一种残膜回收机防缠绕挑膜装置的制 一种秧草收获机用电力驱动行走机构

单向阀、换热器、制冷循环系统、空调器的制作方法

2022-06-15 03:25:43 来源:中国专利 TAG:

单向阀、换热器、制冷循环系统、空调器
1.本技术要求2021年9月19号提交的名称为“分液器、单向阀、换热器、制冷循环系统、空调器”、申请号为202122281454.9的中国专利申请的优先权,通过引用其全部内容被结合到本文中。
2.本技术要求2021年9月20号提交的名称为“分液器、单向阀、换热器、制冷循环系统、空调器”、申请号为202111102583.5的中国专利申请的优先权,通过引用其全部内容被结合到本文中。
技术领域
3.本技术涉及空气调节技术领域,例如涉及一种单向阀、换热器、制冷循环系统、空调器。


背景技术:

4.在空调器中使用制冷循环系统,切换蒸发器和冷凝器两种功能进行工作。将这种制冷循环系统作为蒸发器使用时,为了将换热器中的损失最小化从而高效地使用,优选将用于削减压力损失的冷媒流路多通路化,降低冷媒的流速。但是,在将制冷循环系统作为冷凝器使用时,由于考虑压力损失的必要性低,所以使通路数减少的方式能够提高冷媒的热传递率,能够高效地运转。
5.为了解决上述现有课题,现有的一种制冷循环系统,包括将压缩机、四通阀、具有多个换热器块的室外换热器、膨胀阀、室内换热器、吸接配管环状连接。接着,在室外换热器配置单向阀,在制冷循环系统进行制冷运行时,室外换热器作为冷凝器使用,换热器块串列连接。在制冷循环系统进行制热运行时,室外换热器作为蒸发器使用,换热器块并列连接。通过这样的结构,室外换热器作为冷凝器的情况下,冷媒流速增加,热传递率增加。另外,室外换热器作为蒸发器的情况下,压力损失减少,效率得到改善。
6.这其中,多个换热器块的并列连接节点可以采用分液器等分液器件相连接,集气/液主管通过单向阀与分液器相连通,在换热器作为冷凝器的情况下,单向阀能够阻断冷媒自集气/液向分液器流动的流路,而在换热器作为蒸发器的情况下,单向阀能够导通冷媒自集气/液向分液器流动的流路。
7.在实现本公开实施例的过程中,发现相关技术中至少存在如下问题:
8.对于单向阀而言,其阀芯的结构设计能够影响到单向阀阻断时的关闭稳定性。现有的换热器一般是采用通用型号的单向阀,该单向阀的阀芯多是采用实心结构设计,在实际使用过程中发现由于该种阀芯的端面与冷媒接触面积较小,导致阀芯在关闭时存在不稳定、密封性差等弊端。


技术实现要素:

9.为了对披露的实施例的一些方面有基本的理解,下面给出了简单的概括。所述概括不是泛泛评述,也不是要确定关键/重要组成元素或描绘这些实施例的保护范围,而是作
为后面的详细说明的序言。
10.本公开实施例提供一种单向阀,包括:
11.阀壳,有阀出口和阀进口以及形成阀壳内部且连通所述阀出口、阀进口的阀通道;
12.阀芯,沿轴向可移动地设置于所述阀通道内,其中,所述阀芯的对应所述阀出口的第一端构造有空心结构。
13.本公开实施例提供一种换热器,包括如上述公开实施例提供的单向阀。
14.本公开实施例提供一种制冷循环系统,包括如上述公开实施例提供的单向阀或换热器。
15.本公开实施例提供一种空调器,包括如上述公开实施例提供的单向阀、换热器或制冷循环系统。
16.本公开实施例提供一种单向阀、换热器、制冷循环系统、空调器,单向阀的阀芯对应阀出口的端部设置空心结构,可以增大过热冷媒与阀芯端面的接触面积,增大阀芯受力面积;同时该空心结构是围绕阀芯中心线成型的对称设计,通过在空心结构中储存满冷媒,能够提升阀芯关闭的稳定性。
17.以上的总体描述和下文中的描述仅是示例性和解释性的,不用于限制本技术。
附图说明
18.一个或多个实施例通过与之对应的附图进行示例性说明,这些示例性说明和附图并不构成对实施例的限定,附图中具有相同参考数字标号的元件示为类似的元件,附图不构成比例限制,并且其中:
19.图1是本公开实施例提供的一个换热器的结构示意图;
20.图2是本公开实施例提供的一个单向阀的局部示意图;
21.图3是本公开实施例提供的另一个换热器的结构示意图;
22.图4是本公开实施例提供的另一个换热器的结构示意图;
23.图5是本公开实施例提供的另一个换热器的结构示意图;
24.图6是本公开实施例提供的一个换热器作为蒸发器的情况下的换热流路示意图;
25.图7是本公开实施例提供的一个换热器作为冷凝器的情况下的换热流路示意图;
26.图8是本公开实施例提供的一个换热器的换热管分布示意图;
27.图9是本公开实施例提供的另一个换热器的换热管分布示意图;
28.图10是本公开实施例提供的换热器除换热管之外其他部分的结构示意图;
29.图11是本公开实施例提供的分液器倾斜设置的结构示意图;
30.图12是本公开实施例提供的三支路可变分流形式的换热器的结构示意图;
31.图13是本公开实施例提供的分液器的端面示意图;
32.图14是本公开实施例提供的另一个分液器的结构示意图;
33.图15是本公开实施例提供的另一个分液器的结构示意图;
34.图16是本公开实施例提供的另一个分液器的结构示意图;
35.图17是本公开实施例提供的另一个分液器的结构示意图;
36.图18是本公开实施例提供的另一个分液器的结构示意图;
37.图19是本公开实施例提供的另一个分液器的结构示意图;
38.图20是本公开实施例提供的另一个分液器的结构示意图;
39.图21是本公开实施例提供的另一个分液器的结构示意图;
40.图22是本公开实施例提供的一个分液器内的冷媒流动分配仿真图;
41.图23是本公开实施例提供的另一个分液器内的冷媒流动分配仿真图;
42.图24是本公开实施例提供的一个分液器内的冷媒流动分配示意图;
43.图25是本公开实施例提供的一个分液器的立体图;
44.图26是本公开实施例提供的另一个分液器的立体图;
45.图27是图26实施例提供的分液器的正面示意图;
46.图28是图27的a-a向剖视图;
47.图29是本公开实施例提供的另一个分液器的剖面图;
48.图30是本公开实施例提供的一个分液器的分流效果的仿真效果图;
49.图31是本公开实施例提供的不同目数网状件分流时的不均匀度对比图;
50.图32是本公开实施例提供的不同目数网状件分流时的不稳定度对比图;
51.图33是本公开实施例提供的一个单向阀的剖面示意图;
52.图34a是本公开实施例提供的另一个单向阀的剖面示意图;
53.图34b是本公开实施例提供的另一个单向阀的剖面示意图;
54.图35是本公开实施例提供的一个单向阀阀芯的示意图;
55.图36是本公开实施例提供的另一个单向阀阀芯的立体图;
56.图37a是本公开实施例提供的另一个单向阀阀芯的剖面图;
57.图37b是本公开实施例提供的另一个单向阀阀芯的剖面图;
58.图37c是本公开实施例提供的另一个单向阀阀芯的剖面图;
59.图37d是本公开实施例提供的另一个单向阀阀芯的剖面图;
60.图37e是本公开实施例提供的另一个单向阀阀芯的剖面图。
61.附图标记:
62.100:换热器;200:分液器;300:单向阀;110:冷媒出入口;120:换热支路;130:换热流路;140:换热管;151:第一旁通管路;152:第二旁通管路;220:壳体;230:分液腔;240:汇流管;250:分液支管;260:网状件;320:阀壳;330:阀芯;340:阀座;111:第一冷媒出入口;112:第二冷媒出入口;121:第一换热支路;122:第二换热支路;123:第三换热支路;124:第四换热支路;211:第一分液器;212:第二分液器;213:第三分液器;214:第四分液器;221:分液口;222:汇流口;231:第一储液腔;232:第二储液腔;233:储液腔通道;234:汇流腔体;235:第一分支腔体;236:第二分支腔体;240:汇流管;241:第一管段;242:第二管段;251:第一分液支管;252:第二分液支管;253:第三分液支管;311:第一单向阀;312:第二单向阀;321:阀进口;322:阀出口;323:阀通道;324:阀体喉部;331:第一端;332:第二端;333:阀芯主体;334:稳定块;335:空心槽;336:空心腔;400、三通管。
具体实施方式
63.为了能够更加详尽地了解本公开实施例的特点与技术内容,下面结合附图对本公开实施例的实现进行详细阐述,所附附图仅供参考说明之用,并非用来限定本公开实施例。在以下的技术描述中,为方便解释起见,通过多个细节以提供对所披露实施例的充分理解。
然而,在没有这些细节的情况下,一个或多个实施例仍然可以实施。在其它情况下,为简化附图,熟知的结构和装置可以简化展示。
64.本公开实施例的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本公开实施例的实施例。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含。
65.本公开实施例中,术语“上”、“下”、“内”、“中”、“外”、“前”、“后”等指示的方位或位置关系为基于附图所示的方位或位置关系。这些术语主要是为了更好地描述本公开实施例及其实施例,并非用于限定所指示的装置、元件或组成部分必须具有特定方位,或以特定方位进行构造和操作。并且,上述部分术语除了可以用于表示方位或位置关系以外,还可能用于表示其他含义,例如术语“上”在某些情况下也可能用于表示某种依附关系或连接关系。对于本领域普通技术人员而言,可以根据具体情况理解这些术语在本公开实施例中的具体含义。
66.另外,术语“设置”、“连接”、“固定”应做广义理解。例如,“连接”可以是固定连接,可拆卸连接,或整体式构造;可以是机械连接,或电连接;可以是直接相连,或者是通过中间媒介间接相连,又或者是两个装置、元件或组成部分之间内部的连通。对于本领域普通技术人员而言,可以根据具体情况理解上述术语在本公开实施例中的具体含义。
67.除非另有说明,术语“多个”表示两个或两个以上。
68.本公开实施例中,字符“/”表示前后对象是一种“或”的关系。例如,a/b表示:a或b。
69.术语“和/或”是一种描述对象的关联关系,表示可以存在三种关系。例如,a和/或b,表示:a或b,或,a和b这三种关系。
70.本公开实施例涉公开的表格中的数值,对应室内工况和室外工况的单位均为℃,对应制热量、制冷量和功率的单位均为w,对应能效和apf的单位为w/w。
71.需要说明的是,在不冲突的情况下,本公开实施例中的实施例及实施例中的特征可以相互组合。
72.制冷循环系统包括换热器100和单向阀300,单向阀300设置于换热器内100。
73.在一些实施例中,空调器使用过程中用户设定的制冷/制热功率不同,压缩机排出的冷媒流量及压力也相应的变化,使得在冷媒流经换热器其的冷媒状态并不完全一致,如在高功率状态下冷媒压力较高,而在低功率状态下冷媒压力较低;同时,换热器所处环境的温度高低也能够影响到换热器内冷媒温度压力状态的变化程度。受上述因素的共同影响,在一些情况下,冷媒流经单向阀时阀芯两侧的压差比较小,这就容易出现阀芯无法正常开启、仍然在阀体喉部阻断或者开启幅度异常的问题,影响单向阀的正常使用。
74.为解决上述单向阀300两侧压差过小无法正常开启等问题,可选地,本公开实施例中的单向阀300满足以下关系:
75.l
34
*r≤z1,
76.结合图2所示,其中,l3为单向阀的阀体喉部直径,单位以cm计,r为单向阀的阀芯等效半径,单位以cm计;z1为设定值。
77.在图2示出的实施例中,单向阀300的阀体喉部为等宽的筒状喉部形式,l3取值为该筒状喉部的直径长度值;而在又一些实施例中,单向阀300的阀体喉部为锥形的喉部形
式,如图33所示,则对应该种形式l3取值为该锥形的喉部的最大宽度值。
78.可选的,z1的取值范围为2《z1《20。
79.可选地,z1根据制冷循环系统的额定制冷量q确定。在本实施例中,不同于现有技术中对于应用于空调器的单向阀的选型方式,本技术选用的单向阀的尺寸设计能够使得阀芯与该制冷循环系统工作时施加给单向阀的进出口压差进行匹配,从而使该单向阀在较小压差下依然可以正常工作;这就使得空调器进行冷媒流向切换时(如制冷流向和制热流向)能够准确的导通或阻断单向阀,进而使换热器能够正常地执行不同流路形式的切换操作。
80.在一些实施例中,构建有一z1与额定制冷量q的关联关系,可选形式包括z1与q一一对应的关联表格等,则对应不同额定制冷量的空调器机型,其选用的单向阀的规格形式与该机型的额定制冷量之间,满足该关联关系。
81.可选的,上述关联关系中,z1与额定制冷量q之间为正相关关系,即制冷循环系统的额定制冷量q越大,z1越大。
82.在又一些实施例中,z1与额定制冷量q之间的关联关系还可通过公式表示,可选的,根据制冷循环系统的额定制冷量q确定z1的公式如下:
[0083][0084]
其中,λ为局部阻力系数,z2为加权系数。ρ

为冷媒密度,单位以kg/m3计,ρ

为单向阀的阀芯密度,单位以kg/m3计。
[0085]
可选的,局部阻力系数λ的取值范围为0.3~0.55。
[0086]
可选地,z2=1.5*105。
[0087]
可选的,冷媒选用二氟甲烷,对应的冷媒密度为0.8~1.1g/cm3。
[0088]
可选的,单向阀的阀芯密度为0.94~0.96kg/m3。
[0089]
则本公开实施例中的单向阀300满足的关系可表示为
[0090]
其中,m为冷媒流量。
[0091]
这里,上述公式的推导过程如下:
[0092]
单向阀的流入/流出端之间的局部阻力

p可表示为
[0093]
阀芯的受力面积为4r2,则阀芯的受力为4r2*

p;
[0094]
同时,阀芯的体积为0.5*(13/6)*π*r3,则阀芯所受重力为0.5*(13/6)*π*r3*g;其中,(13/6)是由半圆体积和圆柱体积公式里面的系数相加得到,具体为13/6=2/3 3/2;g为重力常数,此次计算取值950;
[0095]
本公开实施例中的单向阀为竖直放置,单向阀导通状态下的流动方向是自下而上,则为了单向阀开启状态下阀芯需要满足的受力状态可用如下公式表示:
[0096]
4r2*

p≥0.5*(13/6)*π*r3*g;
[0097]
将上述不等式整理后可得到上述表示额定制冷量q和单向阀之间的关系:
[0098]
[0099]
这里,以以额定制冷量为3.5kw、5.0kw和7.2kw的空调器机型为例,代入上述公式计算;假定,环境参数和空调器状态参数如下,
[0100]
环境参数:室外环境温度为35℃,室内环境温度为27℃;
[0101]
空调器状态参数:
[0102]
冷凝温度为45℃,冷凝压力为2.7948mpa,过冷度为5℃;
[0103]
蒸发温度为17℃,蒸发压力为1.3559mpa,过热度为5℃;
[0104]
换热器入口焓值为275;换热器出口焓值为524;
[0105]
对于额定制冷量为3.5kw的空调机型,总冷媒流量为0.014kg/s,单向阀冷媒流量为0.010kg/s;
[0106]
对于额定制冷量为5.0kw的空调机型,总冷媒流量为0.019kg/s,单向阀冷媒流量为0.014kg/s;
[0107]
对于额定制冷量为7.2kw的空调机型,总冷媒流量为0.027kg/s,单向阀冷媒流量为0.020kg/s;
[0108]
将上述参数的具体数值带入方程可以得出:
[0109]
对于额定制冷量为3.5kw的空调机型:l
34
*r≤2.8;
[0110]
对于额定制冷量为5.0kw的空调机型:l
34
*r≤5.7;
[0111]
对于额定制冷量为7.2kw的空调机型:l
34
*r≤11.9;
[0112]
这里,以额定制冷量为7.2kw的空调器机型为例,按照上述公式计算得到地应用于本技术的单向阀满足的关系为l
34
*r≤z1=11.9,则与其它型号的单向阀(l
34
*r≤z1=6)相比,在额定制热和低温制热两种状态下的测试数据如下表1所示:
[0113]
表1
[0114][0115]
可以看出,在两种制热状态下,采用本技术方案限定尺寸关系的单向阀的压力损失要明显低于其他尺寸关系的单向阀,本技术技术方案能够实现单向阀更低的流动阻力,减小压力损失。
[0116]
可选地,结合图1和图3所示,换热100器包括换热器主体和单向阀300。
[0117]
换热器主体设有第一冷媒出入口111和第二冷媒出入口112。在换热器作为蒸发器的情况下,冷媒由第一冷媒出入口111流入,由第二冷媒出入口112流出,在换热器作为冷凝器的情况下,冷媒由第二冷媒出入口112流入,由第一冷媒出入口111流出。
[0118]
单向阀300的流通方向被限制为在换热器作为蒸发器的情况下导通,以及在换热器作为冷凝器的情况下阻断。
[0119]
可选地,单向阀300设置于第一冷媒出入口111和/或第二冷媒出入口112。
[0120]
可选地,结合图4所示,第一冷媒出入口111和第二冷媒出入口112之间通过w个换热支路120连通。其中,w为大于1的整数。这样,在第一冷媒出入口111和第二冷媒出入口112之间设置多个换热支路120,可使冷媒能够以不同形式通过换热支路120,使冷媒流通具有多样性,提高制冷设备在制冷或制热的不同工况下的换热效率。
[0121]
可选地,每个换热支路120包括互相连通的n1个换热管140,n1≤8。这样,将每个换热支路120上的换热管140的数量设置在小于或等于8个地范围内,可以避免每条换热支路120上的换热管140的长度过多造成压降变化过快,避免制冷设备的能效降低。
[0122]
可选地,w个换热支路120通过分液器200连通于第一冷媒出入口111和第二冷媒出入口112之间。这样,可利用分液器200的分液功能在冷媒沿着换热支路120流动的过程中可分流形成多个流道使冷媒的流通更合理,在换热器作为蒸发器或者冷凝器的情况下均可保持较高的换热效率。
[0123]
可选地,分液器200包括:第一分液器211、第二分液器212、第三分液器213和第四分液器214。第一分液器211与第一冷媒出入口111连通;第二分液器212通过第一单向阀311与第一分液器211连通,第一单向阀311的流向朝向第二分液器212;第三分液器213与第一分液器211和第二分液器212连通;第四分液器214与第二冷媒出入口112连通,且一个分流口通过第二单向阀312与第三分液器213连通,其余分流口与第二分液器212连通。这样,通过多个分液器200对流经的冷媒进行分液,并且结合第一单向阀311和第二单向阀312控制冷媒的流通,可以使冷媒正反两个方向流通使具有不同的流通路径,在换热器作为蒸发器或者冷凝器的情况下均可保持较高的换热效率。
[0124]
可选地,如图5所示,第一分液器211通过n2个换热管140与第一冷媒出入口111连通。这样,第一冷媒出入口111处设置换热管140作为过冷段使用,可将流经的冷媒进一步液化,提高冷媒的液化率。
[0125]
可选地,n2≤5。这样,将作为过冷段使用的换热管140的数量限定在小于或等于5个地范围内,可以防止换热器作为蒸发器使用的情况下,过冷段的长度过长造成阻力增加,导致压降过高,影响换热器的换热效率。
[0126]
更具体地,n2=2,或,n2=3,或,n2=4。
[0127]
可选地,如图21所示,在换热器作为蒸发器的情况下,n个换热管140组成n个换热流路130。换热器作为蒸发器的情况下换热管140组成的换热流路130的数量n是根据全部换热管140的总数量n确定的。这样,可对换热器的换热管140的流路进行合理的分配,防止单个换热流路130中换热管140的数量过多或过少,造成蒸发或冷凝不够彻底,可提高换热器的换热效率。
[0128]
其中,n=w*n1,或者,n=w*n1 n2。n2为第一分液器211与第一冷媒出入口111之间连通的换热管140的数量。
[0129]
可选地,n/a≤n≤n/b,a和b为加权系数。这样,在n和n满足该公式的情况下,可提高避免整体换热器的压降过高,提高换热效率。
[0130]
可选地,int(n/a)≤n≤int(n/b),int是将数值向下取整为最接近的整数的函数。
[0131]
可选地,a=5或6,b=2或3。这样,将a和b的取值范围限定在该区域内,可使换热器作为蒸发器的情况下,n个换热管140组成的换热流路130的数量更加合理,有利于蒸发器内冷媒的蒸发效率,进而提高换热器的换热效率。
[0132]
更具体地,a=5,且,b=3。
[0133]
可选地,如图6、7所示,在换热器作为蒸发器的情况下,n个换热管140组成n个换热流路130。换热器作为冷凝器的情况下,n个换热管140组成m个换热流路130。其中n≠m。这样,在换热器作为蒸发器的情况下与换热器作为冷凝器使用的情况下其运行原理不同,二者采用相同数量的换热流路130无法兼顾二者的换热效率,因此使在换热器作为蒸发器的情况下与换热器作为冷凝器使用的情况下冷媒流通的换热流路130的数量不同,可以应对蒸发与冷凝两种工况下的不同需求,提高换热器作为蒸发器以及换热器作为冷凝器时的效率。
[0134]
可选地,换热器作为蒸发器的情况下,全部换热管140组成n个换热流路130。换热器作为冷凝器的情况下,全部换热管140组成m个换热流路130。其中,n》m。这样,由于换热器作为蒸发器的情况下,其内部的冷媒是由液态变为气态的过程,冷媒的体积会增大,因此需要的换热流路130较多,而换热器作为冷凝器的情况下,其内部的冷媒是有气态变为液态的过程,冷媒的体积会减小,此时较少的换热流路130即可容纳冷媒,因此将n设置为大于m可使换热器在作为蒸发器的情况下以及作为冷凝器的情况下均可顺畅地通过冷媒,降低冷媒流动的阻力,即降低压降,提高换热效率。
[0135]
可选地,30%≤m/n≤70%。优选地,50%≤m/n≤70%,这样,可大幅度提升制冷设备的能效,特别是在低温中间制冷阶段,能效提升显著,可高产品的能效等级,节能环保的同时提升产品的商业价值,提升产品的竞争力。
[0136]
以m/n=50%为例与m=n相比,其在各个阶段的能效表现如下所示:
[0137]
m=n的情况下各阶段能效如下表2所示:
[0138]
表2
[0139][0140]
m/n=50%的情况下各阶段能效如下表3所示:
[0141]
表3
[0142][0143]
综上两个表格中的数据对比可以看出,在低温中间制冷阶段,m/n=50%的换热器
使产品的能效有大幅度的提升,可以使产品的能效等级提高。
[0144]
更具体地,m/n=1/2,或,m/n=1/3,或,m/n=2/3,或,m/n=3/5或m/n=4/7。优选地,m/n=1/2或m/n=4/7。
[0145]
可选地,在3.5kw的机型中使用m/n=1/2的换热器。这样,该换热路数的设置能够更好地满足3.5kw机型的使用条件,提高产品的能效比。
[0146]
针对3.5kw的机型m和n不同比值情况下的能效表现如下所示:
[0147]
本实施例优选的方案m/n=1/2的情况下产品能效表现如下表4所示:
[0148]
表4
[0149][0150]
m=n的情况下产品能效表现如下表5所示:
[0151]
表5
[0152][0153]
本实施例优选的方案m/n=1/4的情况下产品能效表现如下表6所示:
[0154]
表6
[0155][0156]
本实施例优选的方案m/n=3/4的情况下产品能效表现如下表7所示:
[0157]
表7
[0158][0159]
综合上述表格可以看出针对3.5kw机型,制热支路n等于4时,最优制冷支路m为2,apf为最大值5.10,此时m/n=1/2,若m降至1,则apf降至4.99,反之若m增至3,则apf降至4.62,可见在3.5kw机型中采用m/n=1/2可以大幅提高能效,更加节能环保。
[0160]
可选地,在7.2kw的机型中使用m/n=4/7的换热器。这样,该换热路数的设置能够更好地满足7.2kw机型的使用条件,提高产品的能效比。
[0161]
针对7.2kw的机型m和n不同比值情况下的能效表现如下表格所示:
[0162]
本实施例优选的方案m/n=4/7的情况下产品能效表现如下表8所示:
[0163]
表8
[0164][0165]
m=n的情况下产品能效表现如下表9所示:
[0166]
表9
[0167][0168]
本实施例优选的方案m/n=3/7的情况下产品能效表现如下表10所示:
[0169]
表10
[0170][0171]
本实施例优选的方案m/n=2/7的情况下产品能效表现如下表11所示:
[0172]
表11
[0173][0174]
本实施例优选的方案m/n=5/7的情况下产品能效表现如下表12所示:
[0175]
表12
[0176]
[0177][0178]
综合上述表格可以看出针对7.2kw机型,制热支路n等于7时,最优制冷支路为4,apf为最大值4.56,此时m/n=0.57,若m降至3,则apf降至4.45,若m降至2,apf降至4.32,反之若m增至5,则apf降至4.35,可见在7.2kw机型中采用m/n=4/7可以大幅提高能效,更加节能环保。
[0179]
可选地,n-m≥2。这样,将换热器作为蒸发器使用的情况下和换热器作为冷凝器使用的情况下,流路的数量拉开差距可以起到加速循环增大传热系数的效果。
[0180]
可选地,n个换热管140分为m排布置,其中m≤5。
[0181]
可选地,m为1、2或3。
[0182]
可选地,m的取值由换热管140的数量n、制冷设备的能力段和换热管140管径的对应关系确定。这样,在制冷设备的能力段确定的情况下,其使位置的空间大小一般情况下均为确定的,此时根据换热管140的管径以及换热管140的数量n可以确定换热管140总需占用的空间,据此对换热管140进行合理的分排设置,可使其占用空间保持在合理的范围内,便于安装使用。
[0183]
更具体地,换热管140的排数m与换热管140的数量n、制冷设备的能力段和换热管140管径的对应关系如下表13所示:
[0184]
表13
[0185][0186][0187]
可选地,如图8、9所示,换热器100上的n个换热管140以整数平均分配至w个换热支路120上后多余h个换热管140的情况下,将h个换热管140抽出,或者将h个换热管140连通于第一冷媒出入口111作为过冷段,或者将h个换热管140均分到h个换热支路120上,其中h《w。这样,可尽量保持每个换热支路120上的换热管140数量相近,使每个换热支路120的阻力相近,防止阻力不同造成冷媒流通量不同,进而导致换热器整体换热不够均匀。
[0188]
更具体地,w=3,n=10的情况下,抽出1个换热管140,每个换热支路120上设置3个换热管140,或者每个换热支路120上设置3个换热管140,1个换热管140与第一冷媒出入口111连通作为过冷度段,或者如图8,其中3个换热支路120上设置3个换热管140,另外1个换热支路120上设置4个换热管140。
[0189]
更具体地,w=5,n=22的情况下,抽出2个换热管140,每个换热支路120上设置4个换热管140,或者每个换热支路120上设置4个换热管140,2个换热管140与第一冷媒出入口111连通作为过冷度段,或者如图9,其中2个换热支路120上设置5个换热管140,另外3个换热支路120上设置4个换热管140。
[0190]
可选的,第二分液器212与冷媒出入口连通的汇流管以及与多个换热支路120一一连通的多个分液口221;其中第二分液器212竖直设置,使得分液口221朝上、汇流管朝下设置,如图10所示;并在换热器100作为冷凝器的情况下分液口221中的至少一个进液,以及至
少一个出液;
[0191]
第一单向阀311设置于冷媒出入口110,其流通方向被限制为在换热器100作为蒸发器的情况下导通,以及在换热器100作为冷凝器的情况下阻断并使第二分液器212汇流及储液。
[0192]
可选的,分液口221的数量为3个,在换热器100作为冷凝器的情况下其中2个进液,1个出液。
[0193]
又一可选的,如图11所示,第二分液器212倾斜设置,分液口221斜向上、汇流管240斜向下设置,同样能够实现分液器的储液作用,以及在换热器100作为冷凝器的情况下分液口221中的至少一个进液,以及至少一个出液。
[0194]
可选的,第二分液器212倾斜设置时与竖直方向的倾角∠α≤β,β为预设角度值。
[0195]
可选的,β的取值范围是10~45
°

[0196]
可选的,β的取值范围是10~20
°

[0197]
可选地,结合图1和3所示,换热器100包括换热器主体、分液储液装置、单向导通装置。
[0198]
换热器主体包括第一冷媒出入口111、第二冷媒出入口112以及连通于第一冷媒出入口111和第二冷媒出入口112之间的w个换热支路。w为大于1的整数。
[0199]
分液储液装置包括与第一冷媒出入口111或第二冷媒出入口112连通的汇流管,以及与部分换热支路一一连通的多个分液口221。分液储液装置被配置为在换热器100作为蒸发器的情况下用于将所述冷媒出入口输送的冷媒向多个换热支路120分流,以及在换热器100作为冷凝器的情况下汇流及储液。
[0200]
可选地,分液储液装置包括分液器200。可选地,分液器200为第一分液器211、第二分液器212、第三分液器213或第四分液器214。
[0201]
可选的,在本实施例中,分液器200包括分液腔230,以及分别连通分液腔230的汇流管240和多个分液口221。在换热器100作为冷凝器的情况下分液口221中的至少一个进液、至少一个出液,以通过分液器进行汇流并使得分液腔230储存有部分冷媒。
[0202]
单向导通装置连通于第一冷媒出入口111和汇流管240之间,或,连通于第二冷媒出入口112和汇流管240之间。单向导通装置的流通方向被限制为在换热器100作为蒸发器的情况下导通,在换热器100作为冷凝器的情况下阻断。
[0203]
可选地,单向导通装置包括单向阀或电控阀门。应当理解的是,本技术技术方案是示出的单向阀的类型仅为可选的示例性说明,并不对方案保护范围构成限制,本领域技术人员能够知晓本领域中其它能够实现单向导通功能的零部件或组件也可以作为本示例的可选替代方案,同样也应涵盖在本技术的保护范围之内。
[0204]
可选的,在本实施例中,单向阀300设置于汇流管240。单向阀300的流通方向被限制为在换热器100作为蒸发器的情况下导通,以及在换热器100作为冷凝器的情况下阻断并使得所述分液腔230储液。
[0205]
单向阀300包括与汇流管连通的阀出口322以及与对应的冷媒出入口连通的阀进口321,冷媒自阀进口321流向阀出口322时单向阀为导通状态,以及冷媒自阀出口322流向阀进口321时单向阀为阻断状态。
[0206]
电控阀门被配置为在换热器100作为蒸发器的情况下受控开启,在换热器100作为
冷凝器的情况下受控关闭。
[0207]
示例性的,结合图3所示,以第二分液器212为例,在换热器作为冷凝器使用的情况向下,第二冷媒出入口112作为冷媒的流入口、第一冷媒出入口111作为冷媒的流出口,则冷媒自第二冷媒出入口112流入换热器后,分别被分流至第一换热支路121和第二换热支路122,此时第一单向阀311和第二单向阀均为阻断状态,流出至第一换热支路121和第二换热支路122继续流入第二分液器212进行汇流,汇流后的冷媒从第二分液器212的连通第三换热支路123的一分液口流出,由于第二分液器212的分液口均朝上设置,因此在该种状态下,部分冷媒能够在重力作用下储存在第二分液器212的分液腔以及该分液腔至单向阀的部分管段内,实现第二分液器212的储液功能。
[0208]
本公开实施例提供的换热器通过分流储液装置和单向导通装置的配合,利用分流储液装置可以储存部分冷媒,从而使得换热器也能够具备一定的储液功能,相比于现有空调器仅利用储液器储液的形式,本实施例能够扩大空调器的冷媒储液范围,特别是在低负荷状态下能够减少多余冷媒的热量循环,使得空调实际冷媒循环量能够与当前工作性能相适配,提升了空调器在不同运行状态下对冷媒循环量的调节范围。
[0209]
这里,以空调器的室外换热器为例继续进行说明。一般而言,对给定的空调器及运行条件而言,存在最优的冷媒充注量,该冷媒充注量能够使空调运行性能达到最佳;通常情况下,制热运行的最优冷媒充注量比制冷运行时要稍大,因此制冷运行时,多出来的这部分制冷剂一般以液体形式“储存”在空调器中;本方案中,在制冷运行时室外换热器是作为“冷凝器”使用,因而可以利用室外换热器中的分液器的内容积,实现“储液”的功能。
[0210]
同时,对于空调器而言,空调器在开停机的过程中受到高低压里平衡的作用,冷媒会从低压侧向高压侧流动;在本实施例中,空调在开机状态下大多数冷媒(60%甚至以上)是储存在室外机中;停机状态下大部分(60%甚至以上)大多数冷媒(60%甚至以上)是储存在室内机中。
[0211]
在空调器以制热模式运行时,室外换热器作为“蒸发器”使用,空调器停机状态下分液器内冷媒存储量比开机时要多;而在空调器以制冷模式运行时,室外换热器作为“冷凝器”使用,空调器开机状态下分液器内冷媒存储量比停机时要多。空调器停机时,室内、外换热器及压缩机腔、气液分离器等部件中均储存有部分制冷剂。
[0212]
apf测试标准下,空调器制冷与制热运行均存在100%负荷与部分负荷测试工况,部分负荷状态下冷媒循环量比100%负荷下要小,因而部分负荷运行时分液器的储液量大于100%负荷时。
[0213]
示例性的,使用普通分流设计的分液器无储液功能的空调器和使用可变分流设计分液器配合单向阀带储液功能的空调器进行对比,分别测试了两者的能力、功率和能效,测试数据如下表14所示:
[0214]
表14
[0215][0216]
由上表可见,由于可变分流实现了更佳的制冷流路且和分液器配合单向阀带储液
功能,本技术使用可变分流设计分液器配合单向阀带储液功能的空调器在运行时所能达到的能效要明显优于普通分流设计的分液器无储液功能的空调器。
[0217]
同时,对于同一种空调器,本技术通过在换热器中使用两种不同分液器,对有/无储液功能两种情况下的空调器的能效进行了测试,其中方案

是采用普通的分液器,内部分液腔腔体空间较为狭小;方案

采用具有储液功能的分液器,方案

的分液器的分液腔容积明显大于方案

的分液器容积。测试条件为额定制冷工况下运行,室内干湿球温度27℃/19℃,室外干湿球温度35℃/24℃,测试结果对比如表15所示:
[0218]
表15
[0219] 能力功率能效方案

3440w861w4.00方案

3445w858w4.02
[0220]
通过上表的数据对比可见,由于现有技术中选择分液器的形式一般仅是考虑“分流”功能,因此在满足“分流”功能的情况下一般将分液器尽量设计为越小越好,以减少空间体积的占用以及制造成本;而本技术采用更大容积分液腔的分液器,其能够实现在制冷模式下的储液功能,并可提高应用该种储液功能的分液器的空调器在实际运行过程中的能效,实测性能有优于采用普通分液器的空调器。
[0221]
进一步地,分液器200的汇流管240与第一冷媒出入口111或第二冷媒出入口112连通的汇流管240,多个分液口221与多个换热支路一一对应。
[0222]
为实现分液器200的储液功能、避免因分液器分液腔容积过大导致储液过多的问题,同时也为了适配不同空调器机型的储液需求,可选地,v≤f2*q,f2为预设的倍数,v是分液腔的容积,单位以为cm3计,q为额定制冷量,单位以kw计。
[0223]
可选的,应用有可变分流形式的换热器共用两种形式,分别包括图3示出的四支路可变分流形式,以及图12示出的三支路可变分流形式。
[0224]
可选地,对于对于四支路可变分流形式的换热器,f2的取值范围8~12。
[0225]
可选的,f2的取值为10,也即v≤10q。
[0226]
在本实施例中,对于四支路可变分流形式的换热器,机组额定能力与充灌量之间的关系大致为:m=160q;正常制热模式比制冷模式冷媒充灌量需求高10~15%,而压缩机气液分离器一般能存储5~10%的冷媒,则分液器实际需存储地冷媒为充灌总量的5%,如果分液器实际的存储量超过该充灌总量的5%,可能会影响到空调器的实际冷媒循环量,则分液器最多需储液m=160q*5%=8q。
[0227]
可选的,冷媒类型为二氟甲烷(r32),在实际使用温度范围内冷媒密度约为0.8~1.1g/cm3,以冷媒密度为0.8g/cm3的上限计算,分液腔自身容积不能超过8q/0.8=10q,q按kw计算。
[0228]
例如,对于额定制冷量为3.5kw的空调器,其选用的分液器的分液腔容积需要满足v≤f2*q=10*3.5=35,也即该分液器的分液腔容积应小于等于35cm3。
[0229]
这里,对于四支路可变分流形式的换热器,本技术分别以f2取值8/10/12/14等情况下对同一空调器的运行性能进行了测试,对不同容积分液器(按f2取值)进行对比,测试数据如下表16所示:
[0230]
表16
[0231]
f2取值能力功率能效83446w857w4.02103451w855w4.04123440w856w4.02143423w861w3.96
[0232]
通过上表的测试数据可以看出,在本技术所限定的f2取值范围(8~12)内,f2值增大,能效逐渐提高;但f2过大(f2超出12)的情况下,反而出现功率升高但能效降低的问题。
[0233]
在又一些可选的实施例中,为实现分液器200的储液功能、避免因分液器分液腔容积过小导致无法储液问题,同时也为了适配不同空调器机型的储液需求,可选地,本技术技术方案中具有储液功能的分液器需要满足以下条件:
[0234]
v≥f1*q,
[0235]
f1为预设倍数,v是分液腔的容积,单位以cm3计,q为额定制冷量,单位以kw计。
[0236]
可选的,对于四支路可变分流形式的换热器,分液器分液器容积下限f1取值范围为0.2~4。
[0237]
可选的,f1的取值范围为1~4。
[0238]
可选地,f1的取值范围为2~4。
[0239]
优选的,f1取值为3。在本实施例中,其选用的分液器的容积下限主要取决于结构限制,出于可靠性考虑,分液器截面半径r一般大约为支管半径r的4倍,这样既能保证分配器半径不太大(即避免分配器半径影响换热器空间),也保证各支管间有一定的距离,且焊接后分配器仍有足够的强度。即在本实施例中,结合图13所示,分液器半径r=4r,本实施例中r=1.4cm。
[0240]
同时,在对分液器200进行实际加工时,各分液支管250插入分液器200的深度不得少于3mm。并且,制冷模式向下,分液器200的三个分液支管呈“二进一出”,且制冷剂流体需在分液器200分液腔内进行180
°
折弯(下进上出);出于稳定性考虑,各分液支管的下端面到分液器下端面的等效长度至少需要达到4r的距离要求,才能使得流体顺利从两个分液支管250流出,在流入另一分液支管250,即整个分液器深度约为0.3 1.4=1.7cm;
[0241]
因此,分液器的内容积不得小于:π*r^2*1.7=10.455≈3q。
[0242]
这里,对于四支路可变分流形式的换热器,本技术分别以f1取值1/2/3/4等情况下对同一空调器的运行性能进行了测试,对不同容积分液器(按f1取值)进行对比,测试数据如下表17所示:
[0243]
表17
[0244]
f1取值能力功率能效13426w865w3.9623438w861w3.9933442w860w4.0043442w859w4.01
[0245]
结合上表可知,对不同容积分液器,f1值越大,功率越低,能效越高。
[0246]
类似的,对于三支路可变分流形式的换热器,其用于连接主路和两支路的是采用图12示出的“一分二”的三通管400(虚线框部分),相比四路可变分流的分液器,其尺寸较
小。
[0247]
可选的,对于三支路可变分流换热器,v≤f2*q,f2的取值范围为0.75~1.0。
[0248]
又一可选的,对于三支路可变分流形式的换热器,v≥f1*q,f1的取值范围为0.15~0.25。
[0249]
考虑到该种形式的分液器较为固定,其体积变化差异较小,针对不同额定制冷量的空调器,其f值与额定制冷量的对应关系如下表18所示:
[0250]
表18
[0251]
额定制冷量2.6kw3.5kw5.0kw7.2kwf取值0.720.530.370.25
[0252]
同样额定制冷量为3.5kw的空调器,经计算,其选用的分液器的分液腔容积需要满足v≤f*q=0.53*3.5≈1.86cm3。
[0253]
可选地,分液器200还包括筒状的壳体220。相应地,分液腔230形成于壳体220内部且被构造为筒状的空腔。在换热器作为“冷凝器”使用时,冷媒自多个分液口流入/流出,该分液腔230作为储存部分冷媒的空间。
[0254]
可选地,多个换热支路120连通的分液支管250设置于分液器200的壳体220的一端面上,且沿端面的同一圆周线布设,多个分液支管250均匀地布设在分液器200的该端面上,相邻分液支管250的间距相同,使得分液器200能够均匀地将冷媒分配给多个分液支管250。
[0255]
可选地,各分液支管250通过端面伸入分液腔230内。
[0256]
可选地,分液支管250的伸入长度2~5mm。
[0257]
在本实施例中,分液支管250的数量为3个。
[0258]
可选地,分液腔230的内径为分液支管250的管外径的3~5倍。这样既能保证分液器半径不太大(分液器半径影响换热器空间),也保证各分液支管间有一定的距离,且焊接后分液器仍有足够的强度。
[0259]
可选地,换热器还包括分液器,如图14~24所示。
[0260]
可选地,分液器包括壳体,汇流管240、第一分液支管251和第二分液支管252。壳体内部开设有分液腔,壳体开设有第一分液口和第二分液口,汇流管240与分液腔连通,第一分液支管251通过第一分液口与分液腔连通,第二分液支管252通过第二分液口与分液腔连通。
[0261]
可选地,分液腔包括汇流腔体234,第一分支腔体235和第二分支腔体236,第一分液支管251通过第一分液口与第一分支腔体235连通,第二分液支管252通过第二分液口与第二分支腔体236连通。
[0262]
可选地,汇流管240包括弯折连通的第一管段241和第二管段242,第一管段241与分液腔直接连通。
[0263]
第一管段241和第二管段242的轴线所在的平面为第一平面。第一分液支管251和第二分液支管252的轴线所在的平面为第二平面。可选地,第一平面与第二平面非垂直。
[0264]
汇流管240包括第一管段241和第二管段242,第一管段241和第二管段242的轴线所在的平面为第一平面,第一平面与第二平面的夹角为e。如图21所示。第一平面与第二平面非垂直,可以理解为,第一平面与第二平面的夹角e小于90
°
。可选地,第一平面与第二平面之间的夹角以两者形成的锐角计。第一平面与第二平面非垂直,这样,经第一管段241进
入第一分液支管251与第二分液支管252的冷媒量不同。例如,当第一平面与第二平面之间的夹角在第一分液支管251侧时,在重力作用下,冷媒流向第二分液支管252的流量大于流向第一分液支管251的流量。类似的,当第一平面与第二平面之间夹角在第二分液支管252侧时,在重力作用下,冷媒流向第一分液支管251的流量大于流量第二分液支管252的流量。
[0265]
可选地,本公开实施例提供的分液器可用作如图3所示的换热器的第一分液器211。如图3所示的换热器,在换热器作为蒸发器时,冷媒经第一分液器211分流后,分别流入四条并联的换热支路,即,第一换热支路121、第二换热支路122、第三换热支路123和第四换热支路124。其中,如图3的所示的方向中,冷媒经第一分液器211的左侧的分液支管后仅流入第四换热支路124,冷媒经第一分液器211右侧的分液支管后流入三条换热支路,分别为第一换热支路121、第二换热支路122和第三换热支路123。可见,冷媒经过第一分液器211后,第一分液器211的两个分液支管所需的冷媒量不同。如图3所示的换热器中,右侧的分液支管所需的冷媒量大概是左侧的分液支管的冷媒量的3倍。本公开实施例提供的分液器,利用冷媒在流动过程中的重力作用,通过汇流管240的第一管段241和第二管段242的轴线所在的第一平面与第一分液支管251和第二分液支管252的轴线所在的第二平面之间的夹角的设置,实现了分液器的不同分液支管流出的冷媒量不同,满足了分液支管所需冷媒量不同的需求,进而提高了换热器的换热效率。
[0266]
可选地,本公开实施例对壳体上开设的分液口的数量,以及分液口对应的分液支管的数量不做限定,例如,分液口的数量可以为3个、4个、5个甚至更多,相对应的,分液支管的数量也可以为3个、4个、5个甚至更多。
[0267]
可选地,第一平面与第二平面的夹角小于90度。可选地,第一平面与第二平面的夹角为0度、30度、60度、70度或80度等。第一平面与第二平面之间的夹角小于90度,使得冷媒在流经汇流管240的第一管段241后,在重力的作用下实现偏流,进而使得流入第一分液支管251和第二分液支管252的冷量不同。
[0268]
可选地,汇流管240的第一管段241的内径大于第一分液支管251的内径。
[0269]
可选地,第一分液支管251的内径大于第二分液支管252的内径。本公开实施例提供的分液器,通过汇流管240的第一管段241和第二管段242的轴线所在的第一平面与两个分液支管的轴线所在的第二平面之间设置夹角,并进一步配合两个分液支管之间的内径差,进一步增大了流入两个分液支管的冷媒量的差。可选地,汇流管240的第一管段241向第二分液支管252侧倾斜设置,则,在重力作用下,进一步配合第一分液支管251的内径大于第二分液支管252的内径,使更多的冷媒流入第一分液支管251,进一步增大了两个分液支管的冷媒流量差。
[0270]
仅通过限定第一分液支管251和第二分液支管252的内径差别,很难实现第一分液支管251与第二分液支管252的流量比为2:1的冷媒流量差。原因在于,在换热器的实际制备过程中,换热器中所使用的铜管的管径均具有一定的规格,即,不能任意选取管径,因此,通常无法找到正好使两个分液支管流量比为2:1的管径方案;如通过分液支管管长差异、折弯等其他手段来实现冷媒分液流量差异,则对批量生产的产品而言不具有通用性。因此,仅通过第一分液支管251和第二分液支管252的内径差别不能准确实现两个分液支管的冷媒流量比为2:1的冷媒分配。
[0271]
仅通过限定第一分液支管251和第二分液支管252的内径差别,很难实现第一分液
支管251与第二分液支管252的流量比为3:1的冷媒分配甚至更大的冷媒流量差的冷媒分配。原因在于,分液支管的内径有最小值的限制,如,分液支管的内径不能低于3mm,甚至不能低于3.36mm,低于该内径的铜管实际已经成为毛细管,毛细管具有较大的流动阻力,对冷媒的流动形成节流降压作用,进而会增大压缩机的功率,降低系统的性能;甚至导致空调器运行制热工况时,室外换热器结霜严重,影响系统的安全可靠性。由于分液支管内径最小值的限制,为了实现流量比为3:1的冷媒分配,另一个分液支管的管径需大于7mm,可选地,此处的7mm可以为外径,一般的,外径比内径大1.4mm,然而,这显然超出了换热器的实际使用的换热管的内径,换热器的一般管径为7mm,如管翅式换热器。因此,仅通过限定第一分液支管251和第二分液支管252的内径差别,在不超出换热器中换热管的管径允许的范围内,很难实现第一分液支管251与第二分液支管252的流量比为3:1的冷媒分配甚至更大的冷媒流量差的冷媒分配。
[0272]
本公开实施例提供的通过汇流管240的第一管段241和第二管段242的轴线所在的第一平面与两个分液支管的轴线所在的第二平面之间设置夹角,并进一步配合两个分液支管之间的内径差的技术方案,在换热器的换热管管径允许的范围内,可实现两个分液支管的冷媒流量比为2:1-7:1,甚至更大比例的冷媒分配需求,如2:1、3:1、4:1、5:1、6:1、7:1。本公开实施例提供的实现较大的流量比的冷媒分配方案,第二分液支管252的内径不需要设计的过细,也可以实现第一分液支管251内冷媒的流量远大于第二分液支管252内冷媒的流量。因此,本公开实施例提供的分液器的冷媒分配方案,避免了两个分液支管冷媒分配比较大时分液器的分液支管及换热器的总压降过大的问题。
[0273]
可选地,汇流管240的第一管段241和第二管段242的轴线所在的第一平面与两个分液支管的轴线所在的第二平面之间设置夹角大于或等于50度,且小于或等于70度。提高了第一分液支管251和第二分液支管252内冷媒流量的差异。可选地,第一分液支管251的内径大于或等于5.1mm,且小于或等于6.1mm;第二分液支管252的内径大于或等于3.1mm,且小于或等于3.7mm。可选地,汇流管240的第二管段242向第二分液支管252侧倾斜设置。
[0274]
在空调器运行制热工况时,换热器作为蒸发器时,换热器在如下情况能够发挥最理想的换热能力:在制热时,从低温液态不断吸收周围环境空气中的热量,随着温度升高到达了气液两相态,这个时候温度保持在蒸发温度不变,只是不断的发生液态到气态的相变,液态冷媒越来越少,气态冷媒越来越多,到整个换热支路的出口时刚好全部变为气态并温度高于蒸发温度1~2℃。这是因为当换热支路的出口温度过热时,全部为气态冷媒,气态冷媒焓差小换热能力低,且当过热度过大时,冷媒和环境温度换热温差小,比如当蒸发温度为0~1℃左右时,若过热度大于3℃,温度在4℃以上,而冬天环境温度也就7℃左右,换热温差很小,就更难以发挥换热器的换热能力了。
[0275]
而均匀性越好,越容易每个换热支路有合适的换热,如果不均匀,很容易有的支路已经过热严重,后面几根发卡管无换热效果,而有的换热支路冷媒过多,流经整个换热支路仍有很多低温液态冷媒没有将冷量交换出去,这样一来,同样的冷媒流量下,整个换热器换热效果差,空调的能力就很低。因此制热时经验的分流好的判断方法为:各支路出口温差在2℃以内,出口过热度在1℃左右,这种情况下分流较好。
[0276]
表19
[0277][0278]
表20
[0279]
可选地,在空调器运行制热工况、换热器在作为蒸发器,且,并联的第一换热支路、第二
[0280]
换热支路和第三换热支路与第一分液支管251相连通,第四换热支路与第二分液支管252相连通时,如图3所示,各换热支路的出口处的冷媒温度如表19和表20所示。其中,表19为第一平面与第二平面的夹角为90度时,不同第一分液支管251和第二分液支管252内径下,第四换热支路与前三支路的最大温差以及空调器的制热能力。从表19的数据中可以看出,第一分液支管251的内径为5.6mm,且,第二分液支管252的内径为3.36mm时,换热器的第四换热支路与前三支路的最大温差最小,为3.4℃,且,该内径下空调器的制热能力最大,为4855.2w。表20为第一分液支管251的内径为5.6mm,且,第二分液支管252的内径为3.36mm时,第一平面与第二平面的夹角为不同角度下,第四换热支路与前三支路的最大温差与空调器的制热能力。从表20中可以看出,第一平面与第二平面的夹角为60度时,第四换热支路与前三支路的最大温差最小,为1.2℃,且,该角度下,空调器的制热能力最大,为5016.1w。
[0281]
从表19和表20中的数据可以看出,当换热器中与第一分液支管251相连通的换热支路的数量为3条,与第二分液支管252相连通的换热支路的数量为1条,例如图3所示的换热器,第一分液支管251的内径为5.6mm、第二分液支管252的内径为3.36mm,且,第一平面与第二平面之间的夹角为60度时,第四换热支路与前三支路的最大温差最小,各换热支路内冷媒的换热能力均匀性最好,且,空调器的制热能力最大。即,实现了第一分液支管251内冷媒量与第二分液支管252内的冷媒量比为3:1。
[0282]
类似的,第一平面与第二平面之间的夹角大于或等于50度,且小于或等于70度,第一分液支管251的内径大于或等于5.1mm,且小于或等于6.1mm,第二分液支管252的内径大于或等于3.1mm,且小于或等于3.7mm时,均可以较好地实现第一分液支管251内冷媒量与第二分液支管252内的冷媒量比为3:1。该实施例中其他内径与夹角实现的温差和空调器的制
热能力与表2和表3中的数据相似,此处不一一赘述。
[0283]
类似的,第一平面与第二平面之间的夹角大于或等于50度,且小于或等于70度,第一分液支管251的内径大于或等于5.1mm,且小于或等于6.1mm,第二分液支管252的内径大于或等于3.1mm,且小于或等于3.7mm时,也可以较好地实现第一分液支管251内冷媒量与第二分液支管252内的冷媒量比为2:1。该实施例中其他内径与夹角实现的温差和空调器的制热能力与表2和表3中的数据相似,此处不一一赘述。可选地,第一平面与第二平面之间的夹角大于或等于50度,且小于或等于70度,第一分液支管251的内径大于或等于5.1mm,且小于或等于6.1mm,第二分液支管252的内径大于或等于3.1mm,且小于或等于3.7mm时,可以较好地实现第一分液支管251内冷媒量与第二分液支管252内的冷媒量比为2:1-3:1。
[0284]
可选地,第一平面与第二平面的夹角大于或等于30度,小于或等于60度,第一分液支管251的内径大于或等于5.1mm,且小于或等于6.1mm,第二分液支管252的内径大于或等于3.1mm,且小于或等于3.7mm。可选地,汇流管240的第二管段242向第二分液支管252侧倾斜设置。
[0285]
表21
[0286][0287][0288]
可选地,在空调器运行制热工况、换热器在作为蒸发器,且,并联的第一换热支路、第二换热支路、第三换热支路、第四换热支路和第五换热支路与第一分液支管251相连通,第六换热支路与第二分液支管252相连通时,各换热支路的出口处的冷媒温度如表21和表22所示。其中,表21为第一平面与第二平面的夹角为90度时,不同第一分液支管251和第二分液支管252内径下,第六换热支路与前五支路的最大温差以及空调器的制热能力。从表21
的数据中可以看出,第一分液支管251的内径为5.6mm,且,第二分液支管252的内径为3.36mm时,换热器的第六换热支路与前五支路的最大温差最小,为3.1℃,且,该内径下空调器的制热能力最大,为7287.6w。表22为第一分液支管251的内径为5.6mm,且,第二分液支管252的内径为3.36mm时,第一平面与第二平面的夹角为不同角度下,第六换热支路与前五支路的最大温差与空调器的制热能力。从表22中可以看出,第一平面与第二平面的夹角为45度时,第六换热支路与前五支路的最大温差最小,为1.0℃,且,该角度下,空调器的制热能力最大,为7383.7w。
[0289]
从表21和表22中的数据可以看出,当换热器中与第一分液支管251相连通的换热支路的数量为5条,与第二分液支管252相连通的换热支路的数量为1条,第一分液支管251的内径为5.6mm、第二分液支管252的内径为3.36mm,且,第一平面与第二平面之间的夹角为45度时,第六换热支路与前五支路的最大温差最小,各换热支路内冷媒的换热能力均匀性最好,且,空调器的制热能力最大。即,实现了第一分液支管251内冷媒量与第二分液支管252内的冷媒量比为5:1。
[0290]
类似的,第一平面与第二平面之间的夹角大于或等于30度,且小于或等于60度,第一分液支管251的内径大于或等于5.1mm,且小于或等于6.1mm,第二分液支管252的内径大于或等于3.1mm,且小于或等于3.7mm时,均可以较好地实现第一分液支管251内冷媒量与第二分液支管252内的冷媒量比为5:1。该实施例中其他内径与夹角实现的温差和空调器的制热能力与表21和表22中的数据相似,此处不一一赘述。
[0291]
类似的,第一平面与第二平面之间的夹角大于或等于30度,且小于或等于60度,第一分液支管251的内径大于或等于5.1mm,且小于或等于6.1mm,第二分液支管252的内径大于或等于3.1mm,且小于或等于3.7mm时,也可以较好地实现第一分液支管251内冷媒量与第二分液支管252内的冷媒量比为4:1。该实施例中其他内径与夹角实现的温差和空调器的制热能力与表21和表22中的数据相似,此处不一一赘述。可选地,第一平面与第二平面之间的夹角大于或等于30度,且小于或等于60度,第一分液支管251的内径大于或等于5.1mm,且小于或等于6.1mm,第二分液支管252的内径大于或等于3.1mm,且小于或等于3.7mm时,可以较好地实现第一分液支管251内冷媒量与第二分液支管252内的冷媒量比为4:1-5:1。
[0292]
可选地,第一平面与第二平面的夹角小于或等于10度,第一分液支管251的内径大于或等于7.1mm,且小于或等于8.1mm,第二分液支管252的内径大于或等于3.1mm,且小于或等于3.7mm。可选地,汇流管240的第二管段242向第二分液支管252侧倾斜设置。
[0293]
表23
[0294][0295]
表24
[0296][0297]
可选地,在空调器运行制热工况、换热器在作为蒸发器,且,并联的第一换热支路、第二换热支路、第三换热支路、第四换热支路、第五换热支路和第六换热支路与第一分液支管251相连通,第七换热支路与第二分液支管252相连通时,各换热支路的出口处的冷媒温度如表23和表24所示。其中,表23为第一平面与第二平面的夹角为90度时,不同第一分液支管251和第二分液支管252内径下,第七换热支路与前六支路的最大温差以及空调器的制热能力。从表23的数据中可以看出,第一分液支管251的内径为7.6mm,且,第二分液支管252的内径为3.36mm时,换热器的第七换热支路与前六支路的最大温差最小,为5.9℃,且,该内径下空调器的制热能力最大,为9268.4w。表24为第一分液支管251的内径为7.6mm,且,第二分液支管252的内径为3.36mm时,第一平面与第二平面的夹角为不同角度下,第七换热支路与前六支路的最大温差与空调器的制热能力。从表24中可以看出,第一平面与第二平面的夹角为0度时,第七换热支路与前六支路的最大温差最小,为1.5℃,且,该角度下,空调器的制热能力最大,为9544.5w。
[0298]
从表23和表24中的数据可以看出,当换热器中与第一分液支管251相连通的换热支路的数量为6条,与第二分液支管252相连通的换热支路的数量为1条,第一分液支管251的内径为7.6mm、第二分液支管252的内径为3.36mm,且,第一平面与第二平面之间的夹角为0度时,第七换热支路与前六支路的最大温差最小,各换热支路内冷媒的换热能力均匀性最好,且,空调器的制热能力最大。即,实现了第一分液支管251内冷媒量与第二分液支管252
内的冷媒量比为6:1。
[0299]
类似的,第一平面与第二平面之间的夹角小于或等于10度,第一分液支管251的内径大于或等于7.1mm,且小于或等于8.1mm,第二分液支管252的内径大于或等于3.1mm,且小于或等于3.7mm时,均可以较好地实现第一分液支管251内冷媒量与第二分液支管252内的冷媒量比为6:1。该实施例中其他内径与夹角实现的温差和空调器的制热能力与表23和表24中的数据相似,此处不一一赘述。
[0300]
类似的,第一平面与第二平面之间的夹角小于或等于10度,第一分液支管251的内径大于或等于7.1mm,且小于或等于8.1mm,第二分液支管252的内径大于或等于3.1mm,且小于或等于3.7mm时,也可以较好地实现第一分液支管251内冷媒量与第二分液支管252内的冷媒量比为7:1。该实施例中其他内径与夹角实现的温差和空调器的制热能力与表23和表24中的数据相似,此处不一一赘述。可选地,第一平面与第二平面之间的夹角小于或等于10度,第一分液支管251的内径大于或等于7.1mm,且小于或等于8.1mm,第二分液支管252的内径大于或等于3.1mm,且小于或等于3.7mm时,可以较好地实现第一分液支管251内冷媒量与第二分液支管252内的冷媒量比为6:1-7:1。
[0301]
可选地,第一平面与第二平面共平面。第一平面与第二平面共平面,可以理解为,第一平面与第二平面之间的夹角为0度。可选地,第一分液支管251的内径大于第二分液支管252的内径,且汇流管240的第二管段242向第二分液支管252侧倾斜设置,使得更多的冷媒在重力作用下流向第一分液支管251内,提高了第一分液支管251与第二分液支管252内冷媒的流量差。
[0302]
可选地,第一分液支管251的内径大于第二分液支管252的内径。第一分液支管251的内径大于第二分液支管252的内径,使得冷媒在分液器中进行了不均匀分配,流入第一分液支管251的冷媒量大于流入第二分液支管252的冷媒量。
[0303]
可选地,第二管段242偏向第二分液支管252侧设置。汇流管240的第二管段242偏向第二分液支管252侧设置,可选地,第二分液支管252的内径小于第一分液支管251的内径。通过两支管的内径差,以及第二管段242的偏向设置,进一步提高了第一分液支管251与第二分液支管252内冷媒的流量差。
[0304]
可选地,第一管段241的长度小于或等于10cm。可选地,第一管段241的长度为3cm、4cm、5cm、6cm、7cm、8cm或9cm等。第一管段241的长度较小时,由第二管段242进入第一管段241的冷媒因离心力作用而产生偏向第一分液口的趋势,进而有助于实现第一分液口的分液量大于第二分液口的分液量的需求。若第一管段241的长度大于10cm,则因流动距离过长,如上述中的冷媒因离心力偏向第一分液口的趋势减弱,甚至消失,不利于实现第一分液口的分液量大于第二分液口的分液量的需求。
[0305]
可选地,第一管段241的长度小于或等于5cm。可选地,第一管段241的长度可以为2cm、2.5cm、3cm、3.5cm、4cm、4.2cm、4.5cm或5cm等。第一管段241的长度小于或等于5cm时,由第二管段242进入第一管段241的冷媒因离心力作用而产生偏向第一分液口的趋势较为明显,更加有助于实现第一分液口的分液量大于第二分液口的分液量的需求。
[0306]
可选地,第二分液支管252的内径大于或等于3mm。可选地,第二分液支管252的内径为3mm、3.36mm、5mm、10mm、12mm等。如前述,分液支管的内径有最小值的限制,如,分液支管的内径不能低于3mm,甚至不能低于3.36mm,低于该内径的铜管实际已经成为毛细管,毛
细管具有较大的流动阻力,对冷媒的流动形成节流降压作用,进而会增大压缩机的功率,降低系统的性能;甚至导致空调器运行制热工况时,室外换热器结霜严重,影响系统的安全可靠性。本公开实施例中,第二分液支管252的内径大于或等于3mm,降低了冷媒在第二分液支管252内的流动阻力,提高了空调系统的性能。
[0307]
可选地,第一分液支管251的截面积与第二分液支管252的截面积的比值小于或等于x。其中,x为预设值。可选地,可根据与第一分液支管251和与第二分液支管252分别连通的换热支管的数量确定x。
[0308]
可选地,x的数值范围为:1.3≤x≤1.7。可选地,x的取值可以为1.4、1.5、1.6或1.7等。可选地,与第一分液支管251和第二分液支管252分别连通的换热支路的数量之比小于2。可选地,与第一分液支管251连通的换热支路的数量为3,与第二分液支管252连通的换热支路的数量为2;可选地,与第一分液支管251连通的换热支路的数量为4,与第二分液支管252连通的换热支路的数量为3;可选地,与第一分液支管251连通的换热支路的数量为5,与第二分液支管252连通的换热支路的数量为4;可选地,与第一分液支管251连通的换热支路的数量为5,与第二分液支管252连通的换热支路的数量为3,等。
[0309]
可选地,第一分液支管251的截面积与第二分液支管252的截面积的比值大于x。其中,x为预设值。可选地,x的数值范围为:1.3≤x≤1.7。可选地,x的取值可以为1.4、1.5、1.6或1.7等。可选地,与第一分液支管251和与第二分液支管252分别连通的换热支管的数量之比大于或等于2。如,与第一分液支管251和与第二分液支管252分别连通的换热支管的数量之比为2:1-7:1,如2:1、3:1、4:1、5:1、6:1或7:1等。
[0310]
可选地,第一分液支管251的截面积与第二分液支管252的截面积的比值小于或等于y。其中,y为大于x的预设值。
[0311]
可选地,y的数值范围为:2≤y≤15。可选地,y的取值可以为2、3、4、9、10、11、12、14或15等。可选地,与第一分液支管251和与第二分液支管252分别连通的换热支管的数量之比大于或等于2。如,与第一分液支管251和与第二分液支管252分别连通的换热支管的数量之比为2:1-7:1,如2:1、3:1、4:1、5:1、6:1或7:1等。可选地,如前述,两分液支管的内径最低不得低于3mm,甚至3.36mm,且,目前空调器的换热器采用的铜管内径一般不超过10.6mm。可选地,为了更好的制备该分液器,第一分液支管251的截面积与第二分液支管252的截面积之比小于或等于2。
[0312]
可选地,y的数值范围为:10≤y≤12。可选地,y的取值可以为10、11或12等。
[0313]
可选地,第一管段241偏向第二分液支管252侧设置。
[0314]
可选地,第一管段241与壳体之间的夹角α为30~75度。可选地,第一管段241与壳体之间的夹角α为30度、35度、40度、45度、50度、60度、70度或75度。第一管段241与壳体之间的夹角为50度时,冷媒在分液器内流动的仿真效果图如图22所示。从图22中可以看出,当第一管段241与壳体之间的夹角为50度时,流入第一分液支管251的冷媒量远大于流入第二分液支管252的冷媒量,冷媒在第一分液支管251和第二分液支管252之间的不均匀分配的效果较好。第一管段241与壳体之间的夹角为80度时,冷媒在分液器内流动的仿真效果图如图23所示。从图23中可以看出,当第一管段241与壳体之间的夹角为80度时,流入第一分液支管251的冷媒量与流入第二分液支管252的冷媒量差异不大。
[0315]
可选地,第一管段241与壳体之间的夹角α为45~60度。如图14所示。可选地,第一
管段241与壳体之间的夹角α为45度、50度、55度或60度。
[0316]
可选地,汇流管240的内径大于第一分液支管251的内径。如图15所示。可选地,汇流管240的内径大于第一分液支管251的内径,第一分液支管251的内径大于第二分液支管252的内径。
[0317]
可选地,第一分支腔体235与汇流腔体234连通处的第一面积大于第二分支腔体236与汇流腔体234连通处的第二面积。这样,可以使更多的冷媒经第一分支腔体235流入第一分液支管251内,提高了流入两个分液支管的冷媒量的差异。
[0318]
可选地,第一面积与所述第二面积的比值小于或等于z。其中,z为预设值。
[0319]
可选地,z的数值范围为:2≤z≤15。可选地,z的取值可以为2、3、5、8、9、10或12等。可选地,与第一分液支管251和与第二分液支管252分别连通的换热支管的数量之比大于或等于2。如,与第一分液支管251和与第二分液支管252分别连通的换热支管的数量之比为2:1-7:1,如2:1、3:1、4:1、5:1、6:1或7:1等。可选地,如前述,两分液支管的内径最低不得低于3mm,甚至3.36mm,且,目前空调器的换热器采用的铜管内径一般不超过10.6mm。可选地,为了更好的制备该分液器,第一分液支管251的截面积与第二分液支管252的截面积之比小于或等于2。
[0320]
可选地,z的数值范围为:10≤z≤12。可选地,z的取值可以为10、11或12等。
[0321]
可选地,汇流管240与第一分支腔体235的连通面积大于汇流管240与第二分支腔体236的连通面积。这样,可以使更多的冷媒经第一分支腔体235流入第一分液支管251内,提高了流入两个分液支管的冷媒量的差异。
[0322]
可选地,汇流管240的横截面包括直线段。汇流管240的横截面包括一个或多个直线段,可选地,直线段设置于与第二分支腔体236相连通处。
[0323]
可选地,汇流管240为d型管或三角型管,如图20所示。可选地,d型管的直线段设置于与第二分支腔体236相连通处。
[0324]
可选地,汇流管240朝向第二分支腔体236的内侧设置有挡流部。挡流部的设置,阻挡了冷媒向第二分支腔体236内的流动,进而减小了流向第二分液支管252的冷媒量。
[0325]
可选地,第一分液支管251的轴线与分液腔的中心线非平行。可以理解为,第一分液支管251向一侧偏离,减小了向第一分液支管251内的冷媒的流动量。
[0326]
可选地,第二分液支管252的轴线与分液腔的中心线非平行。可以理解为,第二分液支管252向一侧偏离,减小了向第二分液支管252内的冷媒的流动量,如图18所示。
[0327]
可选地,第一分液支管251的轴线与分液腔的中心线形成第一夹角,第二分液支管252的轴线与分液腔的中心线形成第二夹角,第一夹角与第二夹角的角度不相等。第一夹角与第二夹角不相等,使得冷媒流向第一分液支管251和第二分液支管252的量不同。
[0328]
可选地,第一分液支管251伸入分液腔的长度小于第二分液支管252伸入分液腔的长度。如图19所示。第二分液支管252伸入分液腔内的部分较长,冷媒向第二分液支管252内的流动量减少,进而使得冷媒流向第一分液支管251和第二分液支管252的量不同。冷媒在第一分液支管251和第二分液支管252内的流动分配示意图如图24所示。
[0329]
可选地,汇流管240的轴线与壳体的中心线相偏离。这样,汇流管240偏向壳体的一侧设置,进而使得冷媒流入第一分液支管251和第二分液支管252内的流量不同。
[0330]
可选地,汇流管240的第一轴线在第一分液支管251的第二轴线和第二分液支管
252的第三轴线之间。第一轴线在第二轴线和第三轴线之间,使得汇流管240内的冷媒可以同时向第一分液支管251和第二分液支管252分配。
[0331]
可选地,第一轴线、第二轴线和第三轴线在同一平面。这样,提高了冷媒向第一分液支管251和第二分液支管252分配比例的准确性。
[0332]
可选地,第一分液支管251的内径大于第二分液支管252的内径。其中,汇流管240的轴线偏向所述第一分液支管251侧。这样,使得冷媒流向第一分液支管251内的冷媒流量大于第二分液支管252内的冷媒流量。
[0333]
可选地,分液器设置于第一冷媒出入口111处,分液器的汇流管240与第一冷媒出入口111连通,且,第一分液支管251连通的换热支路的数量与第二分液支管252连通的换热支路的数量不相同。
[0334]
可选地,与第一分液支管251连通的换热支路的数量大于与第二分液支管252连通的换热支路的数量;或者,与第一分液支管连通的换热支管的数量和与第二分液支管连通的换热支管的数量之比大于1,且小于2;或者,与第一分液支管连通的换热支管的数量和与第二分液支管连通的换热支管的数量之比大于或等于2。
[0335]
可选地,与第一分液器211的第一分液支管251连通的换热支路的数量大于或等于2条。与第一分液器211的第二分液支管252连通的换热支路的数量为1、2或3条。
[0336]
可选地,如图3所示,换热器包括第一换热支路121、第二换热支路122、第四换热支路124、第一旁通管路151和第一单向阀311。第一换热支路121的一端与第二分液器212连接;第二换热支路122的一端与第二分液器212连接;第四换热支路124的一端与第一分液器211连接;第一旁通管路151连接第一分液器211和第二分液器212,第一单向阀311设置于第一旁通管路151,且第一单向阀311的导通方向限定为从第一分液器211流向第二分液器212。
[0337]
可选地,换热器包括集气管、第一换热支路121、第二换热支路122、第三换热支路123、第四换热支路124、第一旁通管路151、第二旁通管路152、第一单向阀311和第二单向阀312。第一换热支路121的第一端与集气管的第一管口连接,第二端与第二分液器212连接;第二换热支路122的第一端与集气管的第二管口连接,第二端与第二分液器212连接;第三换热支路123的第一端与第三分液器213连接,第二端与第一分液器211连接;第四换热支路124的第一端与第三分液器213连接,第二端与第一分液器211连接;第一旁通管路151连接第一分液器211和第二分液器212;第二旁通管路152连接第三分液器213和集气管;第一单向阀311设置于第一旁通管路151,且第一单向阀311的导通方向限定为从第一分液器211流向第二分液器212;第二单向阀312,设置于第二旁通管路152,且第二单向阀312的导通方向限定为从第三分液器213流向集气管。
[0338]
可选地,制冷流向下,冷媒在换热器内的流动路径为:冷媒经集气管进入,分流为两路,第一路流经第一换热支路121,第二路流经第二换热支路122,两路在第二分液器212处汇流,流经第三换热支路123,经第三分液器213,流经第四换热支路124后流出换热器。可见,本公开实施例提供的换热器,在制冷流向下,由于第一单向阀311和第二单向阀312的设置,增长了制冷流向下冷媒路径的长度,延长了冷媒在换热器内的换热时间,使得冷媒能够充分与周围环境进行热交换,并且,冷媒流经的分路较少,流速较快,提高了换热器的换热效果,进而提高了空调的制冷效率。
[0339]
可选地,在制热流向下,冷媒分流成四路,第一分路经第一单向阀311、第二分液器212,流经第一换热支路121,经集气管后流出;第二分路经第一单向阀311、第二分液器212,流经第二换热支路122,经集气管后流出;第三分路经第一单向阀311、第二分液器212,流经第三换热支路123,经第三分液器213、第二单向阀312、集气管后流出;第四分路流经第四换热支路124,经第三分液器213、第二单向阀312、集气管后流出。可见本公开实施例提供的换热器,由于第一单向阀311和第二单向阀312的设置,第一换热支路121、第二换热支路122第三换热支路123和第四换热支路124并联连通,此时,冷媒流经的分路较多,避免了流路过长所导致的压损问题,提高了换热器的换热效率,进而提高了空调的制热效率。
[0340]
可选地,与第一分液器211的第一分液支管251连通的换热支路的数量为2、3或4条。与第一分液器211的第二分液支管252连通的换热支路的数量为1、2或3条。可选地,与第一分液器211的第一分液支管251和第二分液支管252分别连通的换热支路的数量之比小于2。
[0341]
考虑分液器的分液支管需要有一定的插入深度,同时分液支管与分液器的壳壁要有一定距离以不阻碍冷媒分流;制冷工况下,冷媒从分液支管中流入,折弯180
°
再从其他分液支管中流出,此时需要保证在分液腔中冷媒循环不受腔体底部影响,因此分液器高度不能过小,若分液腔长径比过小则分液器相应直径过大,室外机管路空间难以布置,二者的限定条件决定了分液器长径比下限不能过小。因此结合图25所示,可选地,分液腔230的长径比l1/d≥a1,其中a1为第一预设比例值。
[0342]
可选地,a1的取值范围为0.3~0.8。
[0343]
对于本公开实施例中的分液器,一方面,分液支管需插入分液器一定深度,具体深度视分液器实际大小而定;以实施例的额定制冷量3.5kw的机型为例,插入深度一般至少要达到0.2r;另一方面,制冷工况下,冷媒从分液支管中流入,折弯180
°
再从最后一根分液支管中流出,分液支管下端到分液腔底部需满足一定的长度,一般至少达到1r左右,则长径比至少约为1.2r左右,同时考虑到不同容量、不同冷媒类型的机组可能存在一定的差异,l/d的下限值取0.3~0.8。
[0344]
在本实施例中,以三路分流形式分离,分别测试了采用上述长径比下限限定的分液器以及超出该长径比下限的分液器的性能数据,测试条件为室内工况27℃/19℃,室外工况35℃/24℃,空调器其他运行状态相同,测试数据如下表25所示:
[0345]
表25
[0346]
长径比能力功率能效0.23379.8w888.7w3.800.53436.3w863.7w3.98
[0347]
通过上表可以看出,在长径比小于下限值的最小值0.3的情况下,空调器在功率更大的情况下反而能效更低,而在长径比大于下限值的最小值0.3的情况下,空调器能够实现更为优异的运行能效。
[0348]
采用本实施例限定的分液腔的长径比下限限定,能够避免分液器内部堆积冷媒过多、影响空调器冷媒循环量的问题,同时还可以有效降低功率损失。
[0349]
可选地,分液腔230的长度l1≥b1,其中,b1是第一长度阈值。
[0350]
可选地,b1的取值范围是1.4~2cm。
[0351]
可选地,分液器的直径d为1.7~7cm。
[0352]
在又一些实施例中,通常分液器高度预留空间在10cm以内,同时分液器直径一般为2cm以上,因此二者的限定条件决定了分液器长径比一般在5以内;此外,我们的分液器为了实现储液要保证有一定的容积,按相同的高度分液器越细长,容积越小,还有一个影响因素,当分液器过于细长后,各个支路管口距离很近,容易互相影响最终对分流产生影响,在一个细长的空间冷媒从上方流入再从上方流出,这个流动过程中也会受到不同方向的影响。
[0353]
在换热器作为冷凝器使用时,分液器需要起到储液功能,当分液器高度一定时,长径比越大,分液器直径越小,分液腔容积越小,储液量越少;长径比越大,则意味着分液器越细长,各个分液支路之间距离越近,容易互相影响并影响最终分流效果;同时冷媒从分液支管中流入,折弯180
°
再从其他分液支管中流出,如果分液器过于细长,则该流动过程中会受到分液腔侧壁的影响;而当分液器直径一定时,长径比越大,则分配器高度越大,在管组中占用空间过大,难以兼容。因此综合考虑,分液腔长径比上限a2不能过大,分液腔230的长径比l1/d≤a2。a2为大于a1的第二预设比例值。
[0354]
可选的,a2的取值范围为1~3。
[0355]
又一可选的,也即
[0356]
可选地,a2的取值范围为1~3。
[0357]
示例性的,在本实施例中,以四路分流形式分离,分别测试了采用上述长径比下限限定的分液器以及超出该长径比下限的分液器的性能数据,测试条件为室内工况27℃/19℃,室外工况35℃/24℃,空调器其他运行状态相同,测试数据如下表26所示:
[0358]
表26
[0359]
长径比能力功率能效2.83421.6w865.1w3.964.33387.1w905.7w3.74
[0360]
通过上表可以看出,在长径比大于上限值的最大值3的情况下,空调器在功率更大的情况下反而能效更低,而在长径比小于上限值的最大值3的情况下,空调器能够实现更为优异的运行能效。
[0361]
可选地,分液腔230的长度l1≤b2,其中b2是大于b1的第二长度阈值。
[0362]
可选地,b2的取值范围是5~6cm。
[0363]
可选地,分液器的直径d为1.7~7cm。
[0364]
可选地,结合图26至28所示,分液腔230包括连通汇流管240的第一储液腔231和连通第一分液口、第二分液口的第二储液腔232。
[0365]
可选地,第一储液腔231和第二储液腔232通过口径收窄的储液腔通道233相连通。
[0366]
采用上述方案设计的有益效果在于:在换热器作为冷凝器使用时,此时冷媒在此处为气液两相态、占用体积较大,分液器的第二储液腔兼具汇流分流作用,有利于冷媒能够180
°
折返,减少压力损失;第一储液腔位于第二储液腔的下方,在重力作用下,液态冷媒聚集在底部,起到储液效果,又由于中间通道较窄,减少了第二储液腔中的冷媒的冲击,液态冷媒状态稳定,且能够减小对与第一分液腔连接的单向阀的冲击,密封性更好;在换热器作
为蒸发器使用时,冷媒反向流动,能够使得更多制冷剂参与循环,满足冷媒循环需求,同时第一储液腔可以兼具消音器作用,消除冷媒流动噪音。
[0367]
可选地,第一储液腔231大于或等于第二储液腔232的容积,有利于存储较多的液态冷媒,以提高储液量;同时第一储液腔采用更大容积形式设置,也能够提高对于冷媒流动的缓冲作用,以及作为“消音器”使用时利用更大的空腔进行消音。
[0368]
可选地,第一储液腔231的容积v1=c1*q,其中v1是第一储液腔的容积,单位以cm3计,q是额定制冷量,单位以kw计。
[0369]
可选地,c1取值范围是3~10。
[0370]
可选地,第二储液腔232的容积v2=c2*q,其中v2是第一储液腔的容积,单位以cm3计,q是额定制冷量,单位以kw计。
[0371]
可选地,c2取值范围是1.5~5。
[0372]
在本实施例中,在分液器储液的情况下,第一储液腔231主要容置液态冷媒,其冷媒密度较大,同样容积下储存的冷媒质量较高;第二储液腔232主要容置气液混合态冷媒,其冷媒密度较小,同样容积下储存的冷媒质量较低;为满足前述分液器储液需要达到充灌总量的5%左右的容量要求,因此根据测试时空调器以不同负荷运行过程中两储液腔各自冷媒密度的变化情况,分别设定第一储液腔和第二储液腔的容积范围比例,以利用第一储液腔231容置更多质量的冷媒,进而使得第一储液腔231和第二储液腔232的冷媒存储量之和能够满足上述容量要求。
[0373]
可选地,储液腔通道233包括一圆管段,圆管段的两端口被构造为口径向外逐渐扩大的锥形口,锥形口设计能够方便冷媒在储液腔通道和储液腔之间更加平滑地流动,降低两者流动过程中因流动面积变化造成的扰流等问题出现。
[0374]
可选地,储液腔通道233的长度取值小于或等于10mm。
[0375]
可选地,储液腔通道233的管径取值大于或等于汇流管240的管径,在本实施例中,能够降低在换热器作为蒸发器使用时,冷媒流经汇流管、分液器的分液过程中的流动阻力,加快冷媒流动,以保证换热器的换热性能。
[0376]
示例性的,在本实施例中,以额定制冷量为7.2kw的空调器为例,分别测试了采用普通分液器和采用本技术所要保护的分液器,在额定制冷以及额定制热两种情况下的性能数据,测试数据对比如下表27所示:
[0377]
表27
[0378][0379]
通过上述数据可以看出,在额定制冷工况下,本技术空调器在实测功率更低的情况下,所能达到的能效cop反而要高于采用普通分液器的空调器的测试数据。
[0380]
可选地,结合图29所示,分液腔230内设置有网状件260,用于对流经分液腔230的冷媒进行过滤或者气液离散。
[0381]
在本实施例中,结合图30所示,网状件260主要作用为打碎较大液滴和气泡形成扰
流区,而打碎后混合的气液两相冷媒需要在网状结构上部进行混合,从而保证进入支管的冷媒分配均匀,使得经汇流管流入的气液两相不均的冷媒流入分液支管时分配均匀。
[0382]
可选地,网状件260设置于分液腔高度的1/4~3/4位置。
[0383]
可选地,网状件260设置于分液器高度的1/2位置。
[0384]
在一些实施例中,网状件260为垂直于所述分液腔230轴线的平面网状结构。在又一些实施例中,网状件260为中心凹向分液口的弧形网状结构。
[0385]
下表28示出的是金属丝网的几种孔隙率及对应的参数,
[0386]
表28
[0387][0388]
如上表所示,孔数越少,则孔径越大,越难以起到打碎大液滴和气泡的作用,而孔数过多则在该处压降过大,不利于冷媒流动。因此选择60~120目金属丝网。
[0389]
同时通过对相同规格分液器中内置不同孔数、丝径的网状件进行仿真分析,仿真测试数据如图31和32所示,其中流经80、100目网状件的流体不均匀度、不稳定度均保持在较低水平,且低于文丘里分配器,因此优选的网状件的孔隙率为100目、丝径为0.1mm,该网状件的不均匀度、不稳定度均为最低值。
[0390]
结合图33、34a、34b所示,一种可选的单向阀300,包括阀壳320和阀芯330。
[0391]
在实施例中,阀壳320包括阀出口322、阀进口321以及形成于阀壳内部且连通所述阀出口322、阀进口321的阀通道323。阀芯330沿轴向可移动地设置于阀通道内,进而实现单向阀的导通/阻断切换。
[0392]
结合图35所示,设定阀芯330的两端点之间的长度为l2,阀芯330对应阀出口322一端的端面的等效直径为d。
[0393]
则可选地,l2/d的比值大于或等于e1。e1为第一预设比值。通过对单向阀阀芯的长径比设置有一下限值,以降低长径比过小所导致的阀芯与阀壳内壁振动碰撞、噪音等情况出现,采用本实施例所限定的单向阀,其能够使得冷媒流经单向阀过程中阀芯能够保持较好的平稳性。
[0394]
可选地,e1的取值范围是0.5~1。
[0395]
又一可选地,l2/d的比值小于或等于e2。e2为大于e1的第二预设比值。通过对单向阀阀芯的长径比设置有一上限值,同样也能够起到降低壁振动碰撞、噪音的作用,以利于阀芯能够保持较好的平稳性。
[0396]
可选地,e2的取值范围是1.5~2。
[0397]
示例性的,对于同一种空调器,在相同测试条件下,分别测试了采用普通单向阀和采用本技术所要保护的单向阀的噪音数据,测试条件为阀芯下口通入0.05mpa氮气,上口通大气,距离阀体1m处测试噪音值;测试数据如下表29所示:
[0398]
表29
[0399]
e值噪音测试结果0.45噪音值33.3db(a),有轻微阀芯碰撞定位销的异常音0.5噪音值33.3db(a),无异常音1.16噪音值33.1db(a),无杂音2噪音值35.3db(a),无异常音2.32噪音值35.8db(a),有阀芯碰撞管壁的异常音
[0400]
通过上述数据对比可知,在阀芯的长径比l2/d(e=0.45)小于e1或者l2/d(e=2.32)大于e2的情况下,都存在轻微阀芯碰撞定位销的异常音,噪音测试结果较差,而在阀芯的长径比处于e1和e2范围之内的情况下,测得的噪音较低,能够实现低噪音运行。
[0401]
可选地,结合图36~37e所示,阀芯330的对应阀出口322的第一端构造有空心结构。阀芯端部设置的空心结构,可以增大过热冷媒与阀芯端面的接触面积,增大阀芯受力面积;同时该空心结构是围绕阀芯中心线成型的对称设计,通过在空心结构中储存满冷媒,能够提升阀芯关闭的稳定性
[0402]
可选地,结合图36、37a和37b所示,空心结构包括自第一端的端面沿轴向内凹形成的空心槽335。
[0403]
可选地,空心槽335的径向截面呈圆形或菱形或三角形。
[0404]
可选地,空心槽335的槽底被构造为平面状或内凹锥形。
[0405]
在一些可选实施例中,空心槽335的设计参数满足以下表30示出的要求:
[0406]
表30
[0407][0408][0409]
其中,d=d2/d1,d2为空心槽等效直径,d1为阀芯等效直径;h=h2/h1,h2为空心槽等效长度,h1为阀芯等效长度;v=v2/v1,v2为空心槽体积,v1为阀芯实体体积。
[0410]
在本实施例中,对于同一种空调器,在相同测试条件下,分别测试了现有技术中的两种阀芯形式的单向阀(梅花状阀芯、正方体实心阀芯)以及采用本技术空心槽设计的单向阀的冷媒泄漏量数据,测试条件为通入0.02mpa氮气,测试数据如下表31所示:
[0411]
表31
[0412]
阀芯形式梅花状阀芯正方体实心阀芯带空心槽的阀芯冷媒泄漏量257ml/min143ml/min91ml/min
[0413]
通过上述数据对比可以看出,本技术所采用的带空心槽的阀芯的冷媒泄露量更低,密封效果更好。
[0414]
在又一些可选的实施例中,结合图37c所示,空心结构包括形成于阀芯330内部、封闭的空心腔336。
[0415]
可选的,如图37c所示,阀芯330主体包括靠近阀出口侧的柱形段以及靠近阀进口侧的锥形段,其中空心腔336主要是成型于柱形段部分。
[0416]
空心腔336能够起到减轻阀芯柱形段重量的作用,使得阀芯整体的重心下移,重力能够更多地集中在锥形段,有利于阀芯密闭过程中保持阀芯的稳定。
[0417]
可选的,阀芯330的柱形段的截面呈方形或圆形。
[0418]
可选地,空心腔336的径向截面呈圆形。其中,空心腔的半径与阀芯半径之比的取值范围为1/4~3/4。
[0419]
可选的,空心腔的轴向长度与阀芯柱形段的轴向长度之比的取值范围为1/5~4/5。
[0420]
在又一些可选实施例中,结合图37d和37e所示,阀芯330包括阀芯主体333以及稳定块334,其中,阀芯主体333的材质密度小于稳定块334的材质密度。
[0421]
可选地,稳定块334被构造为作为阀芯主体333对应阀进口321第二端的锥形端部,如图37d,或者被封装于所述阀芯主体333内部且靠近所述第二端设置,如图37e。
[0422]
在本实施例中,由于稳定块334的密度更大,因此能够起到加重锥形端部的作用,使得阀芯整体的重心下移,重力能够更多地集中在锥形段,有利于阀芯密闭过程中保持阀芯的稳定。
[0423]
可选地,稳定块334的材质包括但不限于铁或铜。
[0424]
可选地,阀芯主体333的材质包括但不限于铝或塑料。
[0425]
以上描述和附图充分地示出了本公开的实施例,以使本领域的技术人员能够实践它们。其他实施例可以包括结构的以及其他的改变。实施例仅代表可能的变化。除非明确要求,否则单独的部件和功能是可选的,并且操作的顺序可以变化。一些实施例的部分和特征可以被包括在或替换其他实施例的部分和特征。本公开的实施例并不局限于上面已经描述并在附图中示出的结构,并且可以在不脱离其范围进行各种修改和改变。本公开的范围仅由所附的权利要求来限制。
再多了解一些

本文用于企业家、创业者技术爱好者查询,结果仅供参考。

发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表

相关文献