一种残膜回收机防缠绕挑膜装置的制 一种秧草收获机用电力驱动行走机构

一种光通信装置和光通信方法与流程

2022-06-18 03:02:58 来源:中国专利 TAG:


1.本技术涉及光通信领域,尤其涉及一种光通信装置和光通信方法。


背景技术:

2.随着光通信技术的不断发展,作为光接入网络(optical access network,oan)的一种实现技术,无源光网络(passive optical network,pon)正在广泛的应用于各种光通信场景。请参见图1,图1是本技术提供的一种pon系统结构示意图,该pon系统采用的是多点到点的网络结构。如图1所示,一个pon中主要包括用于提供网络侧接口的光线路终端(optical line terminal,olt)、一个或者多个用于提供用户侧接口的光网络单元(optical network unit,onu)(如图1中所示的onu1和onun)以及一个或者多个存在于olt与onu之间且用于光信号分配的光分配网络(optical distribution network,odn)。实际应用中,odn包括用于光功率分配的无源光分光器、连接在无源光分光器和olt之间的主干光纤,以及连接在无源光分光器和onu之间的分支光纤。下行传输数据时,odn将olt下行的数据通过分光器传输到各个onu。同样的,上行传输数据时,odn将各个onu的上行数据汇聚后传输到olt。
3.为了避免因使用时分(time-division,td)技术所导致的时延和抖动等问题,人们开始考虑在pon中应用其他复用技术,例如多电子载波技术。结合图1,以上行传输为例,olt会实时的给每个onu分配一个特定的频率资源(即一个特定的电载波,如olt会给onu1配置频率为f1的电载波,给onun配置频率为fn的电载波)。每个onu会基于自己专属的电载波来生成固定波长(该波长通常也由olt配置得到)下的上行光信号,并将上行光信号通过odn发送给olt。例如,onu1会生成波长为λ1的上行信号光(该上行信号光对应的电载波的频率为f1)并发送给olt。onun会生成波长为λn的上行信号光(该上行信号光的电载波的频率为fn)并发送给olt。由于不同的onu都会分配有不同频率的电载波以及不同的光信号波长,这样就可以使得olt设备与每个onu之间分别建立专属的通信链路,就可以有效的降低olt与onu之间传输的时延和抖动。
4.但是,不同的onu所使用的光源可能存在不一致性(如不同的环境温度或者结温)的问题,这就会使得onu的光源输出的光载波或者信号光存在一定的频偏,甚至引起信号光的电载波的频率产生漂移,并最终导致多路上行光信号在olt端进行合波时会存在干扰,导致光通信质量较差。通常的解决方案是为各个发射机的光载波波长预留较大的间隔。但是考虑pon场景中onu数目众多,一般大于32个,加之设备安装的随机性,该种方案几乎无法实现。此外,利用波长锁定也是当前讨论较多的一种解决方案。现有技术中,人们已经提出了通过使用基于半导体激光器注入光波长锁定原理实现的光源来实现光载波的波长锁定,或者,通过使用etalon滤波器实现光载波的波长锁定等解决方案,但这些方案都存在实现成本高、结构稳定性差等问题。因此,在多子载波传输的场景下,如何减少多子载波传输过程中因信号光的频偏所导致的多路光信号在合波时存在的干扰,已经成为亟待解决的问题之一。


技术实现要素:

5.为了解决上述问题,本技术提供了一种光通信装置和光通信方法,可有效降低多子载波传输过程中因信号光的频偏所导致的多路光信号在合波时存在的干扰,可提升光通信的质量。
6.第一方面,本技术实施例提供了一种第一光通信装置。所述第一光通信装置包括:锁频模块和信号光生成模块。其中,所述锁频模块用于根据光频差指示信号生成目标波长控制信号,并将所述目标波长控制信号发送给所述信号光生成模块,所述光频差指示信号用于指示外部参考光与所述信号光生成模块向第二光通信装置发送的第一信号光的光载波的频率的差异程度。所述锁频模块还用于根据目标光频差、目标电频差和待传输比特信息生成目标电调制信号,并将所述目标电调制信号发送给所述信号光生成模块,其中,所述目标光频差由所述光频差指示信号确定,所述目标光频差为所述外部参考光与所述第一信号光的光载波的频率的差值,所述目标电频差为所述信号光生成模块向所述第二光通信装置发送的第二信号光的电载波的实测频率与目标电载波频率之间的差值。所述信号光生成模块用于根据所述目标波长控制信号和所述目标电调制信号生成第三信号光,并将所述第三信号光发送给所述第二光通信装置。所述第一信号光、所述第二信号光和所述第三信号光为所述第一光通信装置在不同时刻输出的信号光。
7.在上述实现中,一方面,第一光通信装置中的锁频模块21可根据光频差指示信息来生成目标波长控制信号,以使得信号光生成模块20可根据该目标波长控制信号来调节其生成的光载波的波长,从而可使得其后续输出的信号光的光载波的频率能够更加接近或者等于外部参考光的频率,从而实现光载波的频率的锁定。另一方面,该锁频模块21还可根据目标光频差、目标电频差以及待传输信息生成目标电调制信号,并且该目标电调制信号所采用的电载波的频率能够更加接近或者等于预配置的目标电载波频率,从而能够实现电载波的频率的锁定。因此,将本技术提供的第一光通信装置20应用于多子载波传输场景下,可降低或者消除信号光的频偏所导致的多路信号光合波时存在的干扰,可提升光通信的质量。
8.结合第一方面,在一种可行的实现方式中,所述第一光通信装置还包括光频差检测模块。所述光频差检测模块用于获取由所述外部参考光与所述第一信号光对应的检测光所形成的光频差指示信号,并将所述光频差指示信号发送给所述锁频模块。所述光频差指示信号为所述外部参考光与所述第一信号光对应的检测光形成的目标拍频信号,所述第一信号光对应的检测光由所述信号光生成模块中的光源在所述信号光生成模块输出所述第一信号光时所生成的光载波或者信号光分光得到。这里,通过拍频检测结构来实现光频差检测模块,可使得光频差检测模块结构简单且易于实现,可降低光频差检测模块的结构复杂度和成本,进而提升第一光通信装置的结构稳定度并降低其成本。
9.结合第一方面,在一种可行的实现方式中,所述光频差检测模块包括:第一分光模块、第二分光模块、第一光电探测模块、第二光电探测模块以及第一电耦合模块。其中,所述第一分光模块用于将所述外部参考光分光成第一检测光和第二检测光,将所述第一检测光发送给所述第一光电探测模块,并将所述第二检测光发送给所述第二光电探测模块。所述第一检测光为所述外部参考光在第一偏振方向上的分量,所述第二检测光为所述外部参考光在第二偏振方向上的分量,所述第一偏振方向为所述第一分光模块的预设偏振方向,所
述第二偏振方向与所述第一偏振方向正交。所述第二分光模块用于将所述第一信号光对应的检测光分光成第三检测光和第四检测光,将所述第三检测光发送给所述第一光电探测模块,将所述第四检测光发送给所述第二光电探测模块。所述第三检测光为所述第一信号光对应的检测光在第三偏振方向上的分量,所述第四检测光为所述第一信号光对应的检测光在第四偏振方向上的分量,所述第三偏振方向为所述第二分光模块的预设偏振方向,所述第四偏振方向与所述第三偏振方向正交。所述第一光电探测模块用于获取所述第一检测光和所述第三检测光所形成的第一拍频电压信号,并将所述第一拍频电压信号发送给所述第一电耦合模块。所述第二光电探测模块用于获取所述第二检测光和所述第四检测光所形成的第二拍频电压信号,并将所述第二拍频电压信号发送给所述第一电耦合模块。所述第一电耦合模块用于对所述第一拍频电压信号和所述第二拍频电压信号进行耦合以得到所述光频差指示信号,并将所述光频差指示信号发送给所述锁频模块。这里,由较为常见且成本较低的分光模块、光电探测模块以及电耦合模块实现光频差检测模块,可降低第一光通信装置的成本。同时,由于分光模块、光电探测模块以及电耦合模块的器件特性都比较稳定,因此可保证光频差检测模块的性能稳定,从而使得第一光通信装置的性能较为稳定。
10.结合第一方面,在一种可行的实现方式中,所述第一分光模块和所述第二分光模块为偏振旋转分光器,所述第一偏振方向与所述第三偏振方向相同,所述第一检测光与所述第二检测光的偏振方向相同,所述第三检测光与所述第四检测光的偏振方向相同。
11.结合第一方面,在一种可行的实现方式中,所述第三检测光和所述第四检测光的光功率相同。
12.结合第一方面,在一种可行的实现方式中,所述第一光电探测模块中包括第一光电探测器,所述第二光电探测模块中包括第二光电探测器,所述第一光电探测器、所述第二光电探测器、所述第一分光模块和所述第二分光模块集成在第一光子芯片上。这里,将第一光电探测器、所述第二光电探测器、所述第一分光模块和所述第二分光模块集成在一个光子芯片上,可提升光频差检测模块的集成度和稳定性。
13.结合第一方面,在一种可行的实现方式中,所述第一光通信装置还包括光频差检测模块,所述光频差检测模块中包括微环模块,所述微环模块的谐振频率与所述外部参考光的频率的差值小于或者等于第一预设差值。所述光频差检测模块用于根据第五检测光和第六检测光得到光频差指示信号,并将所述光频差指示信号发送给所述锁频模块。所述光频差指示信号为所述第五检测光的第一光功率指示信号和第六检测光的第二光功率指示信号。所述第一信号光对应的检测光分光得到所述第五检测光和第七检测光。所述第六检测光由所述微环模块在输入所述第七检测光时输出的光分光得到。所述第一信号光对应的检测光由所述信号光生成模块中的光源在所述信号光生成模块输出所述第一信号光时所生成的光载波或者信号光分光得到。这里,由微环结构实现光频差检测模块27,可扩大光频差的检测范围并降低整个光频差检测模块27的带宽要求,从而可提升光频差指示信号检测的稳定度和有效性。
14.结合第一方面,在一种可行的实现方式中,所述光频差检测模块还包括:第一光耦合模块、第二光耦合模块、第三光电探测模块和第四光电探测模块。所述第一光耦合模块用于将所述第一信号光对应的检测光分光得到所述第五检测光和所述第七检测光,将所述第五检测光传输给所述第三光电探测模块,并将所述第七检测光传输给所述微环模块。所述
第三光电探测模块用于获取所述第五检测光的第一光功率指示信号,并将所述第一光功率指示信号传输给所述锁频模块。所述微环模块用于对所述第七检测光进行微环滤波,并将经过微环环滤波后的第七检测光传输给所述第二光耦合模块。所述第二光耦合模块用于将经过微环滤波后的第七检测光分光得到所述第六检测光,并将所述第六检测光传输给所述第四光电探测模块。所述第四光电探测模块用于获取所述第六检测光对应的第二光功率指示信号,并将所述第二光功率指示信号传输给所述锁频模块。
15.结合第一方面,在一种可行的实现方式中,所述光频差检测模块还包括:第五光电探测模块和第六光电探测模块。第二光耦合模块还用于对所述外部参考光进行分光以得到第八检测光和第九检测光,将所述第九检测光传输给所述微环模块,并将所述第八检测光传输给所述第五光电探测模块。所述第五光电探测模块用于获取所述第八检测光对应的第三光功率指示信号,并将所述第三光功率指示信号传输给所述锁频模块。所述微环模块还用于对所述第九检测光进行微环滤波,并将经过微环滤波后的第九检测光传输给所述第一光耦合模块。所述第一光耦合模块用于对所述经过微环滤波后的第九检测光进行分光以得到第十检测光,并将所述第十检测光发送给所述第六光电探测模块。所述第六光电探测模块用于获取所述第十检测光对应的第四光功率指示信号,并将所述第四光功率指示信号发送给所述锁频模块。
16.结合第一方面,在一种可行的实现方式中,所述第三光电探测模块中包括第三光电探测器,所述第四光电探测模块中包括第四光电探测器,所述第五光电探测模块中包括第五光电探测器,所述第六光电探测模块中包括第六光电探测器,所述第三光电探测器、所述第四光电探测器、所述第五光电探测器、所述第六光电探测器、所述第一光耦合模块、所述第二光耦合模块以及所述微环模块集成在第二光子芯片上。这里,将第三光电探测器、所述第四光电探测器、所述第五光电探测器、所述第六光电探测器、所述第一光耦合模块、所述第二光耦合模块以及所述微环模块集成在同一个光子芯片上,可提升光频差检测模块的集成度。
17.结合第一方面,在一种可行的实现方式中,所述锁频模块具体用于计算出所述第四光功率指示信号与所述第三光功率指示信号的第一实测比值。若确定所述第一实测比值与第一预设比值的差值等于或者大于第二预设差值,或者,确定所述第一实测比值与第一预设比值不相等,则对所述微环模块的驱动信号进行调整,并将调整后的驱动信号发送给所述微环模块。其中,所述调整后的驱动信号用于所述微环模块进行谐振频率的调整。
18.结合第一方面,在一种可行的实现方式中,所述锁频模块还具体用于若确定所述第一实测比值与所述第一预设比值的差值小于所述第一预设差值,或者,确定所述第一实测比值与第一预设比值相等,则停止对所述微环模块的驱动信号的调整。
19.结合第一方面,在一种可行的实现方式中,所述微环模块包括:第一微环谐振腔、第二微环谐振腔、第一波导、第二波导、第三分光模块和第四分光模块。所述微环模块的谐振频率等于所述第一微环谐振腔和所述第二微环谐振腔的谐振频率。所述第一微环谐振腔和所述第二微环谐振腔为单侧耦合微环谐振腔。所述第三分光模块和所述第四分光模块通过所述第一波导和所述第二波导光连接,所述第一波导靠近所述第一微环谐振腔,所述第二波导靠近所述第二微环谐振腔,所述第三分光模块还与所述第一光耦合模块光连接,所述第四分光模块还与所述第二光耦合模块光连接。
20.结合第一方面,在一种可行的实现方式中,所述微环模块包括第三微环谐振腔、第三波导、第四波导、第五分光模块和第六分光模块。所述微环模块的谐振频率等于所述第三微环谐振腔的谐振频率。所述第三微环谐振腔为双侧耦合微环谐振腔。所述第五分光模块和所述第六分光模块通过所述第三波导和所述第四波导光连接,所述第三波导和所述第四波导分别靠近所述第三微环谐振腔的一侧,所述第五分光模块还与所述第一光耦合模块光连接,所述第六分光模块还与所述第二光耦合模块光连接。这里,采用双侧耦合微环结构来实现上述微环模块,可降低微环模块所使用的微环谐振腔的数目,可提升微环模块的集成度和可靠性。
21.结合第一方面,在一种可行的实现方式中,所述锁频模块用于根据所述目标拍频信号确定出所述目标光频差。再根据所述目标光频差、第一预设调整系数以及所述锁频模块最近一次向所述信号光生成模块输出的波长控制信号确定出所述目标波长控制信号。
22.结合第一方面,在一种可行的实现方式中,所述锁频模块具体用于在第一时刻对所述目标拍频信号进行采样以得到所述目标拍频信号对应的目标采样信号。对所述目标采样信号以及所述锁频模块在第一预设时段内的接收到的拍频信号所对应的采样信号进行滤波以得到待变换信号。这里,所述第一预设时段的结束时刻为所述第一时刻。对所述待变换信号进行数字傅里叶转换以得到所述第一预设时段所对应的频谱信息。获取所述目标采样信号在所述频谱信息中对应的频率峰值,并将所述频率峰值确定为所述目标光频差。
23.结合第一方面,在一种可行的实现方式中,所述锁频模块用于根据所述第一光功率指示信号和所述第二光功率指示信号确定出所述目标光频差。还用于根据所述目标光频差、第一预设调整系数以及所述锁频模块最近一次向所述信号光生成模块输出的波长控制信号确定出所述目标波长控制信号。
24.结合第一方面,在一种可行的实现方式中,所述锁频模块具体用于计算出所述第二光功率指示信号与所述第一光功率指示信号的第二实测比值。再根据所述第二实测比值从所述微环模块的预设光功率比值-光频差对应关系集合中确定出所述第二实测比值对应的光频差,并将所述第二实测比值对应的光频差确定为所述目标光频差。这里,所述预设光功率比值-光频差对应关系集合中包括一个或者多个不同的实测比值以及每个实测比值所对应的光频差。
25.结合第一方面,在一种可行的实现方式中,所述锁频模块具体用于计算所述第二光功率指示信号与所述第一光功率指示信号的第二实测比值。若确定所述第二实测比值与第二预设比值的差值大于或者等于第三预设差值,或者,确定所述第二实测比值与所述第二预设比值不相等,则将预设电压信号确定为所述目标波长控制信号。
26.结合第一方面,在一种可行的实现方式中,所述锁频模块还具体用于若确定所述第二实测比值与第二预设比值的差值小于所述第三预设差值,或者,确定所述第二实测比值等于所述第二预设比值,则停止生成并发送所述目标波长控制信号。
27.结合第一方面,在一种可行的实现方式中,所述锁频模块具体还用于根据所述目标电载波频率、所述目标电频差和所述目标光频差确定出目标载波频率。生成目标电载波,这里,所述目标电载波的频率等于所述目标载波频率。将所述待传输比特信息加载在所述目标电载波上以得到所述目标电调制信号。
28.结合第一方面,在一种可行的实现方式中,所述目标载波频率满足以下公式:
29.fm=fc α
×
δfd β
×
δfg30.其中,fm为所述目标载波频率,fc为所述目标电载波频率,α为第二预设调整系数,β为第三预设调整系数,α大于或者等于0,β大于或者等于0,δfd为所述目标电频差,δfg为所述目标光频差。
31.结合第一方面,在一种可行的实现方式中,所述目标电载波频率包含于所述锁频模块接收到的网络控制信号中,所述第二信号光的电载波的实测频率包含于所述锁频模块接收到的网络状态信号中。
32.结合第一方面,在一种可行的实现方式中,所述信号光生成模块还包括:光源驱动模块、光信号调制模块以及第七分光模块。其中,所述光源驱动模块用于接收所述目标波长控制信号,根据所述目标波长控制信号生成第一目标驱动信号,并将所述第一目标驱动信号发送给所述光源。所述光源用于根据所述第一目标驱动信号生成所述第三信号光对应的初始光载波,并将所述第三信号光对应的初始光载波发送给所述第七分光模块。所述第七分光模块用于对所述第三信号光对应的初始光载波进行分光以得到所述第三信号光的光载波和所述第三信号光对应的检测光,并将所述第三信号光的光载波发送给所述光信号调制模块。所述光信号调制模块用于根据所述目标电调制信号和所述第三信号光的光载波生成并输出所述第三信号光。
33.结合第一方面,在一种可行的实现方式中,上述光信号调制模块具体可以是通过各种材料或者结构实现的电吸收调制器(electro absorption modulator,eam)、马赫-曾德尔调制器(mach-zehnder modulator,mzm)、微环调制器等。
34.结合第一方面,在一种可行的实现方式中,当光信号调制模块为微环调制器时,其与上述微环模块可以为共用的功能模块。
35.结合第一方面,在一种可行的实现方式中,所述信号光生成模块还包括:光源驱动模块以及第八分光模块。所述光源驱动模块用于接收所述目标波长控制信号和所述目标电调制信号,根据所述目标波长控制信号和所述目标电调制信号生成第二目标驱动信号,并将所述第二目标驱动信号发送给所述光源。所述光源用于根据所述第二目标驱动信号生成所述第三信号光对应的初始信号光,并将所述第三信号光对应的初始信号光发送给所述第八分光模块。所述第八分光模块用于对所述第三信号光对应的初始信号光进行分光以得到所述第三信号光和所述第三信号光对应的检测光。
36.结合第一方面,在一种可行的实现方式中,所述第一光通信装置还包括:温度检测模块、温度信号处理模块、第二电耦合模块和温控执行模块。所述温度检测模块用于获取所述光源的温度指示信号,并将所述温度指示信号发送给所述温度信号处理模块和所述锁频模块。所述温度信号处理模块用于根据所述温度指示信号和预设温度生成第一温控信号,并将所述第一温控信号发送给第二电耦合模块。所述锁频模块用于根据所述温度指示信号和所述预设温度生成温控反馈信号并将所述温控反馈信号发送给所述第二电耦合模块。所述第二电耦合模块还用于对所述第一温控信号和所述温控反馈信号进行耦合以得到第二温控信号,并将所述第二温控信号发送给所述温控执行模块。所述温控执行模块用于根据所述第二温控信号对所述光源进行温度控制,以使得所述光源的温度与预设温度的差值小于或者等于第四预设差值,所述预设温度由所述外部参考光的频率确定。这里,联合锁频模块生成的外部控制信号(即温控反馈信号)以及温度信号处理模块生成的第一温控信号进
行温控,可提升温控的精度和稳定度,可进一步提升光载波的频率锁定的精度。
37.结合第一方面,在一种可行的实现方式中,所述第一光通信装置还包括:温控执行模块。所述锁频模块用于根据所述目标光频差从所述光源对应的预设温度-波长对应集合中确定出所述目标光频差对应的目标温度差。这里,所述目标温度差为所述光源在所述信号光生成模块输出所述第一信号光的时刻的温度与预设温度之间的差值,所述预设温度由所述外部参考光的频率确定。所述锁频模块还用于根据所述目标温度差生成第三温控信号,并将所述第三温控信号发送给所述温控执行模块。所述温控执行模块用于根据所述第三温控信号对所述光源进行温度控制,以使得所述光源的温度与预设温度的差值小于或者等于第四预设差值。这里,直接由锁频模块根据目标光频差生成第三温控信号,并进一步由温控执行模块根据该第三温控信号对光源的温度进行控制,简化了温控模块的结构,可降低第一光通信装置的成本和结构复杂度。
38.结合第一方面,在一种可行的实现方式中,所述第一光通信装置还包括第一光接口和第九分光模块。所述第一光接口通过所述第九分光模块分别与所述锁频模块和所述光频差检测模块光连接。所述第一光接口用于通过所述第九分光模块接收所述信号光生成模块输出的所述第一信号光、所述第二信号光或者所述第三信号光,并将所述第一信号光、所述第二信号光或者所述第三信号光发送给所述第二光通信装置。所述第一光接口还用于接收所述外部参考光,并通过所述第九分光模块将所述外部参考光传输至所述光频差检测模块。这里,通过一个分光模块使得上述第一光接口能够实现双向光传输,可简化第一光通信装置的光接口的复杂度,可提升第一光通信装置的系统集成度以及应用灵活度。
39.结合第一方面,在一种可行的实现方式中,所述第一光接口与目标光纤光连接,所述第一光通信装置通过所述目标光纤向所述第二光通信装置发送所述第一光信号、所述第二光信号或者所述第三光信号,并通过所述目标光纤从所述第二光通信装置处接收所述外部参考光。
40.结合第一方面,在一种可行的实现方式中,所述第一光通信装置和所述第二光通信装置为多点到点或者多点到多点的结构的光纤网络中的光通信装置。
41.结合第一方面,在一种可行的实现方式中,所述第三信号光的光载波的频率与所述外部参考光的频率的差值小于所述第一信号光的光载波频率与所述外部参考光的频率的差值,所述第三信号光的电载波的频率与所述目标电载波频率的差值小于所述第一信号光的电载波的频率与所述目标电载波频率的差值。
42.第二方面,本技术实施例提供了一种第二光通信装置。所述第二光通信装置包括:信号光处理模块和参考光源模块。其中,所述信号光处理模块用于接收来自于第一光通信装置的第二信号光,确定所述第二信号光的电载波的实测频率,并将所述第二信号光的电载波的实测频率和目标电载波频率发送给所述第一光通信装置。所述信号光处理模块还用于生成参考光驱动信号并将所述参考光驱动信号发送给所述参考光源模块。所述参考光源模块用于根据所述参考光驱动信号生成并向所述第一光通信装置发送外部参考光。所述第二信号光的电载波的实测频率、所述目标电载波频率以及所述外部参考光用于所述第一光通信装置生成并向所述第二光通信装置发送第三信号光。
43.这里,由第二光通信装置为第一光通信装置提供第二信号光的电载波的实测频率、目标电载波频率以及外部参考光,进而使得第一光通信装置能够生成并输出信号光的
光载波频率更加接近外部参考光的频率,电载波的频率更加接近配置的目标电载波频率。这就可使得第一光通信装置输出的信号光的电载波和光载波的频率能够相对稳定,能够有效降低信号光的频偏所导致的多路光信号在合波时存在的干扰,提升光通信质量。
44.结合第二方面,在一种可行的实现方式中,第二光通信装置还包括第二光接口和第十分光模块。其中,所述第二光接口通过所述第十分光模块分别与所述信号光处理模块和所述参考光源模块光连接。所述第二光接口用于通过所述第十分光模块接收所述参考光源模块输出的所述外部参考光,并将所述外部参考光发送给所述第一光通信装置。所述第二光接口还用于接收来所述第二信号光或第三信号光,并通过所述第六分光模块将所述第二信号光或者第三信号光传输至所述信号光处理模块。
45.这里,通过第十分光模块和第二光接口实现信号光的双向传输,可降低第二光通信装置的光接口的复杂度,可提升第二光通信装置的集成度。
46.结合第二方面,在一种可行的实现方式中,所述第二光接口与目标光纤光连接,所述第二光通信装置通过所述目标光纤向所述第一光通信装置发送所述外部参考光,并通过所述目标光纤从所述第一光通信装置处接收所述第二信号光或者所述第三信号光。
47.第三方面,本技术实施例提供的一种光通信方法,该方法适用于上述第一光通信装置。第一光通信装置根据光频差指示信号生成目标波长控制信号,其中,所述光频差指示信号用于指示外部参考光与所述第一光通信装置向第二光通信装置发送的第一信号光的光载波的频率的差异程度。根据目标光频差、目标电频差和待传输比特信息生成目标电调制信号。这里,所述目标光频差由所述光频差指示信号确定得到,所述目标光频差为外部参考光与所述第一信号光的光载波的频率的差值,所述目标电频差为所述第一光通信装置向所述第二光通信装置发送的第二信号光的电载波的实测频率与目标电载波频率之间的差值。根据所述目标波长控制信号和所述目标电调制信号生成第三信号光,并将所述第三信号光发送给所述第二光通信装置。这里,所述第一信号光、所述第二信号光和所述第三信号光为所述第一光通信装置在不同时刻输出的信号光。
48.结合第三方面,在一种可行的实现方式中,第一光通信装置还可获取由所述外部参考光与所述第一信号光对应的检测光所形成的光频差指示信号。这里,所述光频差指示信号为所述外部参考光与所述第一信号光对应的检测光形成的目标拍频信号,所述第一信号光对应的检测光由所述第一光通信装置的光源在第一光通信装置输出所述第一信号光时所生成的光载波或者信号光分光得到。
49.结合第三方面,在一种可行的实现方式中,所述第一光通信装置还可将所述外部参考光分光成第一检测光和第二检测光,这里,所述第一检测光为所述外部参考光在第一偏振方向上的分量,所述第二检测光为所述外部参考光在第二偏振方向上的分量,所述第二偏振方向与所述第一偏振方向正交。再将所述第一信号光对应的检测光分光成第三检测光和第四检测光。这里,所述第三检测光为所述第一信号光对应的检测光在第三偏振方向上的分量,所述第四检测光为所述第一信号光对应的检测光在第四偏振方向上的分量,所述第四偏振方向与所述第三偏振方向正交。获取所述第一检测光和所述第三检测光所形成的第一拍频电压信号,以及所述第二检测光和所述第四检测光所形成的第二拍频电压信号,对所述第一拍频电压信号和所述第二拍频电压信号进行耦合以得到所述光频差指示信号。
50.结合第三方面,在一种可行的实现方式中,所述第一偏振方向与所述第三偏振方向相同,所述第一检测光与所述第二检测光的偏振方向相同,所述第三检测光与所述第四检测光的偏振方向相同。
51.结合第三方面,在一种可行的实现方式中,所述第三检测光和所述第四检测光的光功率相同。
52.结合第三方面,在一种可行的实现方式中,所述第一光通信装置还可根据第五检测光和第六检测光得到光频差指示信号。其中,所述光频差指示信号为所述第五检测光的第一光功率指示信号和第六检测光的第二光功率指示信号。所述第一信号光对应的检测光分光得到所述第五检测光和第七检测光,所述第六检测光由经过微环滤波的第七检测光分光得到,所述第一信号光对应的检测光由第一光通信装置的光源在所述第一光通信装置输出所述第一信号光时所生成的光载波或者信号光分光得到。
53.结合第三方面,在一种可行的实现方式中,所述第一光通信装置还可将所述第一信号光对应的检测光分光得到所述第五检测光和所述第七检测光,获取所述第五检测光的第一光功率指示信号。对所述第七检测光进行微环滤波,对经过微环滤波后的第七检测光进行分光以得到所述第六检测光,获取所述第六检测光对应的第二光功率指示信号。
54.结合第三方面,在一种可行的实现方式中,所述第一光通信装置还可对所述外部参考光进行分光以得到第八检测光和第九检测光,获取所述第八检测光的第三光功率指示信号。对所述第九检测光进行微环滤波以得到滤波后的第九信号光。对经过微环环滤波后的第九检测光进行分光以得到第十检测光,获取所述第十检测光对应的第四光功率指示信号。
55.结合第三方面,在一种可行的实现方式中,所述第一光通信装置还可计算出所述第四光功率指示信号与所述第三光功率指示信号的第一实测比值。若第一光通信装置确定所述第一实测比值与第一预设比值的差值等于或者大于第二预设差值,或者,确定所述第一实测比值与第一预设比值不相等,则对所述第一光通信装置中的微环模块的谐振频率进行调整,以使得所述微环模块的谐振频率接近或者等于外部参考光的频率。
56.结合第三方面,在一种可行的实现方式中,若第一光通信装置确定所述第一实测比值与所述第一预设比值的差值小于所述第一预设差值,或者,确定所述第一实测比值与第一预设比值相等,则停止对所述微环模块的谐振频率的调整。
57.结合第三方面,在一种可行的实现方式中,第一光通信装置还可根据所述目标拍频信号确定出所述目标光频差。根据所述目标光频差、第一预设调整系数以及所述第一光通信装置最近一次生成的波长控制信号确定出所述目标波长控制信号。
58.结合第三方面,在一种可行的实现方式中,所述第一光通信装置还可在第一时刻对所述目标拍频信号进行采样以得到所述目标拍频信号对应的目标采样信号。对所述目标采样信号以及所述第一光通信装置在第一预设时段内的接收到的拍频信号所对应的采样信号进行滤波以得到待变换信号。其中,所述第一预设时段的结束时刻为所述第一时刻。对所述待变换信号进行数字傅里叶转换以得到所述第一预设时段所对应的频谱信息。获取所述目标采样信号在所述频谱信息中对应的频率峰值,并将所述频率峰值确定为所述目标光频差。
59.结合第三方面,在一种可行的实现方式中,所述第一光通信装置还可根据所述第
一光功率指示信号和所述第二光功率指示信号确定出所述目标光频差。根据所述目标光频差、第一预设调整系数以及所述第一光通信装置最近一次生成的波长控制信号确定出所述目标波长控制信号。
60.结合第三方面,在一种可行的实现方式中,所述第一光通信装置还可计算出所述第二光功率指示信号与所述第一光功率指示信号的第二实测比值。根据所述第二实测比值从所述微环模块的预设光功率比值-光频差对应关系集合中确定出所述第二实测比值对应的光频差,并将所述第二实测比值对应的光频差确定为所述目标光频差,其中,所述预设光功率比值-光频差对应关系集合中包括一个或者多个不同的实测比值以及每个实测比值所对应的光频差。
61.结合第三方面,在一种可行的实现方式中,所述第一光通信装置还可计算所述第二光功率指示信号与所述第一光功率指示信号的第二实测比值。若确定所述第二实测比值与第二预设比值的差值大于或者等于第三预设差值,或者,确定所述第二实测比值与所述第二预设比值不相等,则将预设电压信号确定为所述目标波长控制信号。
62.结合第三方面,在一种可行的实现方式中,所述第一光通信装置若确定所述第二实测比值与第二预设比值的差值小于所述第三预设差值,或者,确定所述第二实测比值等于所述第二预设比值,则停止生成并发送所述目标波长控制信号。
63.结合第三方面,在一种可行的实现方式中,所述第一光通信装置可根据所述目标电载波频率、所述目标电频差和所述目标光频差确定出目标载波频率。生成目标电载波。这里,所述目标电载波的频率等于所述目标载波频率。将所述待传输比特信息加载在所述目标电载波上以得到所述目标电调制信号。
64.结合第三方面,在一种可行的实现方式中,所述目标载波频率满足以下公式:
65.fm=fc α
×
δfd β
×
δfg66.其中,fm为所述目标载波频率,fc为所述目标电载波频率,α为第二预设调整系数,β为第三预设调整系数,α大于或者等于0,β大于或者等于0,δfd为所述目标电频差,δfg为所述目标光频差。
67.结合第三方面,在一种可行的实现方式中,所述目标电载波频率包含于所述第一光通信装置接收到的网络控制信号中,所述第二信号光的电载波的实测频率包含于所述第一光通信装置接收到的网络状态信号中。
68.结合第三方面,在一种可行的实现方式中,所述第一光通信装置还可根据所述目标波长控制信号生成第一目标驱动信号,根据所述第一目标驱动信号生成所述第三信号光对应的初始光载波。对所述第三信号光对应的初始光载波进行分光以得到所述第三信号光的光载波和所述第三信号光对应的检测光。用于根据所述目标电调制信号和所述第三信号光的光载波生成并输出所述第三信号光。
69.结合第三方面,在一种可行的实现方式中,所述第一光通信装置还可根据所述目标波长控制信号和所述目标电调制信号生成第二目标驱动信号,根据所述第二目标驱动信号生成所述第三信号光对应的初始信号光。对所述第三信号光对应的初始信号光进行分光以得到所述第三信号光和所述第三信号光对应的检测光。
70.结合第三方面,在一种可行的实现方式中,所述第一光通信装置还可获取所述光源的温度指示信号,根据所述温度指示信号和预设温度生成第一温控信号和温控反馈信
号。对所述第一温控信号和所述温控反馈信号进行耦合以得到第二温控信号。根据所述第二温控信号对所述光源进行温度控制,以使得所述光源的温度与预设温度的差值小于或者等于第四预设差值。其中,所述预设温度由所述外部参考光的频率确定。
71.结合第三方面,在一种可行的实现方式中,所述第一光通信装置还可根据所述目标光频差从所述光源对应的预设温度-波长对应集合中确定出所述目标光频差对应的目标温度差。这里,所述目标温度差为所述光源在所述信号光生成模块输出所述第一信号光的时刻的温度与预设温度之间的差值,所述预设温度由所述外部参考光的频率确定。根据所述目标温度差生成第三温控信号,并根据所述第三温控信号对所述光源进行温度控制,以使得所述光源的温度与预设温度的差值小于或者等于第四预设差值。
72.结合第三方面,在一些可行的实现方式中,所述第一光通信装置通过目标光纤向所述第二光通信装置发送所述第一光信号、所述第二光信号或者所述第三光信号,并通过该目标光纤从所述第二光通信装置处接收所述外部参考光。
73.结合第三方面,在一种可行的实现方式中,所述第一光通信装置和所述第二光通信装置为多点到点或者多点到多点的结构的光纤网络中的光通信装置。
74.结合第三方面,在一种可行的实现方式中,所述第三信号光的光载波的频率与所述外部参考光的频率的差值小于所述第一信号光的光载波频率与所述外部参考光的频率的差值,所述第三信号光的电载波的频率与所述目标电载波频率的差值小于所述第一信号光的电载波的频率与所述目标电载波频率的差值。
75.第四方面,本技术实施例提供了一种光通信方法,该光通信方法时适用于上述第二光通信装置。该第二光通信装置可接收来自于第一光通信装置的第二信号光,并确定所述第二信号光的电载波的实测频率。将所述第二信号光的电载波的实测频率和目标电载波频率发送给所述第一光通信装置。生成并向所述第一光通信装置发送外部参考光。这里,所述第二信号光的电载波的实测频率、所述目标电载波频率以及所述外部参考光用于所述第一光通信装置生成并向所述第二光通信装置发送第三信号光。
76.结合第四方面,在一种可行的实现方式中,所述第一光通信装置和所述第二光通信装置为多点到点或者多点到多点的结构的光纤网络中的光通信装置。
77.结合第四方面,在一种可行的实现方式中,所述第三信号光的光载波的频率与所述外部参考光的频率的差值小于所述第二信号光的光载波频率与所述外部参考光的频率的差值,所述第三信号光的电载波的频率与所述目标电载波频率的差值小于所述第二信号光的电载波的频率与所述目标电载波频率的差值。
78.第五方面,本技术实施例还提供了一种光通信系统,该光通信系统可包括至少一个上述第一方面所提供的第一光通信装置以及上述第二方面所提供的第二光通信装置。
79.在多子载波传输的场景下,在本技术实施例揭示的第一光通信装置可对其生成的信号光所对应的光载波和电载波的频率进行精准的控制,从而使得其输出的信号光的光载波的频率能够锁定在外部参考光的频率上,并使得其输出的信号光的电载波的频率能够锁定在预配置的目标电载波频率上。这样就可以有效的解决多子载波传输过程中因信号光的频偏所导致的多路光信号在合波时存在拍频干扰的问题,可提升两个光通信装置的光信号传输的质量。
附图说明
80.图1是本技术实施例提供的一种pon系统结构示意图;
81.图2是本技术实施例以供的一种第二光通信装置一结构示意图;
82.图3是本技术实施例提供的一种第二光通信装置又一结构示意图;
83.图4是本技术实施例提供的一种第一光通信装置一结构示意图;
84.图5是本技术实施例提供的一种第一光通信装置所在的onu的结构示意图;
85.图6是本技术实施例提供的一种第一光通信装置又一结构示意图;
86.图7是本技术实施例提供的一种第一光通信装置又一结构示意图;
87.图8是本技术实施例提供的一种第一光通信装置又一结构示意图;
88.图9是本技术实施例提供的一种第一光通信装置又一结构示意图;
89.图10是本技术实施例提供的一种光频差检测模块一具体实现示意图;
90.图11是本技术实施例提供的一种第一光通信装置又一结构示意图;
91.图12是本技术实施例提供的一种第一光通信装置又一结构示意图;
92.图13是本技术实施例提供的一种光频差检测模块又一具体实现示意图;
93.图14是本技术实施例提供的一种微环模块一具体结构示意图;
94.图15是本技术实施例提供的一种微环模块又一具体结构示意图;
95.图16是本技术实施例提供的一种第一光通信装置又一结构示意图;
96.图17是本技术实施例提供的一种第一光通信装置又一结构示意图;
97.图18是本技术实施例提供的一种第一光通信装置又一结构示意图;
98.图19是本技术实施例提供的一种第一光通信装置又一结构示意图;
99.图20是本技术实施例提供的一种第一光通信装置又一结构示意图;
100.图21是本技术实施例提供的一种第一光通信装置又一结构示意图;
101.图22是本技术实施例提供的一种第一光通信装置又一结构示意图;
102.图23是本技术实施例提供的又一种pon系统结构示意图;
103.图24是本技术实施例提供的一种光通信系统的结构示意图;
104.图25是本技术实施例提供的一种光通信方法的流程示意图。
具体实施方式
105.下面将结合附图,对本技术中的技术方案进行描述。
106.现有技术中,为了避免因使用时分(time-division,td)技术所导致的时延和抖动等问题,人们开始考虑在pon中应用其他的复用技术,例如多电子载波技术(又可称为多子载波传输技术)。如图1所示,olt会实时的给每个onu分配一个特定的频率资源(即一个特定的电载波,如olt会给onu1配置频率为f1的电载波,给onun配置频率为fn的电载波)。这里需要说明的是,如果onu同时提供用户端口功能,如onu提供ethernet用户端口或者传统电话业务(plain old telephone service,pots)用户端口,则onu又可称为光网络终端(optical network termination,ont)。为方便理解,后文将统一以onu为例进行描述。每个onu会生成固定波长下的上行光信号,并将该上行光信号通过odn发送给olt。例如,onu1会生成波长为λ1的上行信号光(该信号光对应的电载波的频率为f1)并发送给olt。onun会生成波长为λn的上行信号光(该信号光对应的电载波的频率为fn)并发送给olt。由于不同的
onu都会分配有不同频率的电载波以及不同波长(也即不同频率)光载波,这样就可以使得olt设备与每个onu之间分别建立专属的通信链路,就可以有效的降低olt与onu之间传输的时延和抖动。但是,不同的onu所使用的光源可能存在不一致性(如不同的环境温度或者结温)的问题,这就会使得onu的光源输出的光载波或者信号光存在一定的频偏,从而引起上行信号光的电载波的频率产生漂移,并最终导致多路上行光信号在olt端进行合波时会存在干扰,影响光通信质量。通常的解决方案是为各个发射机的光载波波长预留较大的间隔。但是考虑pon场景中onu数目众多,一般大于32个,加之设备安装的随机性,该种方案几乎无法实现。此外,利用波长锁定也是当前讨论较多的一种解决方案。现有技术中,人们已经提出了通过使用基于半导体激光器注入光波长锁定原理实现的光源来实现光载波的波长锁定,或者,通过使用etalon滤波器实现光载波的波长锁定等解决方案,但这些方案都存在实现成本高、结构稳定性差等问题。
107.因此,本技术需要解决的问题是:在多子载波传输的场景下,如何简单且高效的降低信号光的频偏所导致的多路光信号在合波时存在的干扰。
108.实施例一
109.为解决上述问题,本技术实施例提供了第一光通信装置20和第二光通信装置10。在如图1所示的pon系统的结构下,第一光通信装置10可以是onu本身或者onu中的某个集成的功能模块(如光发射子模块(transmitter optical subassembly,tosa)),第二光通信装置可以是与该onu建立光通信链路的olt。在本实施例中,将以图1所示的pon系统下的第一光通信装置20向第二光通信装置10进行一次上行传输这一具体场景为例,分别对第一光通信装置和第二光通信装置的结构和功能实现作详细描述。
110.下面将结合图2到图3,对本技术实施例提供的第二光通信装置10的结构和功能进行详细的描述。
111.请参见图2,图2是本技术实施例提供的一种第二光通信装置一的结构示意图。如图2所示,该第二光通信装置10中可包括第一信号光处理模块11(为方便区别,下文将以第一信号光处理模块11代替描述)、参考光源模块12、第二光接口13以及第三光接口14。第一信号光处理模块11与第二光接口13光连接,并与参考光源12电连接。参考光源12还有第三光接口13光连接。
112.实际工作时,该第一信号光处理模块11可接收来自于第一光通信装置20的第二信号光,确定出该第二信号光的电载波的频率(为方便区别,下文以实测频率代替描述),并将该第二信号光的电载波的实测频率发送给第一光通信装置20。该第一信号光处理模块11还可以根据预设的频率资源配置算法确定出第一光通信装置20对应的目标电载波频率,并将该目标电载波频率发送给第一光通信装置20。这里,该目标电载波频率就是第二光通信装置10为第一光通信装置20配置的特定的频谱资源。该第一信号光处理模块11还可生成参考光驱动信号并将该参考光驱动信号发送给参考光源模块12。参考光源模块12接收到上述参考光驱动信号后,可生成预设波长下的外部参考光,并通过上述第三光接口向第一光通信装置20发送该外部参考光。上述第二信号光的电载波的实测频率、目标电载波频率以及外部参考光可用于后续第一光通信装置20生成并向该第二光通信装置10发送第三信号光。这里,上述第三信号光的电载波的频率与目标电载波频率的差值要小于或者等于第二信号光的电载波的频率与目标电载波频率的差值,该第三信号光的光载波的频率与外部参考光的
频率的差值要小于或者等于第二信号光的光载波的频率与外部参考光的频率的差值。
113.可选的,在第二光通信装置向第一光通信装置发送上述目标电载波频率以及第二信号光的电载波的实测频率过程中,第二光通信装置20可通过网络控制信号将上述目标电载波频率发送给第一光通信装置10。第二光通信装置也可通过网络状态信号将第二信号光的电载波的实测频率发送给第一光通信装置10。例如,第二光通信装置20在确定出上述目标电载波频率后,可将该目标电载波频率承载于网络控制信号上,再对该网络控制信号进行光调制以得一个下行信号光(为方便区别,下文将以第四信号光代替描述)。然后,第二光通信装置10可通过上述第二光接口13或者第三接口14(当然,也可以通过第二光通信装置20上存在的能够与第一光通信装置20进行光通信的其他光接口,此处不作具体限制)将该第四信号光发送给第一光通信装置10,从而实现将目标电载波频率发送给第一光通信装置20的功能。同理,第二光通信装置10也可采用同样的方式通过第五信号光将承载有第二信号光的电载波的实测频率的网络状态信号发送给第一光通信装置20。到这里可以理解的是,在目标电载波频率在某一预设时段内不发生变化的情况下,第一信号光处理模块11无需重复的给第一光通信装置10发送上述目标电载波频率。上述第四信号光和第五信号光可以为相同的信号光,也可以为不同的信号光,本技术不作具体限制。
114.可选的,请参见图3,图3是本技术实施例提供的一种第二光通信装置又一结构示意图。如图3所示,该第二光通信装置10还可包括一个第十分光模块15。而上述第二光接口13和第三光接口14可为同一个光接口(为方便理解,这个光接口仍然以第二光接口13代替描述)。第十分光模块15分别与的第二光接口13、第一信号光处理模块11以及参考光源模块12光连接。实际应用中,上述第十分光模块15在接收到来自于上述第二光接口13的第二信号光时,可将该第二信号光传输给第一信号光处理模块11。同时,第十分光模块15在接收到来自于参考光源模块12的外部参考光之后,可将该外部参考光传输给第二光接口13,以通过第二光接口13将外部参考光发送给第一光通信装置20。换一句话说,上述第十分光模块15的主要功能就是在第二光接口与13与第一信号光处理模块11和参考光源模块12之间分别建立独立的光通路,使得在第一信号光处理模块11与第二光接口13之间传输的信号光(包括后续的第一信号光、第二信号光和第三信号光)以及在参考光源模块12与第二光接口13之间传输的外部参考光相互隔离。需要说明的是,上述第十分光模块15具体可以是特殊波导设计的定向耦合器、分立的分光器或者基于空间光学的分光组件等,此处不作具体限制。为了方便理解和说明,后文将统一以第二光接口13和第三光接口14为同一光接口这一场景为例进行描述。这里,通过第十分光模块15和第二光接口实现信号光的双向传输,可降低第二光通信装置10的光接口的复杂度,可提升第二光通信装置10的集成度。
115.可选的,在具体实现中,上述第一信号光处理模块11具体可由olt中的光接收子模块(receiver optical subassembly,rosa)和光数字信号处理器(optical digital signal processor,odsp)来实现,上述参考光源20具体可由olt中的一个相对独立的光源模块来实现。
116.这里,由第二光通信装置10为第一光通信装置20提供第二信号光的电载波的实测频率、目标电载波频率以及外部参考光,进而使得第一光通信装置20能够生成并输出信号光的光载波频率更加接近外部参考光的频率,电载波的频率更加接近配置的目标电载波频率。这就可使得第一光通信装置20输出的信号光的电载波和光载波的频率能够相对稳定,
能够有效降低信号光的频偏所导致的多路光信号在合波时存在的干扰,提升光通信质量。
117.下面将结合图4到图24,对本技术实施例提供的第一光通信装置20的结构和功能进行详细的描述。
118.请参见图4,图4是本技术实施例提供的一种第一光通信装置一结构示意图。如图4所示,该第一光通信装置20可包括锁频模块21、信号光生成模块22和第一光接口23。该锁频模块21与信号光生成模块22之间电连接,该信号光生成模块22与第一光接口23光连接。
119.实际工作时,该锁频模块21可用于根据获取的光频差指示信号来生成一个波长控制信号(为方便区别,下文将于目标波长控制信号代替描述),并将该目标波长控制信号发送给信号光生成模块22。这里,上述光频差指示信号指示了外部参考光的频率与信号光生成模块22向上述第二光通信装置发送的第一信号光的光载波的频率的差异程度。其中,上述目标波长控制信号后续可用于信号光生成模块22对其包括的光源所生成的光载波或者信号光的频率进行调节,并输出第三信号光。这里需要说明的是,第一光通信装置20发送上述第二信号光的时刻可以在其发送上述第一信号光的时刻之前,也可以为相同的时刻(即第二信号光就是第一信号光)。第一光通信装置20发送上述第一信号光的时刻在其发送上述第三信号光的时刻之前。在本技术实施例中,未加载比特信息的光统称为光载波,加载有比特信息的光载波统称为信号光。
120.此外,锁频模块21还可用于根据获取到的第二信号光的电载波的实测频率和目标电载波频率确定出目标光频差。这里,上述目标电频差为第二信号光所对应的电载波的实测频率与预设的目标电载波频率之间的差值。然后,锁频模块21可根据上述目标电频差以及目标光频差和待传输信息生成目标电调制信号,并将该目标电调制信号发送给信号光生成模块22。这里,上述目标光频差可由锁频模块21根据上述光频差指示信号确定得到,该目标光频差为上述外部参考光和上述信号光生成模块22向第二光通信装置10发送的第一信号光的或者第一信号光所使用的光载波的频率的差值。上述信号光生成模块22可用于根据上述目标波长控制信号和上述目标电调制信号生成第三信号光,并通过上述第一光接口23向第二光通信装置10发送该第三信号光。这里,上述第三信号光的光载波的频率与上述外部参考光的频率的差值要小于上述第一信号光的光载波的频率与所述外部参考光的频率的差值。并且,第三信号光所采用的电载波的频率与所述目标电载波频率的差值小于所述第一信号光的电载波的频率与所述目标电载波频率的差值。
121.在上述实现中,一方面,第一光通信装置中的锁频模块21可根据光频差指示信息来生成目标波长控制信号,以使得信号光生成模块20可根据该目标波长控制信号来调节其生成的光载波的波长,从而可使得其后续输出的信号光的光载波的频率能够更加接近或者等于外部参考光的频率,从而实现光载波的频率的锁定。另一方面,该锁频模块21还可根据目标光频差、目标电频差以及待传输信息生成目标电调制信号,并且该目标电调制信号所采用的电载波的频率能够更加接近或者等于预配置的目标电载波频率,从而能够实现电载波的频率的锁定。因此,将本技术提供的第一光通信装置20应用于多子载波传输场景下,可降低或者消除光源的频偏所导致的多路光信号合波时存在的干扰,可提升光通信的质量。
122.在一种可行的实现方式中,在第一光通信装置20为onu中的某个集成的功能模块的情况下,请参见图5,图5是本技术实施例提供的一种第一光通信装置所在的onu的结构示意图。如图5所示,该第一光通信装置20还包括一个电接口(为方便区别,下文将以第一电接
口24代替描述)。上述第一电接口24分别与上述锁频模块21以及第一光通信装置20所在的onu中的光数字信号处理器(optical digital signal processor,odsp)电连接。实际工作时,第一光通信装置20所在的onu可接收到来自于上述第二光通信装置10的第四信号光或者第五信号光之后,再通过odsp从该第四信号光中提取出网络控制信号,以及,从该第五信号光中提取出网络状态信号。然后,该odsp可将该网络控制信号和网络状态信号中通过第一电接口24传输给上述锁频模块10。另外,odsp还可确定出本次上行传输的比特信息(即待传输比特信号),并通过上述第一电接口24将该待传输比特信息传输给锁频模块10。可选的,odsp与锁频模块21之间可通过总线实现电连接,即上述第一电接口24可为总线接口。当然,这里可以理解到的是,在这种实现方式中,第一光接口23可以通过第一光通信装置所在的onu上的某个光接口与第二光通信装置10建立光连接,从而实现信号光的发送或接收。
123.在另一种可行的实现方式中,请参见图6,图6是本本技术实施例提供的一种第一光通信装置又一结构示意图。在第一光通信装置20为onu本身的情况下,如图6所示,上述第一光通信装置20还可包括一个光信号处理模块25(为方便区别,下文将以第二信号光处理模块25代替描述)以及第四光接口26。上述第四光接口26和第二信号光处理模块25光连接。该第四光接口26还与第二光通信装置10的第二光接口13光连接。该第二信号光处理模块25与锁频模块21电连接。实际工作时,上述第四光接口26用于接收来自于第二光通信装置10的第四信号光和第五信号光,并将该第四信号光和第五信号光传输给第二信号光处理模块25。第二信号光处理模块25可对该第四信号光和第五信号进行光解调、电解调等操作,以得到自于上述第二光通信装置10的网络控制信号和网络状态信号。然后,第二信号光处理模块25可以从网络控制信号和网络状态信号中提取出上述第二电信号的电载波的实测频率和目标电载波频率,并通过第二电接口24将该目标电载波频率以及第二电信号的电载波的实测频率传输给锁频模块21。可选的,上述第二信号光处理模块25与锁频模块21之间可通过总线实现电连接,此时,上述第二电接口24即为总线接口。
124.为了方便描述,后文将以第一光通信装置20为onu中的某个集成的功能模块这个场景为例对第一光通信装置20的其他结构和功能进行进一步的解释和说明。可以理解到的是,后续所述的第一光通信装置20的各种结构和功能的实现方式同样适用于第一光通信装置20为onu本身这个场景,此处不作重复描述。
125.进一步的,请参见图7,图7是本技术实施例提供的一种第一光通信装置又一结构示意图。如图7所示,该第一光通信装置20还可包括一个光频差检测模块27以及又一个光接口(为方别区别,下文将以第五光接口28代替描述)。其中,该光频差检测模块27分别与上述第五光接口28以及信号光生成模块22光连接,并且该光频差检测模块27还与上述锁频模块21电连接。上述第五光接口28还可与第二光通信装置10上的第二光接口13光连接。该第五光接口28可用于接收来自于第二光通信装置10的外部参考光,并将该外部参考光发送给光频差检测模块27。上述光频差检测模块27可用于检测得到上述光频差指示信号,并将该光频差指示信号发送给锁频模块21。需要说明的是,在实际应用中,上述光频差检测模块27可以是如图7所示的包含于第一光通信装置20内部的一个模块,也可以是与第一光通信装置20相互独立并建立电连接的一个模块,本技术不作具体限制。可以理解的是,当上述光频差检测模块27不包含于上述第一光通信装置内部时,上述第一光通信装置也可不包含上述第五光接口28。为了方便描述,后文将以光频差检测模块27包含于第一光通信装置20内部这
一实现方式为例对该第一光通信装置20的结构和功能作进一步描述。
126.可选的,上述第一光接口23和上述第五光接口28可以为同一个光接口(为方便理解,下文将以第一光接口23统一进行描述)。例如,请参见图8,图8是本技术实施例提供的一种第一光通信装置又一结构示意图。如图8所示,上述第一光通信装置20还可包括一个第九分光模块29。该第九分光模块29分别与上述光频差检测模块27、信号光生成模块22以及第一光接口23光连接。上述第一光接口23在接收到外部参考光之后,可将该外部参考光输入至第九分光模块29。第九分光模块29可将该外部参考光再传输给光频差检测模块27。同时,上述第九分光模块29也可将其从信号光生成模块22处接收到第三信号光(当然,上述第一信号光和第二信号光也可以由该第九分光模块29从信号光生成模块22处接收到),并通过第一光接口23将该第三信号光输出向第二光通信装置10。换一句话说,上述第九分光模块29的主要功能就是在第一光接口23与上述光频差检测模块27和信号光生成模块22之间分别建立独立的光通路,使得在光频差检测模块27与第一光接口23之间传输的外部参考光以及在信号光生成模块22与第一光接口23之间传输的信号光(包括上述第一信号光、第二信号光和第三信号光)相互隔离。需要说明的是,上述第九分光模块29具体可以是特殊波导设计的定向耦合器、分立的分光器或者基于空间光学的分光组件等,此处不作具体限制。为了方便描述,后文将统一以第一光接口23和第五光接口28为同一光接口这一实现方式为例,对本技术提供的第一光通信装置20的结构和功能作进一步解释和说明。
127.这里,通过一个分光模块使得上述第一光接口23能够实现双向光传输,可简化第一光通信装置20的光接口的复杂度,可提升第一光通信装置20的系统集成度以及应用灵活度。
128.进一步的,本技术实施还提供了上述光频差检测模块27的多种具体实现方式,下面将分别对这多种具体实现方式进行具体描述。
129.光频差检测模块27的具体实现方式一:
130.光频差检测模块27具体可用于获取上述外部参考光与上述第一信号光的检测光所形成的光频差指示信号,并将该光频差指示信号发送给锁频模块21。这里,上述光频差指示信号即为外部参考光与第一信号光的检测光所形成拍频信号(为方便区别,下文将以目标拍频信号代替描述)。所谓的拍频信号就是两个频率相近的初始信号叠加得到的信号,该信号的振幅的一强一弱的变化即为一拍,单位时间内的拍数即为该信号的拍频,该信号的拍频即为上述两个初始信号的频率差。上述第一信号光对应的检测光由上述信号光生成模块22所包括的光源在信号光生成模块22输出第一信号光时所生成的信号光或者光载波分光得到。这里需要说明的是,在信号光生成模块22采用直接调制方式的场景下,其包括的光源输出的光为信号光。在信号光生成模块22采用外部调制方式的场景下,其包括的光源输出的光即为光载波。
131.这里,通过拍频检测结构来实现光频差检测模块,可使得光频差检测模块结构简单且易于实现,可降低光频差检测模块的结构复杂度和成本,进而提升第一光通信装置的结构稳定度并降低其成本。
132.具体实现中,请参见图9,图9是本技术实施例提供的一种第一光通信装置又一结构示意图。如图9所示,该光频差检测模块27具体可包括第一分光模块271、第二分光模块272、第一光电探测模块273、第二光电探测模块274以及第一电耦合器275、第六光接口276、
第七光接口277和第二电接口278。其中,第一分光模块271通过第六光接口276与第九分光模块29光连接,第一分光模块271还分别与第一光电探测模块273和第二光电探测模块274光连接。第二分光模块272通过第七光接口277与信号光生成模块22光连接,还分别与第一光电探测模块273和第二光电探测模块274光连接。上述第一电耦合模块275分别与第一光电探测模块273和第二光电探测模块274电连接,还通过第二电接口278与锁频模块21电连接。
133.实际工作时,第一分光模块271通过第六光接口276接收来自于上述第九分光模块29的外部参考光,将该外部参考光分光成第一检测光和第二检测光,并将第一检测光发送给第一光电探测模块273,将第二检测光发送给第二光电探测模块274。其中,上述第一检测光为外部参考光在第一偏振方向上的分量,上述第二检测光为外部参考光在第二偏振方向上的分量。上述第一偏振方向为第一分光模块271的预设偏振方向,上述第二偏振方向为与上述第一偏振方向正交的偏振方向。上述第二分光模块272通过第七光接口277接收来自于信号光生成模块22的第一信号光对应的检测光,其可将该第一信号光对应的检测光分光得到第三检测光和第四检测光,再将上述第三检测光发送给上述第一光电检测模块273,将上述第四检测光发送给第二光电探测模块274。其中,上述第三检测光为第一信号光的对应的检测光在第三偏振方向上的分量,上述第四检测光为第一信号光的检测光在第四偏振方向上的分量。并且,上述第三偏振方向为第二分光模块272的预设偏振方向,上述第四偏振方向与第三偏振方向正交。这里需要补充说明的是,上述第一偏振方向和上述第三偏振方向可以相同,也可以不同,本技术不作具体限制。优选的,上述第三检测光和第四检测光的光功率相同。上述第一光电探测模块273用于接收上述第一检测光和第三检测光,检测得到上述第一检测光和第三检测光因光频差而形成的电压形式的拍频信号(为方便区别,下文将以第一拍频电压信号代替描述),并将该第一拍频电压信号发送给第一电耦合模块275。其中,该第一信拍频电压信号的信号幅度为第一预设信号幅度。同理,上述第二光电探测模块274用于接收上述第二检测光和第四检测光,检测得到上述第二检测光和第四检测光之间的因光频差形成的电压形式的拍频信号(为方便区别,下文将以第二拍频电压信号代替描述),并将该第二拍频电压信号发送给第一电耦合模块275。其中,该第二拍频电压信号的信号幅度也为第一预设信号幅度。上述第一电耦合模块275用于接收上述第一拍频电压信号以及第二拍频电压信号,对上述第一拍频电压信号和第二拍频电压信号进行信号耦合以得到目标拍频信号,再通过第二电接口278将该目标拍频信号发送给锁频模块21。
134.可选的,在光频差检测模块27采用波导结构的情况下,上述第一检测光与第二检测光的偏振方向相同,上述第三检测光与第四检测光的偏振方向也相同。
135.可选的,光频差检测模块27中所包括的分光模块(如第一分光模块271和第二分光模块272)具体可由偏振旋转分光器来实现。光频差检测模块27中的光电探测模块(如第一光电探测模块273和第二光电探测模块274)具体可由光电探测器和跨阻放大器来实现。光频差检测模块27中的电耦合模块(如第一电耦合模块275)具体可由电耦合器来实现。
136.例如,请一并参见图10,图10是本技术实施例提供的一种光频差检测模块一具体实现示意图。如图10所示,上述第一分光模块271具体可以为第一偏振旋转分光器2711。上述第二分光模块272具体可以为第二偏振旋转分光器2721。上述第一光电探测模块273具体可包括第一光电探测器2731和第一跨阻放大器2732。上述第二光电探模块274具体可包括
第二光电探测器2741和第二跨阻放大器2742。上述第一电耦合模块275具体可以为第一电耦合器2751。第一偏振旋转分光器2711分别与第六光接口276、第一光电探测器2731以及第二光电探测器2741光连接。第二偏振选择分光器2721分别与第一光电探测器2731、第二光电探测器2741以及第七光接口277光连接。第一跨阻放大器2732分别与第一光电探测器2731和第一电信号耦合器2751电连接。第二跨阻放大器2742分别与第二光电探测器2741以及第一电信号耦合器2751电连接,第一电信号耦合器2751还与第二电接口278电连接。
137.实际工作时,上述第一偏振旋转分光器2711可通过第六光接口276接收到外部参考光,将该外部参考光中在其设计给定的第一偏振方向上的光分量分离出来以得到第一检测光,并将第一检测光发送给第一光电探测器2731。同时,第一偏振旋转分光器2711还可将外部参考光中在与上述第一偏振方向正交的第二偏振方向上的光分量分离出来,再将第二偏振方向上的光分量的偏振方向旋转至上述第一偏振方向以得到第二检测光,并将该第二检测光发送给第二光电探测器2741。上述第二偏振旋转分光器2721可通过第七光接口277接收第一信号光对应的检测光,将第一信号光对应的检测光中在其设计给定的第三偏振方向上的光分量分离出来以得到第三检测光,并将第三检测光发送给第一光电探测器2731。同时,第二偏振旋转分光器2721还可将第一信号光的检测光中在与上述第三偏振方向垂直的第四偏振方向上的光分量分离出来,再将第四偏振方向上的光分量的偏振方向旋转至上述第三偏振方向以得到第四检测光,并将该第四检测光发送给第二光电探测器2741。上述第一光电探测器2731可检测到的上述第一检测光和第三检测光因光频差所形成的电流形式的拍频信号(为方便区别,下文将以第一拍频电流信号代替描述),并将该第一拍频电流信号发送给第一跨阻放大器2732。第一跨阻放大器2732可将该第一拍频电流信号转换成对应的电压信号,并将转换得到的电压信号的信号幅度调整至第一预设信号幅度,从而得到第一拍频电压信号。然后,第一跨阻放大器2732可将该第一拍频电压信号发送给第一电耦合器2751。上述第二光电探测器2741可检测到的上述第二检测光和第四检测光因光频差所形成的电流形式的拍频信号(为方便区别,下文将以第二拍频电流信号代替描述),并将该第二拍频电流信号发送给第二跨阻放大器2742。第二跨阻放大器2742可将该第二拍频电流信号转换成对应的电压信号,并将该电压信号的信号幅度调整至第一预设信号幅度,从而得到第二拍频电压信号。然后,第二跨阻放大器2742可将该第二拍频电压信号发送给第一电耦合器2751。上述第一电耦合器2751可将其接收到的第一拍频电压信号和第二拍频电压信号进行电信号耦合,从而得到上述目标拍频信号(即光频差指示信号),然后通过第二电接口278将该目标拍频信号传输至锁频模块21。这里,由较为常见且成本较低的分光模块、光电探测模块以及电耦合模块实现光频差检测模块27,可降低第一光通信装置20的成本。同时,由于分光模块、光电探测模块以及电耦合模块的器件特性都比较稳定,因此可保证光频差检测模块27的性能稳定,从而使得第一光通信装置20的性能较为稳定。
138.可选的,在实际应用中,上述第一光电探测器2731、第二光电探测器2741、第一偏振旋转分光器2711和第二偏振旋转分光器2721可集成在同一光子芯片(为方便区别,下文将以第一光子芯片代替描述)上。优选的,该第一光子芯片具体可以为硅光芯片。将第一光电探测器、所述第二光电探测器、所述第一分光模块和所述第二分光模块集成在一个光子芯片上,可提升光频差检测模块的集成度和稳定性。
139.光频差检测模块27的具体实现方式二:
140.光频差检测模块27中包括一个微环模块279,该微环模块279的谐振频率与上述外部参考光的频率的差值小于或者等于第一预设差值,即可认为微环模块279的谐振频率等于外部参考光的频率。该光频差检测模块27可获取用于指示第五检测光的光功率大小的第一光功率指示信号和用于指示第六检测光的光功率大小的第二光功率指示信号,并将该第一光功率指示信号和第二光功率指示信号作为光频差指示信号发送给信号光生成模块22。这里,第一信号光对应的检测信号光可分光得到上述第五检测光和第七检测光。微环模块279在输入上述第七检测光时输出的光可分光得到上述第六检测光。
141.具体实现中,请参见图11,图11是本技术实施例提供的一种第一光通信装置又一结构示意图。如图11所示,该光频差检测模块27具体还包括第一光耦合模块27a、第二光耦合模块27b、第三光电探测模块27c、第四光电探测模块27d、第八光接口27e、第三电接口27f、第四电接口27g、第五电接口27h以及微环驱动模块27i。其中,第一光耦合模块27a通过第六光接口2714与信号光生成模块22光连接。第一光耦合模块27a还分别与微环模块279以及第三光电探测模块27c光连接。上述第二光耦合模块27b分别与微环模块279以及第四光电探测模块27d光连接。第三光电探测模块27c还通过第三电接口27f与锁频模块21电连接,第四光电探测模块27d还通过第四电接口27g与锁频模块21光连接。微环驱动模块27i一侧与微环模块279电连接,另一侧通过第五电接口27h与锁频模块21电连接。
142.实际工作时,第一光耦合模块27a通过第八光接口27e接收第一信号光对应的检测光,对第一信号光对应的检测光进行分光以得到第五检测光和第七检测光,再将第五检测光传输给第三光电探测模块27c,并将第七检测光传输给微环模块279。第三光电探测模块27c可检测得到第五检测光的第一光功率指示信号,并通过第三电接口27f将该第一光功率指示信号传输给锁频模块21。微环模块279可对输入的第七检测光进行微环滤波,并将经过微环滤波后的第七检测光(即微环模块279输入第七检测光时输出的光)传输给第二光耦合模块27b。上述第二光耦合模块27b可对输入的经过微环滤波后的第七检测光进行分光以得到第六检测光,再将该第六检测光传输给第四光电探测模块27d。上述第四光电探测模块27d可检测得到该第七检测光对应的第二光功率指示信号,并通过第四电接口27g将该第二光功率指示信号传输给锁频模块21。这里需要说明的是,微环模块279可吸收输入光中所包含的光频率与微环模块279谐振频率相同的光分量,而输入光中光频率与谐振频率不同的光分量则会从微环模块279中输出,因而微环模块279可实现对输入光的滤波。因此,微环模块279的输入光与输出光的光功率的差值也可用于表征输入光的频率与微环模块279的谐振频率的差异程度。所以,上述第一光功率指示信号和上述第二光功率指示信号可用于指示第一信号光的频率与微环模块279的谐振频率(即外部参考光的频率)之间的差异程度,可作为光频差指示信号来供锁频模块21进一步使用。上述锁频模块21还可生成微环模块279的驱动信号(为方别区别,后文将用微环驱动信号代替描述),并通过第五电接口27h将该微环驱动信号发送至微环驱动模块27i。微环驱动模块27i可将上述微环确定信号叠加在微环模块279的偏置电压上以得到微环驱动电压,并将该微环驱动电压传输给微环模块279,以驱动微环模块279正常工作。这里需要说明的,输入微环模块279的微环驱动电压与微环模块279的谐振频率存在对应关系,因此后续也可通过调整微环驱动电压来调节微环模块279的谐振频率。
143.进一步的,在该微环模块279的谐振频率与外部参考光的频率的差值并未小于或
者等于第一预设差值的情况下,请同步参见图12,图12是本技术实施例提供的一种第一光通信装置又一结构示意图。如图12所示,光频差检测模块27还可包括第五光电探测模块27j、第六光电探测模块27k、第九光接口27l、第六电接口27m、第七电接口27n。
144.其中,上述第二光耦合模块27b通过第九光接口27l与上述第九分光模块29光连接。第五光电探测模块27j与上述第二光耦合模块27b光连接,还通过第六电接口27m与锁频模块21电连接。第六光电探测模块27k与第一光耦合模块27a光连接,还通过第七电接口27n与锁频模块21电连接。
145.实际工作时,上述第二光耦合模块27b可通过第九光接口27l接收外部参考光,对该外部参考光进行分光以得到第八检测光和第九检测光,并将该第八检测光传输给第五光电探测模块27j,将第九检测光传输给微环模块279。该第五光电探测模块27j可检测到的用于指示第八检测光的光功率的第三光功率指示信号,并通过第六电接口27m将该第三光功率指示信号传输给锁频模块21。上述微环模块279还用于对输入的第九检测光进行微环滤波,并将经过微环滤波后的第九检测光传输给上述第一光耦合模块27a。第一光耦合模块27a可对经过微环滤波后的第九检测光进行分光以得到第十检测光,并将该第十检测光发送给第六光电探测模块27k。上述第六光电探测模块27k可探测得到第十检测光对应的第四光功率指示信号,并通过第七电接口27n将该第四光功率指示信号发送给锁频模块21。同理,由于微环模块279的微环滤波功能,上述第三光功率指示信号和第四光功率指示信号即可指示微环模块279的谐振频率与外部参考光的频率的差异程度。因此,在该微环模块279的谐振频率与外部参考光的频率的差值并未小于或者等于第一差值的场景下,上述第三光功率指示信号和第四光功率指示信号可用于后续锁频模块21通过调整微环模块279的微环驱动信号来对微环模块279的谐振频率进行调整,以最终使得微环模块279的谐振频率与外部参考光的频率小于或者等于第一预设差值。
146.可选的,上述第三电接口27f、第四电接口27g、第六电接口27m以及第七电接口27n可以由一个具备多入单出功能电接口来代替实现。该电接口可至少具备四个输入接口和一个输出接口。这四个输入接口分别与第三光电探测模块27c、第四光电探测模块27d、第五光电探测模块27j、第六光电探测模块27k电连接。其单个输出接口可与锁频模块21电连接。
147.这里,由微环结构实现光频差检测模块27,可扩大光频差的检测范围并降低整个光频差检测模块27的带宽要求,从而可提升光频差指示信号检测的稳定度和有效性。
148.下面将对光频差检测模块27的具体实现作进一步描述,这里将以图12所示的光频差检测模块27的结构为例进行描述,应该理解到的是,后文叙述的光频差检测模块27的具体实现也适用于用图11所示的光频差检测模块27的结构。
149.请参见图13,图13是本技术实施例提供的一种光频差检测模块又一具体实现示意图。如图13所示,光频差检测模块27中的光耦合模块具体可由光耦合器来实现。如,第一光耦合模块27a具体可由第一光耦合器27a1来实现,第二光耦合模块27b具体可由第二光耦合器27b1来实现。光频差检测模块27中的光电探测模块可由光电探测器和跨阻放大器来实现。如,第三光电探测模块27c具体可由第三光电探测器27c1、第三跨阻放大器27c2来实现。第四光电探测模块27d具体可由第四光电探测器27d1、第四跨阻放大器27d2来实现。第五光电探测模块27j具体可由第五光电探测器27j1、第五跨阻放大器27j2来实现。第六光电探测模块27k具体可由第六光电探测器27k1、第六跨阻放大器271k2来实现。微环驱动模块27i具
体可包括偏置器27i2和放大器27i1。放大器27i1分别和偏置器27i2以及第五电接口27h电连接,偏置器27i2还与微环模块279电连接。
150.实际工作时,第一光耦合器27a1在接收到第一信号光对应的检测光之后,可分光得到第五检测光和第七检测光,并将该第五检测光传输给第三光电探测器27c1,将第七检测光传输给微环模块279。该第三光电探测器27c1可检测到第五检测光对应的电流形式的光功率指示信号,并将该电流形式的光功率指示信号发送给第三跨阻放大器27c2。第三跨阻放大器27c2可将该电流形式的光功率指示信号转换成对应的电压信号,并将转换得到的电压信号的信号幅度调整至第二预设信号幅度(即对电压信号进行放大),从而得到上述第一光功率指示信号。上述微环模块279还用于对输入的第七检测光进行微环滤波,并将经过微环滤波后的第七检测光传输给第二光耦合器27b1。第二光耦合器27b1再对经过微环滤波后的第七检测光进行分光以得到第六检测光,并将该第六检测光发送给第四光电探测器27d1。与上述第三光电探测器27c1和第三跨阻放大器27c2的原理相同,第四光电探测器27d1与第四跨阻放大器27d2也能对上述第六检测光进行光功率的检测和放大,最终得到上述第二光功率指示信号。
151.同理,在第二光耦合器27b1接收到外部参考光之后,可分光得到第八检测光和第九检测光。第五光电探测器27j1、第五跨阻放大器27j2可检测得到第八检测光的第三光功率指示信号。微环模块279可对输入的第九检测光进行滤波,并将滤波后的第九检测光发送给第一光耦合器27a1。第一光耦合器27a1可分光得到第十检测光。第六光电探测器27k1和第六跨阻放大器27k2可检测得到第十检测光对应的第四光功率指示信号。这里,第三光功率指示信号和第三光功率指示信号的具体检测过程可参见上述第一光功率指示信号和第二光功率指示信号的检测过程,此处便不再赘述。需要说明的是,上述第三跨阻放大器27c2与第四跨阻放大器27d2的放大倍数相同。第五跨阻放大器27j2和第六跨阻放大器27k2的放大倍数也相同。此外,上述放大器27i2可用于对来自于第五电接口27h的微环驱动信号进行放大以得到放大后的微环驱动信号。偏置器27i1用于将上述放大后的微环驱动信号叠加在预设的偏置电压上以得到微环驱动电压,再将该微环驱动电压输出给微环模块279,以驱动微环模块279正常工作。
152.可选的,上述第三光电探测器27c1、第四光电探测器27d1、第五光电探测器27j1、第六光电探测器27k1、第一光耦合器271a1、第二光耦合器27b1以及所述微环模块279可同时集成在第二光子芯片上。这里,该第二光子芯片与前文所述的第一光子芯片可以是同一光子芯片,也可以是不同的光子芯片,本技术不作限定。这里,第三光电探测器27c1、第四光电探测器27d1、第五光电探测器27j1、第六光电探测器27k1、第一光耦合器271a1、第二光耦合器27b1以及所述微环模块279集成在同一个光子芯片上,可提升光频差检测模块的集成度。
153.下面将对本技术实施例提供的微环模块279的多种具体实现方式分别进行描述。
154.微环模块279的具体实现方式一:
155.在本实现方式中,微环模块279是基于单侧耦合微环结构来实现的。具体的,请参见图14,图14是本技术是实施例提供的一种微环模块一具体结构示意图。如图14所示,微环模块279具体可包括第一微环谐振腔2791、第二微环谐振腔2792、靠近该第一微环谐振腔2791的第一波导2793、靠近该第二微环谐振腔2792的第二波导2794、第三分光模块2795、第
四分光模块2796。其中,第一波导2793和第二波导2794的两端分别与第三分光模块2795以及第四分光模块2796光连接。第四分光模块2796还与第一光耦合模块27b光连接。第三分光模块2795还与第一光耦合模块27a光连接。这里需要说明的是,上述该第一微环谐振腔2791与第二微环谐振腔2792的谐振频率相同,并且为微环模块279的谐振频率。
156.实际工作时,第三分光模块2795可接收来自于第一光耦合模块27a的第七检测光,并将该第七检测光中在其设计给定的偏振方向(为方便区别,下文将以第五偏振方向代替描述)光分量分离出来形成第一路光,再将该第一路光输入第一波导2793。同时,第三分光模块2795还将第七检测光中在第六偏振方向上的光分量分离出来,再将分离出来的光分量的偏振方向旋转成第五偏振方向以得到第二路光,在将该第二路光输入第二波导2794。这里,第六偏振方向与第五偏振方向正交。第一微环谐振腔2791会对在第一波导2793中传输的第一路光进行微环滤波,经过微环滤波后的第一路光会传输至上述第四分光模块2796。同时,第二微环谐振腔2792也会对在第二波导2794中传输的第二路光进行微环滤波,经过微环滤波后的第二路光会最终传输至上述第四分光模块2796。第四分光模块2796会对上述经过微环滤波后的第一路光和第二路光进行合波以得到经过微环滤波的第七检测光,并将经过微环滤波的第七检测光传输给第二光耦合模块27b。
157.同时,上述第四分光模块2796还可接收来自于的第二光耦合模块27b的第九检测光。并将该第九检测光中在其设计给定的偏振方向(为方便区别,下文将以第七偏振方向代替描述)光分量分离出来形成第三路光,再将该第三路光输入第一波导2793。同时,第四分光模块2796还将第六检测光中在第八偏振方向上的光分量分离出来,再将分离出来的光分量的偏振方向旋转成第七偏振方向以得到第四路光,再将该第四路光输入第二波导2794。这里,第七偏振方向与第八偏振方向正交。第七偏振方向与上述第五偏振方向可相同,也可不同。第一微环谐振腔2791会对在第一波导2793中传输的第三路光进行微环滤波,经过微环滤波后的第三路光会传输至上述第三分光模块2795。同时,第二微环谐振腔2792也会对在第二波导2794中传输的第四路光进行微环滤波,经过微环滤波后的第四路光会最终传输至上述第三分光模块2795。第三分光模块2795会对上述经过微环滤波后的第三路光和第四路光进行合波以得到经过微环滤波的第九检测光,并将经过微环滤波的第九检测光传输给第一光耦合模块27a。
158.微环模块279的具体实现方式二:
159.在本实现方式中,微环模块279是基于双侧耦合微环结构来实现的。具体的,请参见图15。图15是本技术实施例提供的一种微环模块又一具体结构示意图。如图15所示,微环模块279具体可包括一个双侧耦合的第三微环谐振腔2797、第三波导2798、第四波导2799、第五分光模块279a、第六分光模块279b。其中,第三波导2798和第四波导2799的两端分别与第五分光模块279a以及第六分光模块279b光连接。第六分光模块279b还与第二光耦合模块27b光连接。第五分光模块279a还与第一光耦合模块27a光连接。这里需要说明的是,上述第三微环谐振腔2797的谐振频率即为微环模块279的谐振频率。
160.实际工作时,第五分光模块279a的作用和上述第三分光模块2795的作用相同,也是将
161.自于第一光耦合模块27a的第七检测光分光成两路光,再将这两路光分别输入第三波导2798和第四波导2799中。具体分光过程可参见前文,此处便不再赘述。然后第三微环
谐振腔2797可对第三波导2798和第四波导2799传输的两路光进行微环滤波,经过微环滤波后的两路光会通过第三波导2798和第四波导2799传输至第六分光模块279b。第六分光模块279b的作用和上述第四分光模块2796的作用相同,也是将两路经过微环滤波的光进行合波以得到经过微环滤波后的第六检测光,再将该第六检测光传输给第一光耦合模块27b。同理,上述第六分光模块279b也可接收来自于的第二光耦合模块27b的第九检测光,将该第九检测光分光得到两路光,再将这两路光分别输入第三波导2798和第四波导2799中。第三微环谐振腔2797也可对第三波导2798和第四波导2799传输的这两路光进行微环滤波,经过微环滤波后的两路光会通过第三波导2798和第四波导2799传输至第五分光模块279a。第五分光模块279a也是将两路经过微环滤波的光进行合波以得到经过微环滤波后的第九检测光,再将该经过微环滤波的第九检测光传输给第一光耦合模块27a。
162.这里,采用双侧耦合微环结构来实现上述微环模块279,可降低微环模块279所使用的微环谐振腔的数目,可提升微环模块的集成度和可靠性。
163.下面将结合前文叙述的各种实现方式,对上述锁频模块21的结构和功能进行详细的描述。
164.请参见图16,图16是本技术实施例提供的一种第一光通信装置又一结构示意图。这里需要说明的是,前文叙述的光频差检测模块27的多种具体实现方式也适用于图16所示的光频差检测模块27,不过随着光频差检测模块27的具体实现方式的不同,其与锁频模块21的连接关系也会发生变化。因此,图16仅是对锁频模块21与光频差检测模块27之间的连接关系的一种示意性描述,不具备限定作用。
165.如图16所示,锁频模块21具体可包括处理模块211、a/d(analog to digital,a/d)转换模块212、d/a(digital to analog,d/a)转换模块213以及d/a转换模块214。其中,处理模块211分别与a/d转换模块212、d/a转换模块213、d/a转换模块214以及第一电接口26电连接。a/d转换模块212还与光频差检测模块27电连接。d/a转换模块213以及d/a转换模块214还分别与信号光生成模块22电连接。
166.下面将分别结合前文叙述的光频差检测模块27的具体实现方式一以及具体实现方式二所描述的内容,对锁频模块21生成并向信号光生成模块22发送目标波长控制信号和目标电调制信号的过程进行详细的描述。
167.在光频差检测模块27采用前文所述的具体实现方式一这个场景下:
168.一方面,a/d转换模块212可接收来自于光频差检测模块27的光频差指示信号,即前文叙述的目标拍频信号。a/d转换模块212可对该目标拍频信号进行信号采样以得到采样后的目标拍频信号(为方便描述,下文将以目标采样信号代替),并将目标采样信号传输给处理模块211。处理模块211可根据上述目标采样信号确定出上述目标光频差。然后,处理模块211可提取出预配置的第一预设调整系数,再根据目标光频差、第一预设调整系数确定得到数字信号形式的目标波长控制信号。然后,处理模块211可将数字信号形式的目标波长控制信号发送给d/a转换模块213。d/a转换模块213再将数字信号形式的目标波长控制信号转换成模拟信号形式的目标波长控制信号,并将该模拟信号形式的目标波长控制信号传输给信号光生成模块22。
169.具体实现中,假设第一时刻(即采样时刻为第一时刻,这里假设为n)输入处理模块211的目标采样信号为sn,目标采样信号sn满足以下关系式(1):
[0170][0171]
其中,υ
ε
为目标采样信号的信号幅度,δω为光频差,为目标采样信号的初始相位。处理模块211可采用互相关算法、梯度降算法、卡尔曼滤波器、迫零算法等方法对上述目标采样信号sn进行处理以得到上述目标波长控制信号。下面将以梯度降算法为例,对处理模块211根据目标采样信号sn生成目标波长控制信号(下面将假设数字形式的目标波长控制信号为v
n 1
,n时刻的波长控制信号为vn)的过程进行示例性描述。
[0172]
处理模块211可对目标采样信号sn以及处理模块211在预设时段(为方别区别,下文以第一预设时段)内的接收到的拍频信号所对应的采样信号进行滤波以得到待变换信号。这里,上述第一预设时段的结束时刻即为第一时刻n。处理模块211在第一预设时段内的接收到的拍频信号所对应的采样信号就是处理模块211在上述第一时刻n之前的多个采样时刻上从a/d转换模块212处接收到的采样后的拍频信号。具体的,处理模块211可将目标采样信号sn以及处理模块211在第一预设时段内接收到的采样信号一同通过预配置的数字滤波器进行滤波,从而得到待变换信号。然后,处理模块211可对上述待变换信号进行傅里叶变换,以得到第一预设时段所对应的频谱信息。处理模块211可获取目标采样信号sn在该频谱信息中对应的频率峰值(这里假设为fn),并将所述频谱峰值确定为所述目标光频差(这里假设为δfg)。之后,处理模块211可根据所述目标光频差δfg、第一预设调整系数(这里假设为μ1)以及所述锁频模块21最近一次向所述信号光生成模块22输出的波长控制信号(即为第一时刻n输出的波长控制信号,这里假设为vn)确定出所述目标波长控制信号v
n 1
。例如,处理模块211可通过下述公式(2)计算出目标波长控制信号v
n 1

[0173]vn 1
=vn μ1×
(δf
0-δfg)
ꢀꢀ
(2)
[0174]
其中,μ1为第一预设调整系数,δf0预先配置好的预设光频差。δfg即为目标电频差。
[0175]
处理模块211在计算得到上述数字形式的目标波长控制信号v
n 1
之后,即可通过d/a转换模块213转换得到模式信号形式的目标波长控制信号,并将该模式信号形式的目标波长控制信号发送给信号光生成模块22。
[0176]
另一方面,处理模块211也可通过第一电接口24获取来自于第二光通信装置10的网络控制信号和网络状态信号,并从上述网络控制信号中提取出目标电载波频率(这里假设为f
c1
),从上述网络状态信号中提取出第二信号光的电载波的实测频率(这里假设为f
c2
)。之后,处理模块211可根据第二信号光的电载波的实测频率f
c2
和目标电载波频率f
c1
计算出目标电频差(这里假设为δfd)。这里,该目标电频差δfd=(f
c1-f
c2
)。然后,处理模块211可根据上述目标电频差δfd、目标光频差δfg以及目标电载波频率f
c1
确定出目标载波频率(这里假设为fm)。例如,处理模块211可通过下述公式(3)计算出目标载波频率fm:
[0177]fm
=f
c1
μ2×
δfd μ3×
δfgꢀꢀ
(3)
[0178]
其中,上述μ2和μ3为预设的加权因子,μ2与μ3之和等于1。
[0179]
进一步的,处理模块211还可生成符合上述目标载波频率fm的目标电载波(即目标电载波的频率等于该目标载波频率fm)。然后,处理模块211可通过上述第一电接口24获取到待传输比特信息,并根据该待传输比特信息对上述目标电载波进行电调制,以得到数字信号形式的目标电调制信号。进一步的,处理模块211可将该数字信号形式的目标电调制信号发送给d/a转换模块214。d/a转换模块214可将该数字信号形式的目标电调制信号转换成
模拟信号形式的目标电调制信号,并将该模拟信号形式的目标电调制信号传输给信号光生成模块22。
[0180]
在光频差检测模块27采用前文所述的具体实现方式二这个场景下:
[0181]
一方面,在本场景下,处理模块211可采用多种实现方式得到目标波长控制信号,下面将分别对这多种实现方式进行详细描述。
[0182]
实现方式一:
[0183]
a/d转换模块212可接收来自于光频差检测模块27的光频差指示信号(即前文叙述的第一光功率指示信号和第二光功率指示信号),分别对上述第一光功率指示信号和第二光功率指示信号进行信号采样以得到采样后的第一光功率指示信号和采样后的第二光功率指示信号,然后再将采样后的第一光功率指示信号和第二光功率指示信号传输给处理模块211。这里需要说明的是,上述采样前的第一光功率指示信号和第二光功率指示信号具体可以是相对平稳的电压信号,所以上述采样后的第一光功率指示信号和第二光功率指示信号实质上就是两个确定的电压值。现假设上述采样后的第一光功率指示信号对应的电压值为v1,上述采样后的第二光功率指示信号对应的电压值为v2。处理模块211在接收到采样后的第一光功率指示信号和采样后的第二光功率指示信号后,可计算出第二光功率指示信号和第一光功率指示信号的比值(为了方便区别,下文将以第二实测比值代替描述)。现假设第二实测比值为则然后,处理模块211可提取出微环模块279预配置的预设光功率比值-光频差对应关系集合。其中,该预设光功率比值-光频差对应关系集合中包括有一个或者多个不同的实测比值以及每个实测比值对应的光频差。处理模块211可从上述预设光功率比值-光频差对应关系集合中查找到上述第二实测比值对应的光频差,并将该第二实测比值对应的光频差确定为上述目标光频差δfg。然后,处理模块211即可根据上述目标光频差δfg、第一预设调整系数μ1以及锁频模块21最近一次向信号光生成模块22输出的波长控制信号vn确定出目标波长控制信号v
n 1
,具体过程可参见前文,此处便不再赘述。
[0184]
实现方式二:
[0185]
a/d转换模块212也可接收并处理得到采样后的第一光功率指示信号和采样后的第二光功率指示信号,然后再将采样后的第一光功率指示信号和第二光功率指示信号传输给处理模块211,具体过程可参见实现方式一所描述的过程。然后,处理模块211也可计算出第二光功率指示信号和第一光功率指示信号的第二实测比值具体过程可参见方式一所描述的过程。之后,若处理模块211确定所述第二实测比值与预先配置好的第二预设比值的差值大于或者等于第三预设差值(这里假设为δy3),则可将预设电压信号确定为目标波长控制信号。这里需要说明的是,上述预设电压信号可用于信号光生成模块22调整光源的驱动电流以调整光源输出的信号光或者光载波的频率,从而使得后续处理模块211再次处理得到的实测比值(这里假设为)与上述第二预设比值的差值要比第二实测比值与第二预设比值的差值小,即更加接近第二预设比值进一步可选的,若处理模块211确定第二实测比值与第二预设比值的差值小于第三预设差值δy3,则可停止生成并向信号光生成模块22发送所述目标波长控制信号。在第二实测比值与第二预设比值的差值小于第三预设差值δy3的场景下,可视为光源输出的信号光或
者光载波的频率等于微环的谐振频率(即外部参考光的频率)。
[0186]
这里还需要补充说明的是,上述方式二和方式一的实现前提是微环模块279的谐振频率与外部参考光的频率的差值小于或者等于第二预设差值(这里假设为δy2),因此,在微环模块279的谐振频率等于外部参考光的频率的差值大于上述第二预设差值δy2的情况下,锁频模块211还可对微环模块279的谐振频率进行调整。
[0187]
具体的,a/d转换模块212还可接收到来自于光频差检测模块27的第三光功率指示信号和第四光功率指示,对第三光功率指示信号和第四光功率指示信号进行信号采样以得到采样后的第三光功率指示信号和第四光功率指示信号。这里需要说明的是,在第三电接口2715、第四电接口2716、第五电接口2720以及第六电接口2721是通过一个多入单出的电接口来实现的情况下,锁频模块21可通过a/d转换模块212接收上述第三光功率指示信号和第四光功率指示信号。而在第三光功率指示信号和第四光功率指示信号通过其他电端口输入锁频模块21的场景下,锁频模块21还可包括除a/d转换模块212以外的其他a/d转换模块来接收上述第三光功率指示信号和第四光功率指示信号。此外,与上述第一光功率指示信号和第二光功率指示信号相似,上述采样前的第三光功率指示信号和第四光功率指示信号具体也可以是相对平稳的电压信号,所以上述采样后的第三光功率指示信号和第三光功率指示信号实质上就是两个确定的电压值。现假设上述采样后的第三光功率指示信号对应的电压值为v3,上述采样后的第四光功率指示信号对应的电压值为v4。
[0188]
然后,处理模块211可计算出第四光功率指示信号和第三光功率指示信号的实测比值(为了方便区别,下文将以第一实测比值代替描述)之后,若处理模块211确定所述第一实测比值γn与预先配置好的第一预设比值的差值大于或者等于第二预设差值(这里假设为δy2),则可生成一个谐振频率调控信号,并将该谐振频率调控信号发送给所述光频差检测模块27。这里,该谐振频率调控信号实际上可以是一个稳定的且幅度较小的电压信号,其可用于光频差检测模块27调整微环模块279的谐振频率,从而使得处理模块211后续根据光频差检测模块27新检测到的第三光功率指示信号和第四光功率指示信号处理得到的新的第一实测比值(这里假设为γ
n 1
)能够更为接近第一预设比值即新的第一实测比值γ
n 1
与第一预设比值要更小。进一步可选的,若处理模块211确定所述第一实测比值γn与预先配置好的第一预设比值的差值小于第二预设差值δy2,则可认为微环模块279的谐振频率已经等于外部参考光的频率,则停止生成并向光频差检测模块27发送谐振频率调控信号。
[0189]
在对微环模块279的谐振频率进行调整的具体实现过程中,处理模块211会将其生成的谐振频率调控信号传递给上述微环驱动模块27i。然后微环驱动模块27i中的放大器27i2会将放大后的谐振频率调控信号传输给偏置器27i1,偏置器27i1将放大后的谐振频率调控信号与其接收的偏置电压进行叠加以得到新的微环驱动电压,然后偏置器27i1会将新的微环驱动电压传输给微环模块279。由于微环模块279的谐振频率会随着其驱动电压的变化而变化,所以上述新的驱动电压即可使得微环模块279的谐振频率发生改变,并使得光频差检测模块27检测得到的新的第三光功率指示信号和第四光功率指示信号发生变化。而这种变化又会再次被处理模块211获取到,并进一步确定是否要进行新一轮的谐振频率的调整。这里,由于每一次的谐振频率调整的过程都相同,此处便不再重复描述。
[0190]
另一方面,在本场景下,处理模块211也可通过第一电接口24来获取来来自于第二光通信装置10的网络控制信号和网络状态信号,并从上述网络控制信号中提取出目标电载波频率f
c1
,从上述网络状态信号中提取出第二信号光的电载波的实测频率f
c2
。然后,处理模块211可根据第二信号光的电载波的实测频率f
c2
和目标电载波频率f
c1
计算出目标电频差δfd。这里,目标电频差δfd=(f
c1-f
c2
)。然后,处理模块211可根据目标电频差δfd、通过上述方式一中所描述的方式获取到的目标光频差δfg以及目标电载波频率f
c1
确定出目标载波频率fm。这里,处理模块211确定出目标载波频率fm的过程可参见前文描述的根据目标电频差δfd、目标光频差δfg以及目标电载波频率f
c1
确定出目标载波频率fm的过程,此处便不再赘述。然后,处理模块211还可生成符合上述目标载波频率fm的目标电载波,再根据通过第一电接口24获取到的待传输比特信息目标电载波进行电调制,以得到数字信号形式的目标电调制信号。然后,处理模块211可通过d/a转换模块214将该数字信号形式的目标电调制信号传输给信号光生成模块22。具体过程可参见前文描述的过程,此处便不再赘述。
[0191]
这里需要说明是,在上述各种实现方式中,锁频模块21中的处理模块211都会基于目标光频差、目标电频差以及目标电载波频率来确定出目标电调制信号的电载波的频率,这样就可以降低电载波因工作环境或者信号光的光载波的频偏所导致的频率漂移,这样即可使得后续生成的第三信号光的电载波的频率更加接近甚至等于第二光通信装置10配置的目标电载波频率,从而实现了信号光的电载波频率向目标电载波频率锁定的操作。
[0192]
在一些可行的实现方式中,上述信号光生成模块22具体可用于根据上述目标波长控制信号和目标电调制信号来生成第三信号光,并将该第三信号光发送给第二光通信装置10。本技术实施例提供了信号光生成模块22的多种具体实现方式,下面将分别进行描述。
[0193]
信号光生成模块22的具体实现方式一:
[0194]
在本实现方式中,信号光生成模块22采用了外部调制的实现方式。请参见图17,图17是本技术实施例提供的一种第一光通信装置又一结构示意图。如图17所示,信号光生成模块27具体可包括光源221、光源驱动模块222、光信号调制模块223以及第十分光模块224。上述光源驱动模块222又可具体包括放大器2221以及偏置器2222。其中,上述放大器2221分别与锁频模块21以及偏置器2222电连接,偏置器2222还与光源221相连接。上述光源221与光信号调制模块223光连接,光信号调制模块223与锁频模块21电链接,光信号调制模块223还与第十分光模块224光连接。上述第十分光模块224还分别与上述光频差检测模块27以及第五分光模块29光连接。可选的,上述偏置器2222具体可为t型偏置器。
[0195]
实际工作过程中,光源驱动模块222可接收上述目标波长控制信号,再根据目标波长控制信号生成第一目标驱动信号,并将该第一目标驱动信号发送给光源221。具体的,上述光源驱动模块222中的放大器2221在接收到目标波长控制信号后可对其进行放大以得到放大后的目标波长控制信号,再将放大后的目标波长控制信号发送给偏置器2222。偏置器2222可将上述放大后的目标波长控制信号叠加在光源模块221预设的偏置信号(通常为偏置电流)以得到第一目标驱动信号。然后,偏置器2222可将上述第一目标驱动信号传输给光源221。光源221在接收到上述第一目标驱动信号后,即可根据上述第一目标驱动信号生成第三信号光对应的初始光载波。光源221可将第三信号光对应的初始光载波传输给第十分光模块224。第十分光模块224在接收到第三信号光的初始光载波之后,可对该第三信号光的初始光载波进行分光以得到第三信号光的检测光和第三信号光的光载波。然后,第十分
光模块224可将第三信号光的检测光传输给光频差检测模块27以使得光频差检测模块27能够检测得到上述第三信号光对应的光频差指示信号。同时,第十分光模块224还可将上述第三信号光的光载波传输给光信号调制模块224。光信号调制模块224在接收到第三信号光的光载波以及上述目标电调制信号之后,可将目标电调制信号加载到第三信号光的光载波上(如根据目标电调制信号对第三信号光的光载波进行光调制)以得到第三信号光。然后,光信号调制模块223可将第三信号光发送给上述第九分光模块29,并最终使得第三信号光能通过第一光接口23传输向上述第二光通信装置10。这里可以理解到的是,在信号光生成模块22生成并输出第一信号光的时候,第十分光模块224会对光源221输出的第一信号光的初始光载波进行分光以得到第一信号光的检测光和第一信号光的光载波,再分别传输到光频差检测模块27以及第二光通信装置10处,以使得光频差检测模块27能够检测得到上述光频差指示信号,以使得第二光通信装置10能够检测得到上述目标电频差。
[0196]
可选的,上述光信号调制模块223具体可以是通过各种材料或者结构实现的电吸收调制器(electro absorption modulator,eam)、马赫-曾德尔调制器(mach-zehnder modulator,mzm)、微环调制器等。这里特别需要说明的是,当光信号调制模块223为微环调制器时,其与上述微环模块279可以为共用的功能模块。在这种情况下,上述微环模块279可以存在于光频差加检测模块27中,也可存在于信号光生成模块22中,还可以是独立于光频差加检测模块27和信号光生成模块22之外的模块,此处不作具体限制。这里可以理解到的是,随着微环模块279所存在的位置的不同,其与光频差加检测模块27以及信号光生成模块22中的各种模块之间得了连接方式也会相应的存在一些改变,本技术对此不作具体描述。
[0197]
信号光生成模块22的具体实现方式二:
[0198]
在本实现方式中,信号光生成模块22采用了内部调制(又称为直接调)的实现方式。请参见图18,图18是本技术实施例提供的一种第一光通信装置又一结构示意图。如图18所示,信号光生成模块27具体可包括光源221、光源驱动模块222以及第十一分光模块225。其中,上述光源驱动模块222具体包括放大器2221、偏置器2222以及第二电耦合模块2223。第二电耦合模块2223分别与锁频模块21、放大器2221电连接,放大器2221还与偏置器2222电连接,偏置器2222还与光源221相连接。上述光源221与第十一分光模块225光连接。上述第十一分光模块225还分别与上述光频差检测模块27以及第九分光模块29光连接。可选的,上述第二电耦合模块2223具体可以是各种形式或者结构的电耦合器。
[0199]
实际工作过程中,光源驱动模块222可用于接收目标波长控制信号和目标电调制信号,再根据目标波长控制信号和目标电调制信号生成第二目标驱动信号,并将该第二目标驱动信号传输给光源221。具体的,光源驱动模块222中的第二电耦合模块2223可用于接收上述目标波长控制信号和目标电调制信号,并对上述目标波长控制信号和目标电调制信号进行电信号耦合来得到第一耦合信号,再将该第一耦合信号发送给放大器2221。放大器2221对第一耦合信号进行放大以得到放大后的第一耦合信号,并将放大后的第一耦合信号发送给偏置器2222。偏置器2222可将上述放大后的第一耦合信号叠加到光源模块221预设的偏置信号(通常为偏置电流)上以得到第二目标驱动信号,再将该第二目标驱动信号发送给光源221。光源221在接收到上述第二目标驱动信号后,即可根据上述第二目标驱动信号生成第三信号光对应的初始信号光。然后,光源221可将第三信号光对应的初始信号光传输给第十一分光模块225,该第十一分光模块225可对第三信号光的初始信号光进行分光以得
到第三信号光的检测光以及上述第三信号光。然后,第十一分光模块224可将上述第三信号光的检测光发送给上述光频差检测模块27以使得光频差检测模块27能够检测得到上述第三信号光对应的光频差。第十一分光模块225还可将第三信号光发送给上述第九分光模块29,并最终使得第三信号光能通过第一光接口23传输向上述第二光通信装置10。这里可以理解到的是,在信号光生成模块22生成并输出第一信号光的时候,光源221生成的是第一信号光的初始信号光,然后该第一信号光的初始信号光经过第十一分光模块225分光得到第一信号光的检测光和第一信号光,再分别传输到光频差检测模块27以及第二光通信装置10处,以使得光频差检测模块27能够检测得到上述光频差指示信号,以使得第二光通信装置10能够检测得到上述目标电频差。
[0200]
可选的,具体实现中,上述第十分光模块224或者第十一分光模块225具体可以是特殊波导涉及的定向耦合器、分立的分光器、基于空间光学的分光组件等。
[0201]
这里需要说明是,无论是上述方式一或者方式二中,信号光生成模块22都会基于目标波长控制信号来对光源221的驱动信号进行调整,这就可以使得光源221输出的初始光载波或者初始信号光的频率相比于第一信号光(或者是第二信号光)的光载波或者初始信号光的频率能够更加接近外部参考光的频率,这样方可使得后续得到的第三信号光的频率能够更加接近外部参考光的频率,从而实现了信号光频率向外部参考光的频率的锁定操作。
[0202]
在一些可行的实现方式中,请参见图19,图19是本技术实施例提供的一种第一光通信装置又一结构示意图,如图19所示,第一光通信装置20还可包括温控模块210。实际工作时,温控模块210可用于获取光源221的温度数信息,再根据该温度信息对光源221的温度进行控制,以使得光源221的温度能够与预设温度锁定。这里,上述预设温度由外部参考光的频率确定,即上述预设温度为外部参考光的频率在光源221固有的温度-输出光波长特性所对应的温度。所以将光源221的温度稳定在预设温度,即可使得光源221输出的光载波或者信号光的频率能够与上述外部参考光的频率锁定,从而使得信号光生成模块22输出的信号光的光载波的频率能够与外部参考光的频率锁定,可进一步提升光载波的频率锁定的精度。
[0203]
下面将分别对本技术实施例提供的温控模块210的几种具体实现方式进行详细描述。
[0204]
温控模块210的具体实现方式一:
[0205]
请参见图20,图20是本技术实施例提供的一种第一光通信装置又一结构示意图。如图20所示,温控模块210具体可包括温度检测模块2101、温度信号处理模块2102以及温控执行模块2103。其中,温度信号处理模块2102分别与温度检测模块2101以及温控执行模块2103电连接。
[0206]
实际工作时,上述温度检测模块2101可通过直接或者间接的热传导来检测得到用于表征光源221的当前壳体温度的温度指示信号,并将该温度指示信号发送给温度信号处理模块2102。然后,温度信号处理模块2102可根据上述温度指示信号以及上述预设温度生成一个温度控制信号(为方便区别,下文将以第四温控信号代替描述),并将该第四温控信号发送给温控执行模块2103。具体的,温度信号处理模块2102可先生成上述预设温度所对应的初始温控信号,再采用预设的信号处理算法(包括但不限于梯度降算法、卡尔曼滤波器
等)对上述初始温控信号和温度指示信号进行处理以得到第四温控信号。温控执行模块2103接收到上述第四温控信号后,可根据该第四温控信号对光源221进行升温或者降温处理,以使得光源221的壳体温度与预设温度的差值能够小于或者等于第四预设差值,从而能够使得光源221输出的信号光或者光载波的频率能够与外部参考光的频率锁定。
[0207]
可选的,实际实现中,上述温度检测模块2101可以是各种材质或者结构的热敏电阻、热电耦合器或者温度传感器等。上述温度检测模块2101可通过直接或者间接的热传导方式检测得到上述温度指示信号。
[0208]
可选的,实际实现中,上述温控执行模块2103可以是各种材质或者结构的半导体制冷器(thermo electric cooler,tec)、加热器、风扇等。
[0209]
温控模块210的具体实现方式二:
[0210]
请参见图21,图21是本技术实施例提供的一种第一光通信装置又一结构示意图。如图21所示,在上述方式一所示的温度检测模块2101、温度信号处理模块2102以及温控执行模块2103的基础上,该温度模块210还可包括信号功分模块2104、第八电接口2105、第九电接口2106、输出驱动模块2107、输入驱动模块2108以及第三电耦合模块2109。其中,上述信号功分模块2104分别与温度检测模块2101、温度信号处理模块2102以及输出驱动模块2107电连接。第三电耦合模块2109分别与温控执行模块2103、温度信号处理模块2102以及输入驱动模块2108电连接。输出驱动模块2107还通过上述第八电接口与锁频模块21电连接,输入驱动模块2108还通过第九电接口2106与锁频模块21电连接。
[0211]
实际工作时,上述温度检测模块2101可检测得到用于表征光源221的当前壳体温度的温度指示信号,并将该温度指示信号发送给信号功分模块2104。信号功分模块2104可对上述温度指示信号进行功分以得到第一温度指示信号分量和第二温度指示信号分量。第一温度指示信号分量和第二温度指示信号分量的信号波形相同,信号功率可以相同,也可以不同。然后,信号功分模块2104可将上述第一温度指示信号分量传输给输出驱动模块2107,将上述第二温度指示信号分量传输给温度信号处理模块2102。温度信号处理模块2102接收到上述第二温度指示信号分量后,可根据第二温度指示信号分量以及上述预设温度生成一个温度控制信号(为方便区别,下文将以第一温控信号代替描述),并将该第一温控信号发送给第三电耦合模块2109。这里,温度信号处理模块2102生成第一温控信号的具体过程可参见前文方式一所描述的温度信号处理模块2102生成第四温控信号的过程,此处便不再赘述。输出驱动模块2107接收到第一温度指示信号分量后,可对第一温度指示信号分量进行放大以得到放大后的第一温度指示信号分量,再将该放大后的第一温度指示信号分量通过上述第八电接口2105传输给锁频模块21。锁频模块21在接收到上述放大后的第一温度指示信号分量之后,可采用其内部预设的处理算法(一般情况下,锁频模块21所使用的处理算法要比温度信号处理模块2102所使用的处理算法要更为先进)对上述放大后第一温度指示信号分量以及预设温度进行处理以得到温控反馈信号,再通过上述第九电接口2106将温控反馈信号发送给输入驱动模块2108。输入驱动模块2108再对温控反馈信号进行放大,并将放大后的温控反馈信号发送给第三电耦合模块2109。第三电耦合模块2109接收到上述第一温控信号以及放大后的温控反馈信号后,可对第一温控信号和放大后的温控反馈信号进行耦合以得到第二控制信号,再将该第二温控信号传输给温控执行模块2103。温控执行模块2103接收到上述第一温控信号后,可根据该第一温控信号对光源221进行升温或
者降温处理,以使得光源221的壳体温度与预设温度的差值能够小于或者等于第四预设差值,从而能够使得光源221输出的信号光或者光载波的频率能够与外部参考光的频率实现锁定。
[0212]
可以理解到的是,在本实现方式下,锁频模块21还可包括额外的电接口、a/d模块和d/a模块,以实现上述第一温度指示信号分量的接收和温控反馈信号的发送。具体过程和前文描述的接收光频差指示信号和发送目标波长控制信号的过程类似,此处便不再具体赘述。
[0213]
在本实现方式中,联合锁频模块21生成的外部控制信号(即温控反馈信号)以及温度信号处理模块2102生成的第一温控信号进行温控,可提升温控的精度和稳定度,可进一步提升光载波的频率锁定的精度。
[0214]
温控模块210的具体实现方式三:
[0215]
请参见图22,图22是本技术实施例提供的一种第一光通信装置又一结构示意图。如图22所示,在上述方式一所示的温度检测模块2101、温度信号处理模块2102以及温控执行模块2103的基础上,剔除了温度检测模块2101以及温度信号处理模块2102,并增加了第十电接口210a以及输入驱动模块210b。其中,输入驱动模块210b分别与温控执行模块2103、第十电接口210a电连接,第十电接口210a还与锁频模块21电连接。
[0216]
实际工作时,锁频模块21在获取到上述目标光频差δfg之后,可根据该目标光频差δfg以及光源模块221对应的预设温度-波长对应集合确定得到该目标光频差δfg对应的目标温度差。这里,上述预设温度-波长对应集合是光源模块221的一种本征特性,其指示了光源模块221在不同壳体温度下稳定输出的光的波长(也可转换成频率)。该目标温度差即为光源221在信号光生成模块20输出第一信号光的时刻的温度与预设温度之间的差值。具体的,锁频模块21在获取到上述目标光频δfg之后,可根据外部参考光的频率以及目标光频δfg确定出第一信号光的频率,然后从预设温度-波长对应集合中查找到第一信号光的频率所对应的温度,该温度即为光源221在信号光生成模块20输出第一信号光的时刻的壳体温度。然后,锁频模块221即可根据第一信号光的频率所对应的温度以及外部参考光的频率确定的预设温度确定出目标温度差。进一步的,锁频模块221即可根据其内部预设的温度控住算法对该目标温度差进行处理以得到第三温控信号,并通过第十电接口210a将第三温控信号发送至输入驱动模块210b。输入驱动模块210b再对第三温控信号进行放大,并将放大后的第三温控信号发送给温控执行模块2103。温控执行模块2103接收到上述第三温控信号后,即可根据该第三温控信号对光源221进行升温或者降温处理,以使得光源221的壳体温度与预设温度的差值能够小于或者等于第四预设差值,从而能够使得光源221输出的信号光或者光载波的频率能够与外部参考光的频率实现锁定。这里,直接由锁频模块21根据目标光频差生成第三温控信号,并进一步由温控执行模块2103根据该第三温控信号对光源221的温度进行控制,简化了温控模块210的结构,可降低第一光通信装置的成本和结构复杂度。
[0217]
前文所述的各种实现方式都是以图1所示的多点到点的pon系统架构为背景进行描述的。在这种情况下,上述第一光通信装置可以是图1中所示的任意一个onu或者该onu所包括tosa,上述第二光通信装置可以是图1中所示的olt。
[0218]
而在又一种可选的实现方式中,请参加图23,图23是本技术实施例提供的又一种
pon系统结构示意图。该pon系统采用的是多点到多点的网络架构,即多个a类节点(如图23中的节点a1、节点an等)和多个b类节点(如图23中的节点b1、节点bn等)通过odn进行光信号传输。这里,上述a类节点和b类节点指的就是整个pon系统中各种光通信节点,其即可是olt,又可以是onu,所以在这种场景下将统一以节点代替描述。在该pon系统架构下,多个b类节点可通过多子载波传输方式向某个a类节点发送信息,多个a类节点也可通过多子载波传输方式向某个b类节点发送信息。本技术实施例所提供的第一光通信装置20和第二光通信装置10也可适用于图23所示的pon网络架构。在实际应用中,上述第一光通信装置20可以是图23所述的任一a类节点或者该任一a类节点所包括tosa,上述第二光通信装置可以是图23所示的任一b类节点。或者,上述第一光通信装置可以是图23所示的任一b类节点或者该任一b类所包括的tosa,上述第二光通信装置10可以是图23所示的任一a类节点。特别需要说明的是,在图23所示的pon网络架构下,由于第一光通信装置20和第二光通装10互相采用多子载波传输方式进行光信号传输,所以第一光通通信装置20也需要为第二光通信装置10提供相应地外部参考光,以使得第二光通信装置20能够采用合适的光载波向第一光通信装置10发送信号光。因此,第一光通通信装置20也可如第二光通信装置一样包括一个参考光源,并通过该参考光源为第二光通信装置10提供外部参考光。由于在如图23所示的pon系统架构下,第一光通信装置20和第二光通信装置10所包含的结构和所能实现的功能与在图1所述的pon系统架构下一直,因此便不再赘述第一光通信装置20和第二光通信装置10在如图23所示的pon系统架构下的功能实现。
[0219]
这里还可以理解的是,上述图1或者图23所示的pon系统的网络架构仅是示例性描述,本技术提供的光通信装置还适用于其他采用多子载波传输方式进行通信的光网络,此处便不再详细描述。
[0220]
还可以理解到的是,前文针对目标波长控制信号、目标电调制信号以及后续第三信号光的生成过程仅是示例性的描述,在实际实现中,第一光通信装置20和第二光通信装置10之间可重复执行上述操作,此处不再重复描述。
[0221]
还需要补充说明的是,上述第一光通信装置20还可通过对信号光生成模块22中的光信号光调制模块223或者光源221的驱动信号进行调节,以动态的调节信号光生成模块22输出的信号光的光功率,进而实现多个光发送端的发射功率均衡的目的。
[0222]
下面将结合前文所描述的内容,进一步对第一光通信装置20和第二光通信装置10之间的通信结构进行描述。
[0223]
在第一光通装置20为onu或者某个节点内的某个功能模块(如tosa),第二光通信装置10为olt或者摸个节点的情况下,请参见图24,图24是本技术实施例提供的一种光通信系统的结构示意图。如图24所示,第二光通信装置10可包括一个底板1,该底板1上安装有媒体接入控制(media access control,mac)芯片1、光信号处理芯片1、主控中央处理器(central processing unit,cpu)1、tosa1、rosa1、时钟1、下行参考光源1(即前文所述的参考光源模块12的具体实现)、第十分光模块1(即前文所述的第十分光模块15)等器件,从而可实现olt的功能。上述tosa1内部包括但不限于激光器、驱动器等。上述rosa1内部包含但不限于光电探测器、跨阻放大器等。时钟1可用于为第二光通信装置10中需要时钟信号的器件提供相应的时钟信号。同时,上述第一光通信装置10所在的onu或者节点(为方便描述,下文将以目标onu代替)可包括一个底板2,该底板2上安装有上述第一光通信装置20、媒体接
入控制(media access control,mac)芯片2、光信号处理芯片2、主控中央处理器(central processing unit,cpu)2、rosa1、时钟2、参考光接口2、第十一分光模块2等器件,从而可实现olt的功能。上述rosa2内部包含但不限于光电探测器、跨阻放大器等。时钟2可用于为第一光通信装置20中需要时钟信号的器件提供相应的时钟信号。
[0224]
在实际工作过程中,第二光通信装置20上的第二光接口13与目标onu的第十光接口2通过一根目标光纤建立光连接。下行参考光源1所输出的外部参考光会通过第十分光模块1传输至第二光接口13,再通过目标光纤传输到目标onu的第十光接口2上。然后第十光接口2再将外部参考光通过第十一分光模块2传输到第一光通信装置20的第一光接口23上,从而完成了外部参考光由第二光通信装置10向第一光通信装置20上的传输。同时,第一光通信装置20所生成的上行信号光(如第一信号光、第二信号光或者第三信号光)也可通过第一光接口23以及第十一分光模块2传输到目标onu的第十光接口2上。然后,第十光接口2再通过目标光纤将第一信号光、第二信号光或者第三信号光传输至第二光通信装置10的第二光接口上,从而实现上行信号光由第一光通信装置20向第二光通信装置10上的传输。而第二光通信装置10中的tosa1生成的下行信号光(如前文所述的第四信号光或者第五信号光)则可通过第二光通信装置10和第一光通信装置20之间的其他光通道进行传输。这里,将上行信号光和外部参考光通过同一条目标光纤进行传输,可节省第二光通信装置10和第一光通信装置20之间的光纤数量,降低第二光通信装置10和第一光通信装置20的通信成本。
[0225]
在第一光通信装置20为onu本身或者节点的情况下,第一光通信装置20所在的目标onu与图24所示的结构的区别在于,第一光通信装置20中不再有光接口2和第十一分光模块2,而是第一光通信装置20的第一光接口23直接通过目标光纤与第二光通信装置的第二光接口13建立光连接。然后第一光通信装置20和第二光通信装置10即可通过目标光纤进行外部参考光和上行信号光的传输。
[0226]
可以理解到的是,第二光通信装置10与第一光通信装置20或者第一光通信装置20所在的目标onu之间也可以采用其他光传输结构,如第二光通信装置10和目标onu之间的所有上行信号光、下行信号光和参考光分别采用独立光纤进行传输,或者,所有上行信号光、下行信号光和参考光都采用同一条光纤进行传输,又或者,将下行信号光和参考光通过同一条光纤传输,而上行信号光则可采用独立光纤进行传输。
[0227]
另外,需要补充说明的是,本技术实施例所涉及的电连接具体可以是印制电路板(printed circuit board,pcb)走线建立的连接,也可以是不同芯片或者集成模块之间的金属打线建立的连接,还可以是合封后芯片内部的走线建立的连接,此处不作具体限制。本技术实施例所涉及的光连接指的是通过各种规格的光纤、光波导所建立的连接。本技术实施例所涉及的光接口可以是各类规格的光纤到光纤耦合器、各类规格的光纤到波导耦合结构等,此处不作具体限制。本技术描述的各模块可以是安装在同一基底介质上的器件集合,也可以是分立器件的组合,此处不作具体限制。
[0228]
在本技术实施例中,在多子载波传输的场景下,第一光通信装置20可对其生成的信号光的光载波和电载波的频率进行精准的控制,从而使得其输出的信号光的光载波的频率能够锁定在第二光通信装置提供的外部参考光的频率上,并使得其输出的信号光的电载波的频率能够锁定预配置的目标电载波频率上。这样就可以有效的解决多子载波传输过程中因信号光的频偏所导致的多路光信号在合波时存在拍频干扰的问题,可提升两个光通信
装置的光信号传输的质量。
[0229]
实施例二
[0230]
请参见图25,图25是本技术实施例提供的一种光通信方法的流程示意图。该光通信方法适用于实施例一中所描述各种网络架构(如多点到点或者多点到多点的网络结构等)下的第一光通信装置20和第二光通信装置10。下面将结合实施例一中所描述的第一光通信装置20和第二光通信装置10的具体结构,对本技术提供的光通信方法的具体执行过程进行描述。如图25所示,该方法包括以下步骤:
[0231]
s10,第二光通信装置生成并向第一光通信装置发送第二信号光的电载波的实测频率和目标电载波频率。
[0232]
在一些可行的实现方式中,第二光通信装置20可通过第一信号光处理模块11接收来来自于第一光通信装置20的第二信号光,并确定出该第二信号光的电载波的实测频率。第二光通信装置还可通过第一信号光处理模块11来确定出第一光通信装置20对应的目标电载波频率。这里,第二光通信装置20基于第一信号光处理模块11确定得到上述第二信号光的电载波的实测频率和目标电载波频率的过程可参见实施例一中的描述,此处便不再赘述。然后,第二光通信装置20还可将上述第二信号光的电载波的实测频率、目标电载波频率发送给第一光通信装置20。例如,第二光通信装置20可通过网络控制信号和网络状态信号将上述第二信号光的电载波的实测频率以及目标电载波频率发送给第一光通信装置20。具体过程请参见实施例一中所描述的过程,此处便不再赘述。
[0233]
s20,第二光通信装置生成并向第一光通信装置发送外部参考光。
[0234]
在一些可行的实现方式中,第二光通信装置20还可通过第一信号光处理模块11来驱动参考光源模块12生成预设波长下的外部参考光,再将该外部参考光发送给第一光通信装置10。具体过程请参见实施例一中描述的生成并向第一光通信装置20发送外部参考光的过程,此处便不再赘述。
[0235]
s30,第一光通信装置根据光频差指示信号生成目标波长控制信号。
[0236]
在一些可行的实现方式中,第一光通信装置20可获取光频差指示信号,并根据该光频差指示信号生成目标波长控制信号。
[0237]
具体实现中,第一光通信装置20可先通过光频差检测模块27检测得到上述光频差指示信号。
[0238]
在第一种可选的具体实现中,第一光通信装置20可通过光频差检测模块27获取到外部参考光与上述第一信号光的检测光所形成的光频差指示信号。例如,第一光通信装置20可将外部参考光分光成第一检测光和第二检测光。这里,第一检测光为所述外部参考光在第一偏振方向上的分量,所述第二检测光为所述外部参考光在第二偏振方向上的分量,所述第二偏振方向与所述第一偏振方向正交。第一光通信装置20也可将第一信号光对应的检测光分光成第三检测光和第四检测光。这里,所述第三检测光为所述第一信号光对应的检测光在第三偏振方向上的分量,所述第四检测光为所述第一信号光对应的检测光在第四偏振方向上的分量,所述第四偏振方向与所述第三偏振方向正交。之后,第一光通信装置20可获取所述第一检测光和所述第三检测光所形成的第一拍频电压信号,以及所述第二检测光和所述第四检测光所形成的第二拍频电压信号,对所述第一拍频电压信号和所述第二拍频电压信号进行耦合以得到所述光频差指示信号。第一光通信装置20通过光频差检测模块
27获取目标拍频信号的具体过程请参见实施例一中所描述的过程,此处便不再赘述。
[0239]
进一步可选的,所述第一偏振方向与所述第三偏振方向相同,所述第一检测光与所述第二检测光的偏振方向相同,所述第三检测光与所述第四检测光的偏振方向相同。此外,所述第三检测光和所述第四检测光的光功率也可相同。
[0240]
在第二种可选的实现方式中,第一光通信装置20也可通过光频差检测模块27对第五检测光和第六检测光进行检测以得到光频差指示信号。这里,该光频差指示信号即为第五检测光的第一光功率指示信号和第六检测光的第二光功率指示信号。上述光频差检测模块27中的微环模块279的谐振频率与上述外部参考光的频率的差值小于或者等于第一预设差值,即可认为微环模块279的谐振频率等于外部参考光的频率。所述第一信号光对应的检测光分光得到所述第五检测光和第七检测光,所述第六检测光由经过微环滤波的第七检测光分光得到,所述第一信号光对应的检测光由第一光通信装置20的光源在所述第一光通信装置20输出所述第一信号光时所生成的光载波或者信号光分光得到。
[0241]
例如,所述第一光通信装置20可通过光频差检测模块27将所述第一信号光对应的检测光分光得到所述第五检测光和所述第七检测光,获取所述第五检测光的第一光功率指示信号。然后,再通过光频差检测模块27对所述第七检测光进行微环滤波,对经过微环滤波后的第七检测光进行分光以得到所述第六检测光,再获取所述第六检测光对应的第二光功率指示信号。这里,第一光通信装置20通过光频差检测模块27获取第一光功率指示信号和第二光功率指示信号的具体过程请参见实施例一中所描述的相应过程,此处便不再赘述。
[0242]
进一步,在微环模块279的谐振频率与外部参考光的频率的差值并未小于或者等于第一预设差值的情况下,第一光通信装置20还可通过光频差检测模块27对所述外部参考光进行分光以得到第八检测光和第九检测光,并获取所述第八检测光的第三光功率指示信号。然后,第一光通信装置20可通过光频差检测模块27对所述第九检测光进行微环滤波以得到滤波后的第九信号光,再对经过微环环滤波后的第九检测光进行分光以得到第十检测光,并获取所述第十检测光对应的第四光功率指示信号。这里,第一光通信装置20通过光频差检测模块27获取第三光功率指示信号和第四光功率指示信号的具体过程请参见实施例一中所描述的相应过程,此处便不再赘述。
[0243]
然后,第一光通信装置20可通过锁频模块21计算出所述第四光功率指示信号与所述第三光功率指示信号的第一实测比值。若第一光通信装置20通过锁频模块21确定第一实测比值与第一预设比值的差值等于或者大于第二预设差值,或者,确定所述第一实测比值与第一预设比值不相等,则可通过锁频模块21对微环模块279的谐振频率进行调整,以使得所述微环模块279的谐振频率接近或者等于外部参考光的频率。进一步的,若第一光通信装置20通过锁频模块21确定第一实测比值与所述第一预设比值的差值小于所述第一预设差值,或者,确定所述第一实测比值与第一预设比值相等,则可停止对所述微环模块279的谐振频率的调整。这里,第一光通信装置20根据上述第四光功率指示信号与第三光功率指示信号对所述微环模块279进行谐振频率调节的具体过程请参见实施一中所描述的相应过程,此处便不再赘述。
[0244]
进一步的,在第一光通信装置20通过光频差检测模块27获取到光频差指示信号后,第一光通信装置20可通过锁频模块21来对上述光频差指示信号进行处理,以得到目标波长控制信号。
[0245]
在第一种可选的具体实现中,第一光通信装置20可先通过锁频模块21来对上述光频差指示信号进行处理以得到目标光频差。
[0246]
在光频差指示信号为上述目标拍频信号的情况下,第一光通信装置20可先通过锁频模块21来根据所述目标拍频信号确定出所述目标光频差。例如,第一光通信装置可通过锁频模块21在第一时刻对目标拍频信号进行采样以得到目标拍频信号对应的目标采样信号。然后,再通过锁频模块对目标采样信号以及所述锁频模块21在第一预设时段内的接收到的拍频信号所对应的采样信号进行滤波以得到待变换信号。然后,再通过锁频模块21对所述待变换信号进行数字傅里叶转换以得到所述第一预设时段所对应的频谱信息。然后,通过锁频模块21获取所述目标采样信号在所述频谱信息中对应的频率峰值,并将所述频率峰值确定为所述目标光频差。这里,锁频模块21根据所述目标拍频信号确定出所述目标光频差的具体过程可参见实施例一中所描述的相应过程,此处便不再赘述。
[0247]
在光频差指示信号为上述第一功率指示信号和第二功率指示信号的情况下,所述第一光通信装置20也可根据所述第一光功率指示信号和所述第二光功率指示信号确定出所述目标光频差。例如,第一光通信装置20可通过锁频模块21计算出所述第二光功率指示信号与所述第一光功率指示信号的第二实测比值。然后,再通过锁频模块21来根据所述第二实测比值从所述微环模块279的预设光功率比值-光频差对应关系集合中确定出所述第二实测比值对应的光频差,并将所该第二实测比值对应的光频差确定为所述目标光频差。这里,所述预设光功率比值-光频差对应关系集合中包括一个或者多个不同的实测比值以及每个实测比值所对应的光频差。锁频模块21根据所述第二实测比确定出所目标光频差的具体过程可参见实施例一中所描述的相应过程,此处便不再赘述。
[0248]
在第一光通信装置20通过锁频模块21获取到上述目标光频差之后,即可通过锁频模块21来根据所述目标光频差、第一预设调整系数以及所述第一光通信装置20最近一次通过锁频模块21生成的波长控制信号确定出所述目标波长控制信号。具体过程可参见实施例一中所描述的锁频模块21根据目标光频差、第一预设调整系数以及其最近一次生成的波长控制信号来生成目标波长控制信号的过程,此处便不再赘述。
[0249]
在第二种可选的具体实现中,所述第一光通信装置20可通过锁频模块21计算所述第二光功率指示信号与所述第一光功率指示信号的第二实测比值。若第一光通信装置20通过锁频模块21确定所述第二实测比值与第二预设比值的差值大于或者等于第三预设差值,或者,确定所述第二实测比值与所述第二预设比值不相等,则可将预设电压信号确定为所述目标波长控制信号。进一步的,若第一光通信装置通过锁频模块21确定所述第二实测比值与第二预设比值的差值小于所述第三预设差值,或者,确定所述第二实测比值等于所述第二预设比值,则可停止生成并发送所述目标波长控制信号。具体过程请参见实施例一中描述的锁频模块21直接根据第二光功率指示信号与所述第一光功率指示信号来生成目标波长控制信号的过程,此处便不再赘述。
[0250]
s40,第一光通信装置根据目标光频差、由第二信号光的电载波的实测频率和目标电载波频率确定的目标电频差以及待传输比特信息生成目标电调制信号。
[0251]
在一些可行的实现方式中,第一光通信装置20在获取到上述目标光频差之后,还可通过锁频模块21获取到来自于第二光通信装置20的第二信号光的电载波的实测频率和目标电载波频率。然后,第一光通信装置20再通过锁频模块对上述目标光频差、由第二信号
光的电载波的实测频率和目标电载波频率确定的目标电频差以及待传输比特信息进行处理,以得到目标电调制信号。其中,该目标电调制信号所采用的电载波的频率与目标电载波频率之间的差值要小于上述第一信号光所采用的电载波的频率与上述目标电载波频率的差值。
[0252]
具体实现中,第一光通信装置20可先通过锁频模块21获取到上述第二信号光的电载波的实测频率和目标电载波频率。例如,第一光通信装置20中的锁频模块21可通过第一电接口24接收到来自于第二光通信装置10的网络控制信号和网络状态信号,然后从网络控制信号中提取出目标电载波频率,从网络状态信号中提取出第二信号光的电载波的实测频率。具体的获取过程可参见实施例一中描述的锁频模块21获取到目标电载波频率以及第二信号光的电载波的实测频率的过程,此处便不再赘述。然后,第一光通信装置20可通过锁频模块21来根据目标电载波频率、目标电频差和所述目标光频差确定出目标载波频率。例如,锁频模块21可通过如下公式确定出目标载波频率。所述目标载波频率满足以下公式:
[0253]fm
=fc α
×
δfd β
×
δfg[0254]
其中,fm为所述目标载波频率,fc为所述目标电载波频率,α为第二预设调整系数,β为第三预设调整系数,α大于或者等于0,β大于或者等于0,δfd为所述目标电频差,δfg为所述目标光频差。
[0255]
然后,第一光通信装置20可通过锁频模块21生成目标电载波,并将获取到的待传输比特信息加载在所述目标电载波上以得到所述目标电调制信号。这里,该目标电载波的频率等于目标载波频率。第一光通信装置通过锁频模块21生成目标电调制信号的过程可参见实施例一中所描述的相应过程,此处便不再赘述。
[0256]
在一些可行的实现方式中,所述第一光通信装置20还可通过温控模块210同步的对光源221的温度进行控制,以使得光源221的温度能够与预设温度锁定。这里,上述预设温度由外部参考光的频率确定,即上述预设温度为外部参考光的频率在光源221固有的温度-输出光波长特性所对应的温度。所以将光源221的温度稳定在预设温度,即可使得光源221输出的光载波或者信号光的频率能够与上述外部参考光的频率锁定,从而使得信号光生成模块22输出的信号光的光载波的频率能够与外部参考光的频率锁定,可进一步提升光载波的频率锁定的精度。
[0257]
例如,第一光通信装置20可通过温控模块210获取所光源221的温度指示信号,再根据该温度指示信号和预设温度生成第一温控信号和温控反馈信号。然后,第一光通信装置可通过温控模块210对所述第一温控信号和所述温控反馈信号进行耦合以得到第二温控信号。然后,温控模块210可根据第二温控信号对所述光源221进行温度控制,以使得所述光源221的温度与预设温度的差值小于或者等于第四预设差值。上述各步骤的具体过程可分别参见实施例一描述的相应过程,此处不作具体描述。
[0258]
又例如,第一光通信装置还可通过锁频模块21来根据所述目标光频差从所述光源对应的预设温度-波长对应集合中确定出所述目标光频差对应的目标温度差。这里,所述目标温度差为所述光源221在所述信号光生成模块22输出所述第一信号光的时刻的温度与预设温度之间的差值。所述预设温度由所述外部参考光的频率确定。然后,第一光通信装置20可通过锁频模块21来根据所述目标温度差生成第三温控信号,并通过温控模块210来根据该第三温控信号对所述光源221进行温度控制,以使得所述光源221的温度与预设温度的差
值小于或者等于第四预设差值。上述各步骤的具体过程可分别参见实施例一描述的相应过程,此处不作具体描述。
[0259]
s50,第一光通信装置根据目标波长控制信号和目标电调制信号生成第三信号光。
[0260]
在一些可行的实现方式中,第一光通信装置20可通过信号光生成模块22来根据上述目标波长控制信号和目标电调制信号生成第三信号光。
[0261]
例如,第一光通信装置20可通过信号光生成模块22来根据所述目标波长控制信号生成第一目标驱动信号,再根据该第一目标驱动信号生成所述第三信号光对应的初始光载波。然后,第一光通信装置20可通过信号光生成模块22对所述第三信号光对应的初始光载波进行分光以得到所述第三信号光的光载波和所述第三信号光对应的检测光。最后,第一光通信装置20可通过信号光生成模块22来根据所述目标电调制信号和所述第三信号光的光载波生成并输出所述第三信号光。上述各步骤的具体过程可分别参见实施例一描述的相应过程,此处不作具体描述。
[0262]
又例如,第一光通信装置20可通过信号光生成模块22来根据所述目标波长控制信号和所述目标电调制信号生成第二目标驱动信号。然后,再通过信号光生成模块22来根据所述第二目标驱动信号生成所述第三信号光对应的初始信号光。最后,第一光通信装置20可通过信号光生成模块22对第三信号光对应的初始信号光进行分光以得到所述第三信号光。上述各步骤的具体过程可分别参见实施例一描述的相应过程,此处不作具体描述。
[0263]
s60,第一光通信装置向第二光通信装置发送第三信号光。
[0264]
在一些可行的实现方式中,第一光通信装置20在通过信号光生成模块22生成上述第三信号光之后,即可再通过上述信号光生成模块22将上述第三信号光发送给第二光通信装置10。例如,第一光通信装置20可通过一根目标光纤向所述第二光通信装置10发送该第三光信号。这里需要说明的是,第一光通信装置20也是通过该目标光纤从所述第二光通信装置10处接收外部参考光的。
[0265]
在本技术实施例中,在多子载波传输的场景下,第一光通信装置20可对其生成的信号光的光载波和电载波的频率进行精准的控制,从而使得其输出的信号光的光载波的频率能够锁定在第二光通信装置提供的外部参考光的频率上,并使得其输出的信号光的电载波的频率能够锁定预配置的目标电载波频率上。这样就可以有效的解决多子载波传输过程中因信号光的频偏所导致的多路光信号在合波时存在拍频干扰的问题,可提升两个光通信装置的光信号传输的质量。
[0266]
以上所述的具体实施方式,对本技术的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本技术的具体实施方式而已,并不用于限定本技术的保护范围,凡在本技术的技术方案的基础之上,所做的任何修改、等同替换、改进等,均应包括在本技术的保护范围之内。
再多了解一些

本文用于企业家、创业者技术爱好者查询,结果仅供参考。

发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表

相关文献