,在本技术的描述中,需要理解的是,术语“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本技术和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
27.在本技术中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接,还可以是通信;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。
28.在本技术中,除非另有明确的规定和限定,第一特征在第二特征“上”或“下”可以是第一和第二特征直接接触,或第一和第二特征通过中间媒介间接接触。在本说明书的描述中,参考术语“实施方式”、“实施例”、“一种实施例”、“示例”或“具体示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本技术的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。
29.首先,本技术是基于发明人的如下认识和发现提出的:
30.申请人基于参与研发的太空厨房项目,发明了用于太空仓的热风加热装置,解决航天员在太空仓中加热食物的需求,其中的热风精准控温技术,申请人进一步研究将其应用于厨房小家电,产生了本技术的热风精准控温煮饭工艺,大大提升了米饭的吸水一致性,提升米饭的口感。
31.参考图1,示出了根据本技术公开的烹饪器具烹饪米饭的控制方法的一个实施例
的流程,该烹饪米饭的控制方法应用于可烹饪米饭的烹饪器具;烹饪器具可以包括不限于电饭煲、电压力锅等。下述的控制方法中,烹饪器具包括用于烹饪米饭的内胆、底部温度传感器、加热装置以及供气装置,具体见以下说明。
32.所述烹饪方法包括:
33.s01:接收烹饪指令,控制烹饪装置执行预设烹饪曲线至吸水阶段;
34.此处,烹饪指令可以是但不限于基于烹饪器具的操作面板或显示面板进行触控而发出的操作指令,基于红外遥控器或可遥控的设备发出的遥控指令,基于远程服务器发出的远程控制指令。
35.预设烹饪曲线可完成米饭的烹饪,预设烹饪曲线可以是但不限于存储于烹饪器具存储器中、远程服务器中、智能终端中;对于米饭烹饪而言,预设烹饪曲线一般包括吸水阶段、升温阶段、沸腾阶段、焖饭阶段、保温阶段等。
36.吸水阶段的目的在于使内胆内米饭的水温在吸水温度下一定时长,使得大米缓慢吸水,并控制米饭的水温均匀性,避免部分米饭的水温过高,导致米粒糊化,进而使得米饭的吸水率、硬度、粘度、弹性等效果更好。
37.理想状态下,内胆内米饭的吸水温度不应超过55℃,优选地,保持在43-45℃为佳,这样,能够阻碍米粒的淀粉的α化,进而能够保证米饭吸水的均匀性。
38.s02:获取所述内胆胆壁的第一温度;
39.本领域技术人员知晓的是,第一温度的获取可通过设置在烹饪器具上的底部温度传感器进行获取,具体的,一种实施例中,底部温度传感器为ntc热敏电阻,抵接在金属内胆的底部,可将内胆的温度数据转换为电信号。此外,为了便于获取沸点温度值,可通过设置在烹饪器具上的顶部温度传感器来获取,具体的,一种实施例中,顶部温度传感器为ntc热敏电阻,设置在烹饪器具的锅盖上,并将探头伸入内胆与锅盖所限定的烹饪腔中,通过获取烹饪腔中的温度数据,并将其转换为电信号,从而获取沸点温度值。
40.s03:控制所述供气装置产生的风吹向所述内胆的外壁形成风流,所述风流被内胆外壁和/或加热装置加热形成的热风流,所述热风流与加热装置联动控制内胆内的吸水温度至设定温度;其中,所述设定温度不大于第一温度。
41.应当理解的是,供气装置包括但不限于风扇、气泵等,供气装置与烹饪器具的控制系统连接,可依据控制系统的指令启动工作,从而产生风,并吹向内胆的外壁形成风流。
42.当风流与内胆外壁或加热装置接触后,将与接触物体进行热交换,被加热成热风流;应当理解的是,供气装置在形成热风流时,是通过内胆或加热装置的热量加热的,而不是供气装置本身或其他方式形成热风流。因此,在吸水阶段下,供气装置能够与加热装置联动控制内胆的胆壁温度和吸水温度。
43.本领域的技术人员基于米饭烹饪领域下可知晓的是,在吸水阶段下,加热装置为了使内胆内的吸水温度至设定温度,会对内胆进行加热,此时内胆胆体温度在一定的范围内波动,一些实施例中,第一温度的波动范围在45-80℃之间,吸水温度被控制在设定温度45℃以下;在一些其他实施例中,第一温度的波动范围可以在其他温度值,优选的,吸水温度控制在55℃以下。
44.在本技术的一些具体实施例中,联动控制包括:
45.根据预设温度区间,控制所述加热装置在所述吸水阶段间歇性工作;
46.当所述加热装置停止工作时,控制所述供气装置工作;
47.当所述第一温度低于所述预设温度区间的下限温值时,控制所述供气装置停止工作,并控制加热装置恢复加热。
48.如图2所示,加热装置在所述吸水阶段间歇性工作时,加热装置在高于温度t2时,停止加热,在低于温度t1时,恢复加热,内胆胆壁的第一温度处在升温和降温的过程中变化,一些具体实施方式下,不同时刻的上限温(t2)和下限温(t1)可以设置成不同,以组成多个不同的预设温度区间。
49.在仅有加热装置对内胆进行控温时,如图2所示,曲线c为胆体的理想胆温,由于滞后性,底部温度传感器实测得到的温度数据存在一定的延迟,表现出如曲线a所示的实测温度,烹饪过程中,加热装置以一定的功率对内胆进行加热,当检测到温度值超过t2时,停止加热,通过胆内冷热水对流使得米水整体温度均匀,当检测到温度下降到t1时,加热装置恢复加热,继续为胆内米水混合物提供热量。由曲线c和曲线a之间比较可以发现,加热装置理想状态下应该在t3时刻恢复加热,而实际上,加热装置却等到t5时刻时才恢复加热,加热装置没能及时地启动以为对流完全的米饭继续提供热量,致使米饭升温速度慢,此时胆体内的水温如曲线e所示缓慢升高。
50.如图2所示,当加热装置停止工作时,控制供气装置工作,使得底部温度传感器的实测温度如曲线b所示下降,具体的,在加热装置和供气装置联动控制下,曲线d为胆体的理想胆温,实测温度表现出如曲线b所示,与现有技术相比,曲线b先于曲线a下降至下限温值(t1),此时,加热装置恢复加热的时刻为t4时刻,早于t5时刻,加热装置更为及时地启动以为对流完全的米饭继续提供热量,致使米饭升温速度更快,此时胆体内的水温如曲线f所示更快速地升高。加热装置恢复加热后,供气装置停止工作,从而避免热量损失,提高米水的升温速率。
51.在本技术的一些具体实施方式中,所述预设温度区间具有多个:
52.各所述预设温度区间具有上限温和下限温;
53.相邻的预设温度区间的上限温相比,前一预设温度区间的上限温数值大于后一预设温度区间的上限温数值;
54.相邻的预设温度区间的下限温相比,前一预设温度区间的下限温数值大于后一预设温度区间的下限温数值。
55.例如,前一预设温度区间为[50,80],则后一预设温度区间为[47,70],如此设置,可以在前期米水温度不高时为米水提高更多的热量,在后期米水温度接近设定温度时,提高更少的热量,避免超温。
[0056]
本技术的一些具体实施方式中,所述联动控制包括:
[0057]
所述加热装置在所述吸水阶段间歇性工作,所述供气装置在吸水阶段全流程工作;以控制所述第一温度处在预设温度区间内。
[0058]
全流程工作指在烹饪过程中,加热装置不仅在停止加热的过程中工作,也在加热过程中工作。
[0059]
具体的,如图3所示,在仅有加热装置对温度进行控制下,加热装置从t5时刻恢复加热,胆温迅速升高,理想胆温表现为如曲线c所示,实测温度表现为如曲线a所示,在有供气装置参与的情况下,加热装置从t4时刻恢复加热,胆温迅速升高,理想胆温表现为如曲线
d所示,实测温度表现为如曲线b所示,由于风流带走的热量有限,且金属的比热小,所以并不会对升温速率有太大的影响。
[0060]
在本技术的一些具体实施例中,
[0061]
烹饪开始时,控制所述加热装置加热,以使烹饪器具按照预设烹饪曲线执行预热阶段;
[0062]
当预热阶段下,所述第一温度超过设定阈值时,控制所述供气装置工作。
[0063]
烹饪的早期,米饭的温度偏低,存在加热装置持续加热的预热阶段,此时,控制供气装置停止工作,能够保证预热阶段能快速升温。当第一温度超过设定阈值时,再控制供气装置工作,以便为预设阶段后的吸水阶段进行精准温度控制。
[0064]
在本技术的一些具体实施例中,所述联动控制包括:
[0065]
获取所述吸水阶段执行时间;
[0066]
当所述执行时间大于预设时长时;
[0067]
控制所述供气装置停止工作。
[0068]
加热的过程中,米水温度随着加热的进行,温度逐渐升高,在米水温度较低的时候,一次加热和停止加热下,通过对流可以很快地使得胆内的米水温度变得均匀,在米水温度升高后,米饭内部的在间歇性加热下,局部温度与其他部分的温差减小,使得对流所起到的作用下降,内部米饭主要靠内部热传导进行温度均匀,为此,在吸水阶段的后期如果有热风流的存在,那么存在胆内米水温度还未传热均匀就开始恢复加热的可能,导致超过胆内吸水温度超过预设温度的可能,超过吸水温度后,大米表面淀粉开始糊化,吸水效果变差,米粒吸水效果差,致使大米的口感降低。
[0069]
为此本技术的一具体实施例中,供气装置和加热装置之间,联合控制可以在吸水阶段的后期不执行供气,在前期执行供气,以提高控温准确性;例如,在吸水阶段的执行时间小于总吸水时长的1/2时,执行联合控制。预设时长可以依据实际情况具体设置。
[0070]
基于同样的理由,可通过加热装置的工作次数,来进行联动控制,在一些具体实施例中,所述联动控制包括:
[0071]
获取所述吸水阶段下,所述加热装置的工作次数;
[0072]
当所述加热装置执行至预设次数后,控制供气装置停止工作。
[0073]
加热装置的工作次数越多,为胆内的米水提供的热量就越多,内胆内的米水温度也就越高,为此,可以通过控制加热装置的工作次数,来进行联合控制;具体的,加热装置的工作一次为加热装置对内胆完成一次加热的次数,或为加热装置的一次工作周期,一次工作周期下可包括固定次数(一次或多次)的加热次数和固定次(一次或多次)的停止次数。
[0074]
在一些具体实施例中,所述联动控制包括:
[0075]
获取所述加热装置的执行状态,当所述加热装置停止加热时,启动供气装置工作,获取供气装置的工作时间,当工作时间超过预设时间时,执行自然冷却过程。
[0076]
通过在停止加热的前期启动供气装置工作,能够加速温度的下降,在停止加热的后期停止供气装置的工作,执行自然冷却,能够保证胆内温度是在对流及传热均匀后,加热装置才恢复加热,上述方案兼顾了快速升温与温度均匀两方面的考虑。
[0077]
在一些具体实施例中,所述联动控制包括:
[0078]
获取所述加热装置的执行状态,当所述加热装置停止加热时,启动供气装置工作,
获取供气装置的工作时间,当工作时间超过预设时间时,执行自然冷却过程。
[0079]
上述实施例中,前期启动供气装置工作,执行自然冷却,应用在吸水阶段的后期,如上所述,在吸水阶段的后期,更多依靠米水的导热来传递热量,所以后期的胆体温度下降速率会下降,需要更长的时间才能达到下限温值,对于吸水阶段的后期,为避免供气装置在胆内米水温度还未传导均匀时启动工作,造成加热装置提前恢复加热致使米水温度高于吸水的设定温度,通过获取所述加热装置的执行状态,当所述加热装置停止加热时,启动供气装置工作,获取供气装置的工作时间,当工作时间超过预设时间时,执行自然冷却过程。能够使得加热装置停止加热的前期下降更快,后期下降更慢,以平衡温度准确性与超温问题这两方面的矛盾。
[0080]
本技术中,在未有上述供气装置的参与下,内胆的温度主要由加热装置控制,加热装置工作时,内胆快速升温,并向外部介质辐射、传导热量,从内胆内外及本身的介质分布来看,胆体内是米水混合物,水的比热大,在加热的过程中,需要吸收大量的热才能够热起来,胆体是金属,与水相比,金属的比热小于水,传热性好于水,能更快的热起来,并能将热量导热至胆的其他位置,胆体外侧是空气层,空气层比热比金属大,比水小,相比水更容易热起来,相比于金属更难热起来,静态的空气层的导热系数小于金属,也小于水,具有一定保温属性,底部温度传感器与米饭之间具有多层介质,分别可以为胆体、空气层、传感器壳体、热敏元件等;如此,使得底部温度传感器检测到的温度数值具有一定的滞后性,并不能很好的反映胆体的温度,也更不能很好的反映胆内部的米水温度,使得实测的温度值与胆体温度、胆内部的米水温度有一定的差距,相比之下,由于胆体温度升温快、导热性好,实测温度更接近于金属胆体的温度,而与胆内的米水温度存在更大误差。
[0081]
实际烹饪过程中,一些烹饪阶段需要维持胆内米饭的温度在一定的温度值,由于上述温控误差的存在,就需要控制加热装置对内胆进行间歇性加热,加热装置加热时,胆体温度先快速升高,并将热量先传递给接触胆体的米水,使得该部分米水温度先升高,为了避免接触胆体的部分米水过热的问题,需要控制加热装置停止加热,使得胆内冷热水对流以使胆内米水温度均匀,在对流过程中,胆体热量被米水吸收,温度迅速下降,但由于外侧温度传感器测得的温度存在滞后性,并不能很快的反映出胆体的实际温度,致使恢复加热的时间节点后移,进而不能及时地启动加热装置为已对流好后的米饭进行加热,致使米饭升温速度慢。
[0082]
具体的,一种实施例中,如图1所示,曲线c为胆体的理想胆温,由于滞后性,底部温度传感器实测得到的温度数据存在一定的延迟,表现出如曲线a所示的实测温度,烹饪过程中,加热装置以一定的功率对内胆进行加热,当检测到温度值超过t2时,停止加热,通过胆内冷热水对流使得米水整体温度均匀,当检测到温度下降到t1时,加热装置恢复加热,继续为胆内米水混合物提供热量。由曲线c和曲线a之间比较可以发现,加热装置理想状态下应该在t3时刻恢复加热,而实际上,加热装置却等到t5时刻时才恢复加热,加热装置没能及时地启动以为对流完全的米饭继续提供热量,致使米饭升温速度慢,此时胆体内的水温如曲线e所示缓慢升高。
[0083]
如图1所示的实施例中,当使用供气装置使胆体外侧的空气层流动时,此时空气层传热更多地依靠对流进行,提高了空气层的传热能力,降低了空气层的保温属性,位于底部的温度传感器能够在降温过程中更快地下降至预设温度,从而使得加热装置能够提前恢复
加热,从而能够及时为胆内米饭提供热量,进而快速升温。在此,热风流由内胆外壁和/或加热装置加热形成,所以胆体温度也将与底部温度传感器同步下降,避免直接输送热风流导致胆体温度被热风流加热而温度升高的可能,而由于风流的比热依然小于水,导热性依然比水更差,所以温度下降的过程中,大部分热量依旧被水所吸收,风流所带走热量依然有限,所以热量损失不大,不会影响到胆内米水的升温,所以可以通过风流来提高底部温度传感器测温准确性。
[0084]
具体的,如图1所示,在加热装置和供气装置联动控制下,曲线d为胆体的理想胆温,实测温度表现出如曲线b所示,与现有技术相比,曲线b先于曲线a下降至预设温度t1,此时,加热装置恢复加热的时刻为t4时刻,早于t5时刻,加热装置更为及时地启动以为对流完全的米饭继续提供热量,致使米饭升温速度更快,此时胆体内的水温如曲线f所示更快速地升高。
[0085]
以吸水阶段为例,假设吸水总时长为10min,现有技术中,若加热装置在10min中内加热次数为10次,则上述技术方案能够使得加热装置的加热次数增加至10次以上,从而使得内胆的吸水温度快速升高。
[0086]
综上,通过供气装置的风流在内胆外壁和/或加热装置的加热下形成热风流,并在加热装置和供气装置联动控制内胆内吸水温度至设定的温度t2,能够使得温度控制更为准确,使得内胆内的吸水温度更快速的升高。
[0087]
参考图4所示的温度曲线,本技术的一种具体实施例中,实验数据如下:
[0088]
[0089][0090]
其中,e组数据为联动控制下的吸水阶段的相关数据,e水为联动控制下胆内的米水的实测温度,e胆为联动控制下底部温度传感器所测的胆壁温度数据;f组数据为未联动控制下的吸水阶段的相关数据,f水为未联动控制下胆内的米水的实测温度,f胆为未联动控制下底部温度传感器所测的胆壁温度数据。
[0091]
可以看到,e胆加热装置恢复加热的时刻快于f胆,进而使得e水的水温升高速度快于f水。例如在6min时,e组的水温为34.582℃,f组的水温为32.632℃,可见e组的水温上升速度更快,从胆温的变化规律来看,16min内,f组间歇性加热7次,e组间歇性加热14次,明显增多。
[0092]
本技术的一些实施例中,所述供气装置为风扇,对所述风扇的控制包括:
[0093]
控制所述风扇以预设转速工作。
[0094]
预设转速可以1500r/min-10000r/min,如此可使得风扇工作时的噪声控制在合理范围内,提高用户体验。
[0095]
本技术的一些实施例中,参考图5,还提出了一种烹饪器具,包括用于烹饪米饭的内胆、加热装置、底部温度传感器、供气装置以及存储器和处理器,所述存储器中存储有可在处理器上运行的计算机程序;所述处理器执行所述程序时实现上述任一项所述方法中的步骤。
[0096]
本领域技术人员知晓的是,一种实施例中,加热装置可以为电磁加热线盘,通过电磁加热线盘产生的交变磁场完成对内胆的加热,另一实施例中,加热装置可以为发热盘,通过内部发热管通电而发热产生热量,再经过热传导将热量传导至内胆中的米饭。
[0097]
参考图6,示出了本技术公开的电饭煲的一个实施例的结构图;所述饭煲包括煲体
10、煲盖20、保温内罩101、用于烹饪米饭的内胆30、加热装置105、风扇40,所述煲体10设有容置腔106,所述内胆30置于容置腔106内且位于加热装置105上,煲盖20扣合封闭容置腔106与内胆30形成烹饪腔301。
[0098]
本技术中未述及的地方采用或借鉴已有技术即可实现。
[0099]
本说明书中的各个实施例均采用递进的方式描述,各个实施例之间相同相似的部分互相参见即可,每个实施例重点说明的都是与其他实施例的不同之处。
[0100]
本领域普通技术人员可以理解:实现上述方法实施例的全部或部分步骤可以通过程序指令相关的硬件来完成,前述的程序可以存储于计算机可读取存储介质中,该程序在执行时,执行包括上述方法实施例的步骤;而前述的存储介质包括:移动存储设备、只读存储器(read only memory,rom)、磁碟或者光盘等各种可以存储程序代码的介质。
[0101]
或者,本技术上述集成的单元如果以软件功能模块的形式实现并作为独立的产品销售或使用时,也可以存储在一个计算机可读取存储介质中。基于这样的理解,本技术实施例的技术方案本质上或者说对相关技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台烹饪锅具(可以是电饭煲、电炖锅、或者电压力锅等)执行本技术各个实施例所述方法的全部或部分。而前述的存储介质包括:移动存储设备、rom、磁碟或者光盘等各种可以存储程序代码的介质。
[0102]
以上所述仅为本技术的实施例而已,并不用于限制本技术。对于本领域技术人员来说,本技术可以有各种更改和变化。凡在本技术的精神和原理之内所作的任何修改、等同替换、改进等,均应包含在本技术的权利要求范围之内。
再多了解一些

本文用于企业家、创业者技术爱好者查询,结果仅供参考。

发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表

相关文献