一种残膜回收机防缠绕挑膜装置的制 一种秧草收获机用电力驱动行走机构

用于临床决策支持的途径可视化的制作方法

2022-05-26 20:35:37 来源:中国专利 TAG:

用于临床决策支持的途径可视化
1.本技术是申请日为2013年3月27日、发明名称为“用于临床决策支持的途径可视化”的专利申请201380018494.x的分案申请。
技术领域
2.本发明申请具体应用于临床决策支持系统。然而,应当意识到,描述的技术也可以适用于其他诊断系统、其他医学方案或其他临床技术。


背景技术:

3.肿瘤学中的诊断和治疗决策很大程度上基于基础生物学。理解疾病的机理在癌症研究中起重要作用,但是也可以帮助临床医师做出决策并且跟踪疾病的发展。
4.当前,下一代测序正接近于用来提供以前不能被临床医师访问以用于对特定疾病的诊断和预后的信息的革命。这种信息的深度和解析度两者创建了大量的数据。以前经研究的分子特征典型地并不明确地捕捉基础细胞机理(途径),并且因此它们解释真正根本原因的能力和创建对如何处置患者的理解的能力被限制在可用治疗选择的领域内。生物学途径是呈现这种信息的直观方式。已有的方法集中在计算如何在特定的临床问题的背景中对途径和它们的反常进行评级。
5.在当前实践中,基于临床病理学数据,响应于治疗或选择治疗来将诊断出具有癌症的患者分成(例如根据癌症发展或复发的时间)确定预后的组,等等,但是分组的基础典型地被呈现为标记或临床数据的表格或列表。再者,通过对特征的集合的统计选择基于高通量分子数据来对患者分级导致只有单个评分或基因水平的列表,其中,所述特征联合地在患者的临床相关的等级之间做出区分。另外,这些方法并不明确地捕捉基因调节的元素如何可以超越临床准则中已经提出的相当简单的基于规则的联系来影响医生尝试评估的基础状况。然而,对于清楚地不落在临床准则的这些边界内的患者,存在可以从由下一代测序生成的大量数据中得出的很少的信息。
6.本技术涉及新的并且经改进的系统和方法,所述系统和方法帮助视觉表示基因活性水平、途径和交互作用,以便于向临床医生提供治疗推荐,这克服了以上提及的难题和其他。


技术实现要素:

7.根据一方面,一种使用定义与基因表达、基因活性水平和信息流相关联的视觉元素的视觉语法来帮助将基因活性途径可视化以用于临床决策支持的系统包括:存储多个验证途径的验证途径数据库和被配置为执行存储在存储器中的计算机可执行指令的处理器,其中,所述多个验证途径中的每个描述多个基因之间的至少一个交互作用。所述指令包括:视觉表示跨多个群体的至少一个基因的基因活性水平;从所述验证途径数据库检索途径,其中,所述途径包括所述至少一个基因;并且视觉表示所述途径中的所有基因的基因活性水平。所述指令还包括:通过途径中的基因之间的交互作用来视觉表示信息流、将所述信息
流的所述视觉表示链接到针对临床医生的可行动信息、并且向所述临床医生输出所述信息流的所述视觉表示和被链接的可行动信息。
8.根据另一方面,非瞬态计算机可读存储介质具有存储在其上的计算机可读指令,所述计算机可读指令用于使用定义与基因表达、基因活性水平和信息流相关联的视觉元素的视觉语法(230)来将基因活性途径可视化以用于临床决策支持。所述指令包括:视觉表示跨多个群体的至少一个基因的基因活性水平;从验证途径数据库检索途径,其中,所述途径包括所述至少一个基因;并且视觉表示所述途径中的所有基因的基因活性水平。所述存储介质还包括用于以下的指令:通过途径中的基因之间的交互作用来视觉表示信息流、将所述信息流的所述视觉表示链接到针对临床医生的可行动信息、并且向所述临床医生输出所述信息流的所述视觉表示和被链接的可行动信息。
9.根据另一方面,一种使用定义与基因表达、基因活性水平和信息流相关联的视觉元素的视觉语法(230)来将基因活性途径可视化以用于临床决策支持的方法包括:视觉表示跨多个群体的至少一个基因的基因活性水平;从验证途径数据库检索途径,其中,所述途径包括所述至少一个基因;并且视觉表示所述途径中的所有基因的基因活性水平。所述方法还包括:通过途径中的基因之间的交互作用来视觉表示信息流,将所述信息流的所述视觉表示链接到针对临床医生的可行动信息,并且向所述临床医生输出所述信息流的所述视觉表示和包括至少一个治疗规划的被链接的可行动信息。
10.本领域一般技术人员在阅读和理解了下面的详细说明之后将意识到本发明的更进一步的优势。
附图说明
11.本发明可以采取各种部件和各部件的布置以及各种步骤和各步骤的布安排的形式。附图仅用于图示各方面的目的,并且不应被解释为对本发明的限制。
12.图1图示了帮助向临床医生提供用于临床决策支持的对基因活性途径的视觉表示的系统。
13.图2图示了一种在视觉上或以图形的方式为用户或临床医生将单个临床值(例如基因活性等)表示到三维(3d)空间的方法。
14.图3a到图3d图示了视觉语法的范例,在所述视觉语法中使用颜色、纹理、形状等由视觉元素来表示途径中的各个节点,以在具体生物学节点(例如基因、基因座等)的背景中表示来自单个患者或患者的子集的高通量分子分析数据。
15.图4图示了基因活性的映射。
16.图5图示了利用温度图形来表示的映射。
17.图6图示了对途径内的多个基因的可视化和具有好的或差的结果的基因的联合。
18.图7a和图7b图示了对通过在途径中捕捉到的基因之间的交互作用来视觉表示的信息流。
19.图8图示了省略了节点表示并且强调了整个途径上的信息流的视觉表示。
20.图9图示了途径视觉语法的范例。
具体实施方式
21.本发明通过解决对于具有可视化工具的经改进的诊断法的临床需要克服了前述难题,所述可视化工具大体上用于高通量分子分析数据,尤其是dna序列数据。所描述的系统和方法帮助在途径评估的背景中将统计分析结果可视化,以将具有高敏感度和特异性的癌症患者分组,这引起更好的患者结果、更有针对性的处置和医学成本的显著节约。
22.存在大量变得可用的分子信息,所述分子信息可以被用于诊断和治疗规划的目的。模态包括dna序列、转录物组序列、甲基化作用序列等。提供这种信息的清晰并且直观的视图和与这种信息交互作用的能力在技术上是有挑战性的。所描述的系统和方法帮助使用从人体样本中导出的高通量分子分析数据将具体生物学途径中的这种信息可视化,以便于支持在癌症或其他疾病中的预后和治疗选择。将关于基因功能和基因交互作用的已知生物学知识捕捉为生物学途径,在所述生物学途径上覆盖有利用诸如复制数量和基因表达数据的多种分子模态测量的基因的活性水平。帮助了对各种参数的可视化,包括但不限于,单个患者内的单独的基因;患者群体中的途径信息;不同临床研究之间或来自不同医院的患者之间或患者中的途径活性水平的不同编组之间的途径信息,并且其中,这些途径活性水平可以接着被用来区分一个患者和另一个患者;表示对特定治疗方案的反应的途径信息等。在另一个实施例中,与患者相关联的额外的临床数据被提供,并且伴随着基因活性和途径信息。例如,如果代谢途径被可视化,那么这可能涉及包括指示患者是糖尿病患者的临床信息。
23.可以结合诸如途径信息流模型的途径评估模型来使用所描述的系统和方法。在这种方式中向临床医生提供用来解释从该患者采集的整个基因组分子分析数据的技术,以为该患者选择更适合的治疗。有效地,将大量复杂数据转换成能由临床医生更直观地解释的减少的视觉表示,以指导临床医生的选择,由此在减少对于患者的整体成本和毒性的同时显著地改进患者反应。
24.图1图示了便于向临床医生提供用于临床决策支持的对基因活性途径的视觉表示的系统10。系统10包括基因信息数据库12,基因信息数据库12包括含当前患者的多个患者的基因活性数据,以及一个或多个正常患者群体和一个或多个肿瘤患者群体的基因活性数据。工作站14(例如计算机等)包括存储计算机可执行指令的存储器16(即计算机可读存储介质)和执行所述计算机可执行指令以执行如本文所述的各种方法、技术、功能等的处理器18。在一个实施例中,将存储器分配和/或设置为服务器,例如基于云的存储服务器,其中途径和/或相关联的信息被存储在云中。该系统还包括可视化工具20,可视化工具20包括输入设备22(例如键盘、鼠标、触针、麦克风、触摸屏、触摸板等)和显示器,用户或临床医生经由输入设备22将信息输入到工作站中,在显示器上向用户呈现信息(例如可视化或映射、治疗推荐等)。在一个实施例中,可视化工具和/或输入设备被安装或以其他方式被设置为智能电话、平板电脑或其他个人计算设备上的应用。
25.存储器存储视觉表示模块26,当由处理器执行时,视觉表示模块26生成能由临床医生直观地解释的视觉表示。比如,视觉表示模块生成示出了相对于肿瘤群体中的基因的平均活性水平和正常的群体中的基因的平均活性水平的当前患者的基因活性水平的基因活性水平映射28。一旦已经将基因活性水平可视化,处理器就检索从验证途径数据库30中检索出的基因的验证途径,并且将检索出的途径存储在存储器16中。视觉表示模块26生成
示出了检索出的途径中的所有基因的活性水平的途径活性水平映射36,并且示出了途径中的基因之间的关系的信息流图36。一旦生成了信息流图,处理器就执行链接模块38以识别治疗规划数据库40中的可以被用来基于映射28、34和信息流图36中含有的信息来处置患者的一个或多个治疗规划。在一个实施例中,治疗规划数据库中的治疗规划被标记(例如使用元数据)为与一个或多个特定途径和/或信息流相对应。在另一个实施例中,治疗规划数据库40和/或存储器16包括使治疗规划与映射和/或信息流相关的治疗规划查找表(lut)。将一个或多个识别出的被链接的治疗规划存储在存储器16中。处理器18经由显示器24向临床医生输出基因活性水平映射28、途径活性水平映射34、信息流36和(一个或多个)被链接的治疗规划。
26.如以上陈述的,系统10包括执行用于执行本文描述的各种功能、方法、流程等的计算机可执行指令(例如例程、程序、算法、软件代码等)的处理器18和存储所述计算机可执行指令的存储器16。此外,如本领域技术人员将理解的,本文使用的“模块”表示计算机可执行指令、软件代码、程序、例程或用于执行所描述的功能的其他计算机可执行单元等的集合。
27.存储器可以是诸如磁盘、硬盘驱动器等的计算机可读介质,控制程序被存储在该计算机可读介质上。非瞬态计算机可读介质的一般形式包括例如软盘、柔性盘、硬盘、磁带或任何其他磁性存储介质、cd-rom、dvd或任何其他光学介质、ram、rom、prom、eprom、flash-eprom及其变体、其他存储芯片或单元、或处理器可以从中读取并且执行的任何其他有形介质。在这种背景中,可以在以下项目上面或作为以下项目来实施本文描述的系统:一个或多个通用计算机、(一个或多个)专用计算机、经编程的微处理器或微控制器和外围集成电路元件、asic或其他集成电路、数字信号处理器、诸如分立元件电路的硬连线电子或逻辑电路、诸如pld、pla、fpga、图形卡cpu(gpu)或pal的可编程逻辑设备等。
28.所描述的系统和方法在理解患者的临床状况背景中和/或在对比不同患者组的背景中帮助使用已知生物学途径和/或推断出的基因调节网络来突出途径(网络)活性的临床决策支持可视化。这些技术采用多个高通量分子模态,例如在同一个患者样本上测得的基因表达和复制数量数据。
29.这些技术的临床决策支持方面包括连同途径数据库源(例如国家癌症机构途径交互作用数据库)和途径可视化引擎一起、对单个患者使用多模态分子分析数据。在这种方式中,以利用“视觉语法”在技术方面进行支持的一致方式来生成对基因活性的直观并且准确的视觉表示,其中,所述“视觉语法”可以在生物学网络(或途径)的背景中表达从基因的正常活性的偏离。因此提供了由(针对临床设置中的鲁棒性和速度的)软件和/或硬件实现方式支持的新的诊断设备。
30.图2图示了在视觉上或以图形的方式为用户或临床医生将单个临床值(例如基因活性等)表示到三维(3d)空间的方法。3d空间可以是色彩空间(例如rgb、cmy等)、作为纹理或图样3d图形或表示呈现给用户的3d空间或任何其他合适的3d空间。所述方法可以被应用于生物学途径和生物学网络两者,并且实施可以将各个基因和途径的活性转变成视觉表示的视觉语法。该视觉表示可以使用颜色、纹理、形状和/或时间方面(例如闪光或移动)。在一个实施例中,视觉表示基因和/或基因座(例如调节许多基因的活性的转录因子或可以将基因表达的水平保持在特定的水平处或破坏许多基因的活性的非编码rna的活性)的功能,使得闪光或移动的频率与基因活性水平成比例。此外,所述方法这样帮助了模块化,即网络的
较小的部分可以变为在交互作用途径的水平处的单个节点。所述方法还通过执行对途径的可视化来帮助在临床决策支持中指导选择,其中,从临床医生的角度(比如:癌症的每种子类型)来看,所述途径在功能上相关,是在特定的子类型内变化的最可能的途径;和/或通过突出途径来帮助在临床决策支持中指导选择,其中,相对从临床准则的角度来看,对于方案(例如临床决策选择)的具体集合所述途径潜在地是令人感兴趣的。由足够的临床证据来支持经建议的可视化。例如,如果方案中的药物中的一种具有抗血管生成作用,则将与血管生长相关的途径可视化是在临床上相关的。
31.因此,所述方法包括在78中访问视觉语法库等。所述方法还包括在80中经由用户选定的视觉语法为用户(例如在图形显示器上或打印出的表格上)视觉表示基因活性(或一些其他参数)水平。在82中,从验证途径的数据库获得相关的途径。在84中,视觉表示整体途径活性。在86中,通过在途径中捕捉到的基因之间的交互作用表示了信息流。在88中,将前述的视觉表示链接到针对临床医生的可行动信息。在90中,向临床医生呈现视觉表示以用于分析。根据图3a到图9更详细地描述了前述的行动。
32.图3a到图3d图示了视觉语法的范例,该视觉语法中使用颜色、纹理、形状等由视觉元素来表示途径中的各个节点,以在具体生物学节点(例如基因、基因座等)的背景中表示来自单个患者(或患者的子集)的高通量分子分析数据。该视觉元素可以是例如颜色编码或纹理编码的圆圈、长方形(或任何期望的形状)、温度映射、饼图、柱形图、数学函数(例如存活曲线)等。在图3a中,表示100被设置为肿瘤群体102和正常群体104的整体平均基因表达值。在中间示出了当前患者106的基因表达值的值。在图3b中使用颜色编码的长方形节点110来表示相同的基因表达值102、104、106。图3a、图3b、图3c、图3d中的视觉元素中的各个是表示基因的视觉元素、患者的基因的表达状态和至少一个其他患者群体(例如正常和肿瘤,或两种子类型)(例如乳腺癌中的内腔子类型和基础子类型,注意3d只表示单个患者群体内的一位患者)。
33.在图3c中,利用分别表示正常群体、肿瘤群体和患者的不同的纹理或图样来图示基因表达值102、104、106的表示120。图3d示出了采用温度映射132的表示130,其中,温度映射132在视觉上表达值的范围以及在该值的范围内当前患者的表达值落在哪里。
34.在一个实施例中,整体的肿瘤和正常群体包括医院网络内的所有这样的患者等,并且当前患者可以是单个患者或展示特定临床变量的患者的子集。可以添加额外的同心圆(或长方形等)以表示对特定药物的患者分组的多个层次(例如肿瘤组内的有反应者和无反应者)。在另一个实施例中,颜色水平与正面结果对差的结果的表达的强度相关联。
35.图4图示了基因活性的映射(例如视觉表示)140,例如在80(图2)中生成并且如图9所示。映射是在关于群体的具体生物学途径的背景中的、对来自单个患者的基于颜色的高通量分子分析数据的可视化。利用来自以下中的一个或多个的已有表达值的集合来生成映射:snp数据(例如基因内变异的数量)、复制数量多态性(复制的数量)、基因表达水平、蛋白质表达水平、基因座的dna甲基化水平、基因座的组织蛋白甲基化水平、基因座的组织蛋白乙酰化水平、特定蛋白质的磷酸化信号(开启或关闭)等。第一步骤是视觉表示各个基因的活性的水平:使用诸如基因表达数据和复制数量变化数据的多个分子模态来确定与正常组织相比较特定基因是过表达、欠表达或在基准水平处的可能性。对于这一步骤,可以使用针对分布的平均值的预定阈值(也可以使用简单地统计学测试)来执行对基因的水平的推断,
并且可以经由若干选项中的一个来表示基因。
36.在基于规则的方案下,将来自欠表达的基因的值的范围映射到以下中的一个或多个:单一颜色(例如蓝)并且来自过表达的基因的值的另一范围映射到另一颜色(例如红)、单一纹理、颜色和纹理的组合、以及随时间稍稍改变颜色的时间元素(例如搏动)或用来表示骨疡群体值的形状(例如在基因非常易变的情况下)。
37.在另一种方案中,在与基因表达的强度(水平)相对应的色相-饱和度-亮度(hsb)空间中表示视觉颜色,其中,由连续函数映射来生成所述基因表达的强度(水平)。在一个实施例中,如果基因具有r=[a,b]的值的范围,那么值被分配在hsb空间中。对于各个点ri∈[a,b],选择线性函数按照hi=f(ri)来映射值;然而取决于值的动态范围,该函数还可以是二次或对数函数。在另一个实施例中,当存在基因的功能指示(例如肿瘤抑制基因和致癌基因)时,hsb空间的不同切片被分配到这些不同的功能类别。比如对于致癌基因色相被映射到例如从0到60的值,而对于肿瘤抑制基因色相被映射到例如从120到180的值。
[0038]
图4示出了对相同途径的可能的可视化的实例,在所述相同途径中对于每个基因存在分别表示针对肿瘤群体102的平均强度值、正常群体104的平均强度值和患者106(例如无名氏)的强度值的给定节点的多个圆圈。利用不同的视觉元素(在这个案例中是长方形)来表示整体途径水平142。
[0039]
图5图示了利用温度图形来表示的映射160,其中,所述温度图形示出了值的整体范围162、与肿瘤群体平均强度值164相对应的垂直线(例如对于肿瘤群体或对于正常群体)、和表示当前患者的(一个或多个)强度值166的点。映射是在关于群体的连续集的具体生物学途径的背景中的、对来自单个患者的基于颜色的高通量分子分析数据的可视化。该表示可以被用于途径中的各个基因,并且被用于途径的整体活性。应当注意途径的整体活性可以反映从整体活性评估(例如利用超几何测试)导出或从信息流导出的p值。
[0040]
图6图示了对途径内的多个基因的可视化180和具有好的或差的结果的基因的联系。可视化在关于患者组中的存活体的具体生物学途径的背景中示出了来自单个患者182的基于颜色的高通量分子分析数据。各个基因可以单独地与好的或差的结果相关联。然而,途径内的整体协同作用可以与特定的结果较强地关联,并且因此关于结果来将途径的整体活性(正常的对被破坏的)可视化。
[0041]
图4到图6因此图示了给定途径的整体活性的映射或可视化,如一旦(在82中)从验证途径数据库获得途径而在84(图2)中执行的那样。在一个实施例中,执行基于规则的可视化,由此根据与正常组织相比较的无活性基因、中等活性基因和过度活性基因来映射值的范围。在一个范例中,单一颜色(例如蓝)被用于无活性基因,而另一颜色(例如红)被用于过表达基因。在另一个范例中,单一纹理被用于无活性基因、中等活性基因和过度活性基因中的每个。在另一个范例中,颜色和纹理的组合被用来表示不同的基因活性水平。如果途径水平非常易变,则可以采用随时间稍稍改变颜色的时间元素(例如搏动)或被用来分别表示患者、肿瘤和正常群体的椭圆(或其他形状)。
[0042]
在另一个实施例中,使用与途径活性水平的分别的强度相对应的hsb空间中的视觉颜色来生成映射,并且由连续函数来生成映射。比如该连续函数的输入可以是应用了超几何测试之后的p值。该输入还可以与信息流水平相对应。例如,如果途径活性具有使得r=[a,b]的值的范围,那么值被分配在hsb空间(即色相-饱和度-亮度)中。对于各个点ri∈[a,
b],选择函数按照hi=f(ri)来映射值。应当意识到,该函数不需要是线性函数,但是取决于值的动态范围该函数还可以是二次或对数函数。
[0043]
额外地或可选地,如果存在途径的功能指示(例如发送信号级联对转录激活),则存在被分配到这些不同的功能类别的hsb空间的不同切片。比如,对于转录激活色相被映射到例如从0到60的值,而对于发送信号色相被映射到例如从120到180的值,其中色相是围绕hsv圆柱形空间中的中心垂直轴的角度。亮度与信号的强度相对应。
[0044]
图7a和图7b分别图示了对通过在途径中捕捉到的基因之间的交互作用的信息流的视觉表示200、202,如在86(图2)中执行的。例如,如图7a所示,假设途径定义基因a、基因b和基因c之间的交互作用。途径中的交互作用说明基因a或基因b是过表达的,以使得基因c是过表达的。使用患者中的基因a、基因b和基因c的过表达、抑制和基准表达的可能性来做出关于这一特定交互作用是否被激活的确定。换言之,该交互作用(i1)的可能性是基因b或基因a是过表达的可能性。基于该链路有活性的可能性来为基因a与基因b之间的弧分配不同的颜色。如果存在基因c有活性并且基因a有活性的高概率,那么将强的第一颜色分配到其间的交互作用(在图7b的范例中是绿色)。如果基因c有活性但基因b无活性,那么将强的第二颜色(例如红)分配到基因b与基因c之间的交互作用。
[0045]
图8图示了省略了节点表示并且强调了整个途径222上的信息流(箭头)的视觉表示220。现在可以认为信息流是所有后继的分析中的一系列模块化单元。在一个实施例中,采用了由l-》r的形式的图形重写规则的集合组成的图形重写方法,其中,l表示图样侧并且r是替换图形。在大的途径中这是有用的,以便于看出关键的调节基因之间的正确连接。如在视觉语法的情况下,对于每个应用,应用不同的l-》r规则。如在图8中示出的范例中,删除了所有弱连接(或被破坏的连接)的起始节点,由此留下途径中的基因之间的最强的信息流。
[0046]
一旦信息流被可视化,就采用被链接到根据临床肿瘤学家的角度的可行动信息的可视化工具(图1)来帮助临床决策支持。临床决策支持系统(图1)将对途径活性的可视化链接到帮助破坏途径的活性的治疗的集合,直接作用在关键的读出基因上等。在一些情况下,动作的机制可能没有被利用详细的生物学实验来确认。在那种情况下,可以利用描述途径活性的功能方面的标签的预定集合来做出信息流与治疗选项之间的关联。以此方式,所描述的系统和方法帮助提供肿瘤学决策支持,例如预后和治疗反应。对具有经改变的活性水平的途径的视觉识别和呈现可以被用于发展用于癌症患者的更独立化的方案。
[0047]
图9图示了途径视觉语法230范例,它是由以下项目定义的上下文无关语法:(i)开始符号(途径图)、(ii)终端词汇(正方形、三角形、五边形、箭头、粗斜纹纹理、红色)、(iii)非终端词汇(连接起的节点、节点、嵌套基因形状、几何对象、形状、颜色、纹理、连接符、分子功能形状)、以及(iv)结果(或规则)的集合。比如途径语法包括以途径图开始,并且识别途径中的若干被连接的节点。接着以节点-连接符-节点的格式串接被连接的节点。接着将各个节点表示为嵌套基因形状,进一步将嵌套基因形状表示为几何对象或分子功能形状。在该范例中将几何对象表示为正方形,其上重叠有颜色和纹理中的一个或多个。还视觉表示了节点之间的连接符(例如箭头等)。在图9的范例中,由五边形和三角形来分别表示诸如转录因子或非编码rna的分子功能形状。
[0048]
已经参考若干实施例描述了本发明。他人在阅读和理解了前面的详细说明之后可
以想到修改和改变。本发明旨在被解释为包括所有这样的修改和改变,只要它们处于权利要求书或其等价方案的范围之内。
再多了解一些

本文用于企业家、创业者技术爱好者查询,结果仅供参考。

发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表

相关文献