一种残膜回收机防缠绕挑膜装置的制 一种秧草收获机用电力驱动行走机构

基于MR-CNN算法的生态生物识别方法与流程

2022-06-01 05:19:12 来源:中国专利 TAG:

基于mr-cnn算法的生态生物识别方法
技术领域
1.本发明涉及生物识别技术领域,尤其涉及基于mr-cnn算法的生态生物识别方法。


背景技术:

2.水生生物群落与水环境有着错综复杂的相互关系,对水质变化起着重要作用。不同种类的水生生物对水体污染的适应能力不同,有的种类只适于在清洁水中生活,被称为清水生物(或寡污生物)。而有些水生生物则可以生活在污水中,被称为污水生物。水生生物的存亡标志着水质变化程度,因此生物成为水体污化的指标,通过水生生物的调查,可以评价水体被污染的状况。有许多水生生物对水中毒物很敏感,也可以通过水生生物毒性实验结果来判断水质污染程度。因此,需要对生态生物进行识别。
3.现有生物识别过程中的深度卷积神经网络模型存在的网络结构复杂、计算量较大等问题,从而无法在实际中有较广泛的应用。


技术实现要素:

4.基于背景技术存在的技术问题,本发明提出了基于mr-cnn算法的生态生物识别方法。
5.本发明提出的基于mr-cnn算法的生态生物识别方法,包括如下步骤:
6.s1发起生态生物识别请求,根据请求在生态环境中采集生物图像数据;
7.s2对采集的生物图像数据进行预处理,得到预处理后的生物图像数据;
8.s3通过mr-cnn算法对预处理后的生物图像数据进行目标检测;
9.s31获取预处理后的生物图像,将生物图像平均裁剪成四个方向的子区域,同时在生物图像上取与四个子区域图像尺寸相同的中心区域,分别标记为生物图像的左上方分块lt、右上方分块rt、左下方分块lb、右下方分块rb和中心区域c;
10.s32对生物图像计算卷积,同时计算批量归一化后得到特征图rg;
11.s33对五个小分块分别计算卷积,计算批量归一化后得到特征图rlt、rrt、rlb、rrb和rc;
12.s34将特征图rg、rlt、rrt、rlb、rrb和rc进行级联;
13.s35把级联后输出的特征图作为下一个卷积层的输入,且计算卷积,同时计算批量归一化后得到特征图;
14.s36将上一步得到的特征图作为全局平均池化层的输入,利用softmax分类器得到图像的分类结果;
15.s37用交叉熵计算分类结果和标签的差异,通过卷积神经网络模型专用的反向传播算法调节并更新参数kij,直到损失函数收敛于一个较小的值,训练完毕;
16.s38输入测试集,利用训练得到的网络对测试图像进行分类;
17.s4将检测后的生物图像与图像信息匹配,进行生态生物识别。
18.优选的,所述步骤s31先把生物图像输入mr-cnn模块一与不同尺寸的滤波器进行
卷积操作,各分块图像分别输入mr-cnn模块二进行卷积操作。
19.优选的,所述滤波器的尺寸先采用3
×
3,通过滤波器提取各分块图像的上下文特征信息,再使用1
×
1的滤波器保持特征图尺度不变的前提下大幅增加非线性特性,使网络能提取到更有鲁棒性的特征。
20.优选的,所述生物图像和各分块图像进行卷积操作后,然后对原始图像和各分块卷积后的特征图级联后再输入mr-cnn模块三,以一种信息补充的方式学习到图像的上下文交互特征,其中模块三采用两层3
×
3滤波器加一层1
×
1一层滤波器。
21.优选的,所述生物图像与滤波器进行卷积后通过一个激活函数,得到输出特征图,公式为:
[0022][0023]
其中:上标表示所在的层数;*为卷积操作;表示卷积后第j个神经元的输出;表示第l层第i个神经元,即输入数据;表示滤波器;表示偏置;mj表示选择的输入特征图的集合。
[0024]
优选的,所述步骤s3的mr-cnn在每个卷积层之后都加上一个批量归一化层,减少了初始化的强依赖性的同时,改善了整个网络的梯度流,使网络具有更好的鲁棒性,批量归一化公式如下:
[0025][0026][0027][0028]
其中:b={x1,x2

,xm}表示m个小批量输入,μb表示小批量均值,表示小批量方差,γ,β表示需要学习的超参数,ξ表示小批量方差的一个常量。
[0029]
优选的,所述步骤s3的mr-cnn选择swish函数作为网络模型的激活函数以提高图像的分类精确率。它的数学表达式为:
[0030]
f(x)=x
·
σ(x)
[0031]
σ(x)=1/(1 exp(-x))
ꢀꢀꢀ
(6)1
[0032]
其中σ(x)为sigmoid函数。
[0033]
优选的,所述步骤s2采用图像归一法和图像增强法对采集的生物图像数据进行预处理。
[0034]
本发明中,所述基于mr-cnn算法的生态生物识别方法,通过mr-cnn算法的设置,模型首先对图像进行多区域划分,然后用标准卷积操作得到图像语义上下文信息,接着利用多区域的输入来学习上下文交互特征,通过把全局区域和多个分区域的空间信息级联再输
入卷积层,以一种信息补充的方式提取图像的上下文特征信息,最后通过softmax函数对图像进行分类,结构简单,参数量较少,且多区域特征融合上下文信息建模比单区域特征建模具有更好的鲁棒性和更高的分类精度。
附图说明
[0035]
图1为本发明提出的基于mr-cnn算法的生态生物识别方法的流程图;
[0036]
图2为本发明提出的基于mr-cnn算法的生态生物识别方法的mr-cnn检测流程图。
具体实施方式
[0037]
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。
[0038]
参照图1-2,基于mr-cnn算法的生态生物识别方法,包括如下步骤:
[0039]
s1发起生态生物识别请求,根据请求在生态环境中采集生物图像数据;
[0040]
s2对采集的生物图像数据进行预处理,得到预处理后的生物图像数据;
[0041]
s3通过mr-cnn算法对预处理后的生物图像数据进行目标检测;
[0042]
s31获取预处理后的生物图像,将生物图像平均裁剪成四个方向的子区域,同时在生物图像上取与四个子区域图像尺寸相同的中心区域,分别标记为生物图像的左上方分块lt、右上方分块rt、左下方分块lb、右下方分块rb和中心区域c;
[0043]
s32对生物图像计算卷积,同时计算批量归一化后得到特征图rg;
[0044]
s33对五个小分块分别计算卷积,计算批量归一化后得到特征图rlt、rrt、rlb、rrb和rc;
[0045]
s34将特征图rg、rlt、rrt、rlb、rrb和rc进行级联;
[0046]
s35把级联后输出的特征图作为下一个卷积层的输入,且计算卷积,同时计算批量归一化后得到特征图;
[0047]
s36将上一步得到的特征图作为全局平均池化层的输入,利用softmax分类器得到图像的分类结果;
[0048]
s37用交叉熵计算分类结果和标签的差异,通过卷积神经网络模型专用的反向传播算法调节并更新参数kij,直到损失函数收敛于一个较小的值,训练完毕;
[0049]
s38输入测试集,利用训练得到的网络对测试图像进行分类;
[0050]
s4将检测后的生物图像与图像信息匹配,进行生态生物识别。
[0051]
本发明中,步骤s31先把生物图像输入mr-cnn模块一与不同尺寸的滤波器进行卷积操作,各分块图像分别输入mr-cnn模块二进行卷积操作。
[0052]
本发明中,滤波器的尺寸先采用3
×
3,通过滤波器提取各分块图像的上下文特征信息,再使用1
×
1的滤波器保持特征图尺度不变的前提下大幅增加非线性特性,使网络能提取到更有鲁棒性的特征。
[0053]
本发明中,生物图像和各分块图像进行卷积操作后,然后对原始图像和各分块卷积后的特征图级联后再输入mr-cnn模块三,以一种信息补充的方式学习到图像的上下文交互特征,其中模块三采用两层3
×
3滤波器加一层1
×
1一层滤波器。
[0054]
本发明中,生物图像与滤波器进行卷积后通过一个激活函数,得到输出特征图,公
式为:
[0055][0056]
其中:上标表示所在的层数;*为卷积操作;表示卷积后第j个神经元的输出;表示第1层第i个神经元,即输入数据;表示滤波器;表示偏置;mj表示选择的输入特征图的集合。
[0057]
本发明中,步骤s3的mr-cnn在每个卷积层之后都加上一个批量归一化层,减少了初始化的强依赖性的同时,改善了整个网络的梯度流,使网络具有更好的鲁棒性,批量归一化公式如下:
[0058][0059][0060][0061]
其中:b={x1,x2

,xm}表示m个小批量输入,μb表示小批量均值,表示小批量方差,γ,β表示需要学习的超参数,ξ表示小批量方差的一个常量。
[0062]
本发明中,步骤s3的mr-cnn选择swish函数作为网络模型的激活函数以提高图像的分类精确率。它的数学表达式为:
[0063]
f(x)=x
·
σ(x)
[0064]
σ(x)=1/(1 exp(-x))
ꢀꢀꢀ
(6)1
[0065]
其中σ(x)为sigmoid函数。
[0066]
本发明中,步骤s2采用图像归一法和图像增强法对采集的生物图像数据进行预处理。
[0067]
本发明:发起生态生物识别请求,根据请求在生态环境中采集生物图像数据;对采集的生物图像数据进行预处理,得到预处理后的生物图像数据;通过mr-cnn算法对预处理后的生物图像数据进行目标检测;获取预处理后的生物图像,将生物图像平均裁剪成四个方向的子区域,同时在生物图像上取与四个子区域图像尺寸相同的中心区域,分别标记为生物图像的左上方分块lt、右上方分块rt、左下方分块lb、右下方分块rb和中心区域c;对生物图像计算卷积,同时计算批量归一化后得到特征图rg;对五个小分块分别计算卷积,计算批量归一化后得到特征图rlt、rrt、rlb、rrb和rc;将特征图rg、rlt、rrt、rlb、rrb和rc进行级联;把级联后输出的特征图作为下一个卷积层的输入,且计算卷积,同时计算批量归一化后得到特征图;将上一步得到的特征图作为全局平均池化层的输入,利用softmax分类器得到图像的分类结果;用交叉熵计算分类结果和标签的差异,通过卷积神经网络模型专用的
反向传播算法调节并更新参数kij,直到损失函数收敛于一个较小的值,训练完毕;输入测试集,利用训练得到的网络对测试图像进行分类;将检测后的生物图像与图像信息匹配,进行生态生物识别。
[0068]
以上所述,仅为本发明较佳的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,根据本发明的技术方案及其发明构思加以等同替换或改变,都应涵盖在本发明的保护范围之内。
再多了解一些

本文用于企业家、创业者技术爱好者查询,结果仅供参考。

发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表

相关文献