一种残膜回收机防缠绕挑膜装置的制 一种秧草收获机用电力驱动行走机构

一种无线振动传感器电池剩余寿命预测方法及系统与流程

2022-03-23 07:49:21 来源:中国专利 TAG:


1.本发明涉及无线振动传感器电池预测性维护技术领域,特别是涉及一种无线振动传感器电池剩余寿命预测方法及系统。


背景技术:

2.旋转机械设备的振动监测目前已经取得快速发展和推广,振动监测所采用的振动传感器从监测方式可划分为两大类:有线与无线。与有线振动传感器相比较,无线振动传感器在工业现场具有:安装部署方便、施工周期短、无线网络灵活等优点,因此无线振动传感器应用场景更为广泛。
3.目前无线振动传感器几乎都采用一次性电池自供电方式,使用者根据使用经验或者无线传感器电池供应商提供的电池标称寿命定期更换电池,但是这种方式由于并未根据电池实际寿命进行更换,会存在提前更换或者滞后更换的问题。当提前更换电池时,会导致电池无法“物尽其用”,存在能源浪费,间接增加成本的缺陷;当滞后更换电池时,会导致设备的振动监测停止工作,存在安全隐患。因此,对于无线振动传感器来说,获取电池剩余寿命意义和价值巨大。考虑到无线振动传感器的电池对功耗具有严格要求,而库仑计计量法功耗相对较高,因此目前无线振动传感器绝大部分通过监测电池电压实现电池电量的监测。现阶段实际应用中,有研究者提出开发特定的电池剩余电量测量装置,但是该方法需将电池从设备取下,放在特定装置中测量,降低了实际可用性。也有研究者提供了一种监测无线智能传感器锂电池电量的方法及装置,通过获取电池累计时长t和工作次数w以及测量传感器的休眠电流,然后根据上述参数计算一次性锂电池工作电量并计算一次性锂电池剩余电量。上述方法依赖参数较多,实际应用场景中无法通用。


技术实现要素:

4.为解决现有无线振动传感器电池剩余寿命检测的局限性的问题,本发明提供了一种无线振动传感器电池剩余寿命预测方法及系统。
5.为实现上述目的,本发明提供了如下方案:一种无线振动传感器电池剩余寿命预测方法,包括:获取当前阶段目标无线振动传感器的监测数据;所述监测数据包括电池电压值、温度值和采集时间戳;对所述当前阶段目标无线振动传感器的监测数据进行特征参数提取,得到当前阶段监测特征数据;所述当前阶段监测特征数据至少包括:电池电压平均值、温度平均值和采集时间戳最大值;基于所述当前阶段监测特征数据和电池剩余寿命预测模型,确定当前阶段所述目标无线振动传感器的剩余寿命;所述电池剩余寿命预测模型是基于机器学习回归算法确定的。
6.可选的,所述电池剩余寿命预测模型的确定过程为:
构建训练数据集和测试数据集;采用所述训练数据集对机器学习回归算法进行训练,得到初步电池剩余寿命预测模型;基于所述测试数据集和所述初步电池剩余寿命预测模型,判断所述初步电池剩余寿命预测模型是否满足设定要求;若是,则将所述初步电池剩余寿命预测模型确定为最终的电池剩余寿命预测模型;若否,则调整所述初步电池剩余寿命预测模型的网络参数,并返回步骤采用所述训练数据集对机器学习回归算法进行训练,得到初步电池剩余寿命预测模型。
7.可选的,所述构建训练数据集和测试数据集,具体包括:构建无线振动传感器的电池全寿命数据集;基于所述电池全寿命数据集构建训练数据集和测试数据集。
8.可选的,所述构建无线振动传感器的电池全寿命数据集,具体包括:定时采集现场安装的各无线振动传感器的电池电压值和温度值,并将电池电压值、温度值和采集时间戳存储至数据库,直到无线振动传感器的电池电量耗尽;基于所述数据库,建立电池全寿命数据集;其中,所述电池全寿命数据集至少包含100个无线振动传感器的电池全寿命数据;所述电池全寿命数据包括不同的采集时间戳,以及每个所述采集时间戳对应的电池电压值和温度值。
9.可选的,所述电池电压值和所述温度值的定时采集间隔范围为:1min~60min。
10.可选的,数据总集包括模型输入数据以及每个所述模型输入数据对应的标签数据;所述基于所述电池全寿命数据集构建训练数据集和测试数据集,具体包括:步骤一:对单个无线振动传感器的电池全寿命数据对应的电池寿命时长t进行分割;其中,分割数量为k,分割后单个无线振动传感器的电池全寿命数据包括k份训练数据子集;第i份训练数据子集对应的电池剩余寿命为t-(i*t/k);步骤二:对每份训练数据子集进行特征参数提取,得到特征参数数据子集;所述特征参数数据子集包括电池电压最大值、电池电压最小值、电池电压平均值、电池电压极差值、电池电压方差值、温度极差值、温度平均值和采集时间戳最大值;当所述标签数据为电池剩余寿命为t-(i*t/k)时,所述模型输入数据为第i份特征参数数据子集;步骤三:按照步骤一和步骤二的操作方式,确定每个无线振动传感器的特征参数数据子集以及每个所述特征参数数据子集对应的标签数据,进而构建数据总集;步骤四:对所述数据总集进行划分,得到训练数据集和测试数据集。
11.可选的,所述机器学习回归算法为线性回归算法、逻辑回归算法、支持向量机回归算法或者决策树回归算法。
12.一种无线振动传感器电池剩余寿命预测系统,包括:数据获取模块,用于获取当前阶段目标无线振动传感器的监测数据;所述监测数据包括电池电压值、温度值和采集时间戳;数据处理模块,用于对所述当前阶段目标无线振动传感器的监测数据进行特征参数提取,得到当前阶段监测特征数据;所述当前阶段监测特征数据至少包括:电池电压平均
值、温度平均值和采集时间戳最大值;剩余寿命预测模块,用于基于所述当前阶段监测特征数据和电池剩余寿命预测模型,确定当前阶段所述目标无线振动传感器的剩余寿命;所述电池剩余寿命预测模型是基于机器学习回归算法确定的。
13.可选的,所述电池剩余寿命预测模型的确定过程为:构建训练数据集和测试数据集;采用所述训练数据集对机器学习回归算法进行训练,得到初步电池剩余寿命预测模型;基于所述测试数据集和所述初步电池剩余寿命预测模型,判断所述初步电池剩余寿命预测模型是否满足设定要求;若是,则将所述初步电池剩余寿命预测模型确定为最终的电池剩余寿命预测模型;若否,则调整所述初步电池剩余寿命预测模型的网络参数,并返回步骤采用所述训练数据集对机器学习回归算法进行训练,得到初步电池剩余寿命预测模型。
14.根据本发明提供的具体实施例,本发明公开了以下技术效果:本发明实现了无线传感器电池剩余寿命的软测量,无需增加硬件功耗开销,同时采用数据驱动建模,基于机器学习回归算法建立预测模型可保证预测精度高,并且预测模型可随时更新,随着建模训练数据的增加,预测精度将不断提升,与现有多种无线传感器电池电量测量方法及装置对比,本发明基于软测量具有先天优势,通用性更强,且保证不增加额外的功耗,满足无线传感器低功耗的关键要求,通过本发明的应用,可以获取无线振动传感器电池的剩余使用寿命值,以此指导现场使用者在正确的时间更换电池,避免过晚更换电池保证振动监测的效果、同时避免过度过早更换电池的问题,使电池使用达到物尽其用的目标。
附图说明
15.为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
16.图1为本发明实施例提供的一种无线振动传感器电池剩余寿命预测模型构建方法的流程示意图;图2为本发明实施例提供的一种无线振动传感器电池剩余寿命预测方法的流程示意图;图3为本发明实施例提供的一种无线振动传感器电池剩余寿命预测系统的结构示意图。
具体实施方式
17.下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于
本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
18.为使本发明的上述目的、特征和优点能够更加明显易懂,下面结合附图和具体实施方式对本发明作进一步详细的说明。
19.实施例一本发明实施例为解决现有无线振动传感器电池剩余寿命检测的局限性,提出一种无线振动传感器电池剩余寿命预测模型的构建方法,并基于构建的模型进行实时监测。
20.如图1所示,本发明实施例提供了一种无线振动传感器电池剩余寿命预测模型的构建方法,包括以下步骤:步骤101:定时测量以获取无线振动传感器的电池电压值和温度值。
21.其中,电池电压值和温度值的定时采集间隔范围为:1min~60min。
22.步骤102:构建无线振动传感器的电池全寿命数据集。
23.具体获取方式为:基于现场实际安装的无线振动传感器,按照步骤101方式定时采集无线振动传感器的电池电压值与温度值,并将电压数据、温度数据及采集时间戳存储至数据库,直到无线振动传感器在电池电量耗尽时采集停止,并建立电池全寿命数据集。该数据集中可包含若干个无线振动传感器在电池电量耗尽时的数据集,为保证后续建立的电池剩余寿命预测模型的准确性,需保证上述数据集合中至少包含100个无线振动传感器的电池全寿命数据。
24.步骤103:基于无线振动传感器的电池全寿命数据集建立电池寿命预测的训练数据集和测试数据集。
25.具体步骤如下:1)采用等时间间隔方法对单个无线振动传感器的电池全寿命数据集的电池寿命时长t进行分割,分割数量为k,分割后单个无线振动传感器的电池全寿命数据可得k份训练数据子集。具体如下:第i份训练数据子集对应的电池剩余寿命为t-(i*t/k),对应数据为电池i*t/k寿命之前的电池电压、温度、时间戳数据,其中,t为电池的寿命时长:单个无线振动传感器电池全寿命数据的长度k≥10,至少均等划分电池寿命为10份,保证后续训练模型的精度,k值越大,划分精度越高,训练模型的预测精度也越高。
26.2)计算每一份训练数据子集的特征参数。在每一份训练数据子集中,电池寿命值唯一,但是电池电压值、温度值、以及采集时间戳值并不一定唯一。因此需要进行特征提取工作,包括以下特征:电池电压的最大值、电池电压最小值、电池电压平均值、电池电压极差值、电池电压方差值、温度极差值、温度平均值、采集时间戳的最大值,以及其他统计特征,如分位数、标准差、中位数等,最后组成特征向量集合。
27.3)无线振动传感器电池全寿命数据集完成1)和2)计算后,将最终的特征向量集合以及对应的电池寿命值标签进行划分,划分为训练数据集和测试数据集,需保证训练数据集不低于总样本量的50%。
28.步骤104:选用机器学习回归算法对训练数据集及剩余寿命标签进行训练,建立电池剩余寿命预测模型;将测试数据集输入电池剩余寿命预测模型验证模型的准确度是否满足所设定要求,若满足要求,则该剩余寿命预测模型即为构建的模型;若不满足,则需进行:《1》回归算法的调优,包括:回归算法的筛选、回归算法内部参数调整;《2》建模特征参数的
筛选;《3》重新进行训练和测试,直至测试数据集的预测误差达到要求。其中,机器学习回归算法包括但不限于以下几种:线性回归、逻辑回归、支持向量机回归、决策树回归等。
29.步骤105:将实时采集的当前无线振动传感器的电池电压、温度、时间戳提取特征参数形成特征向量,特征参数需与训练数据集中的特征参数保持一致,将特征向量输入电池剩余寿命预测模型得到当前无线振动传感器电池的剩余寿命值。
30.本发明采用数据驱动建模的方法构建了电池剩余寿命预测模型,实现了基于无线振动传感器电池电压、温度预测电池剩余寿命。本发明通过采集无线振动传感器电池电压和温度全寿命数据,分割单个电池寿命形成若干份不同剩余寿命的数据集以此获取电池剩余寿命真实分布,之后提取对应电池电压序列和温度序列的统计特征形成特征向量,基于多个无线振动传感器电池全寿命数据集形成训练数据集和测试数据集,采用机器学习回归算法训练得到无线振动传感器电池剩余寿命预测模型,最终应用电池剩余寿命预测模型获取实际电池剩余寿命。
31.实施例二如图2所示,本发明实施例提供的一种无线振动传感器电池剩余寿命预测方法,包括如下步骤:步骤201:获取当前阶段目标无线振动传感器的监测数据;所述监测数据包括电池电压值、温度值和采集时间戳;所述当前阶段为一段时间;所述目标无线振动传感器为待测量的无线振动传感器。
32.步骤202:对所述当前阶段目标无线振动传感器的监测数据进行特征参数提取,得到当前阶段监测特征数据;所述当前阶段监测特征数据包括:电池电压最大值、电池电压最小值、电池电压平均值、电池电压极差值、电池电压方差值、温度极差值、温度平均值、采集时间戳最大值。
33.步骤203:基于所述当前阶段监测特征数据和电池剩余寿命预测模型,确定当前阶段所述目标无线振动传感器的剩余寿命。
34.所述电池剩余寿命预测模型是基于机器学习回归算法确定的。
35.下面详细介绍下,电池剩余寿命预测模型的确定过程,具体如下:步骤a:构建训练数据集和测试数据集;步骤b:采用所述训练数据集对机器学习回归算法进行训练,得到初步电池剩余寿命预测模型;步骤c:基于所述测试数据集和所述初步电池剩余寿命预测模型,判断所述初步电池剩余寿命预测模型是否满足设定要求;若是,则将所述初步电池剩余寿命预测模型确定为最终的电池剩余寿命预测模型;若否,则调整所述初步电池剩余寿命预测模型的网络参数,并返回步骤b。
36.其中,步骤b具体包括:构建无线振动传感器的电池全寿命数据集;基于所述电池全寿命数据集构建训练数据集和测试数据集。
37.进一步地,所述构建无线振动传感器的电池全寿命数据集,具体包括:定时采集现场安装的各无线振动传感器的电池电压值和温度值,并将电池电压值、温度值和采集时间戳存储至数据库,直到无线振动传感器的电池电量耗尽;基于所述数
据库,建立电池全寿命数据集;其中,所述电池全寿命数据集至少包含100个无线振动传感器的电池全寿命数据;所述电池全寿命数据包括不同的采集时间戳,以及每个所述采集时间戳对应的电池电压值和温度值。
38.所述电池电压值和所述温度值的定时采集间隔范围为:1min~60min。
39.进一步地,数据总集包括模型输入数据以及每个所述模型输入数据对应的标签数据;所述基于所述电池全寿命数据集构建训练数据集和测试数据集,具体包括:步骤一:对单个无线振动传感器的电池全寿命数据对应的电池寿命时长t进行分割;其中,分割数量为k,分割后单个无线振动传感器的电池全寿命数据包括k份训练数据子集;第i份训练数据子集对应的电池剩余寿命为t-(i*t/k);步骤二:对每份训练数据子集进行特征参数提取,得到特征参数数据子集;所述特征参数数据子集包括电池电压最大值、电池电压最小值、电池电压平均值、电池电压极差值、电池电压方差值、温度极差值、温度平均值和采集时间戳最大值;当所述标签数据为电池剩余寿命为t-(i*t/k)时,所述模型输入数据为第i份特征参数数据子集;步骤三:按照步骤一和步骤二的操作方式,确定每个无线振动传感器的特征参数数据子集以及每个所述特征参数数据子集对应的标签数据,进而构建数据总集;步骤四:对所述数据总集进行划分,得到训练数据集和测试数据集。
40.所述机器学习回归算法为线性回归算法、逻辑回归算法、支持向量机回归算法或者决策树回归算法。
41.实施例三如图3所示,本发明实施例提供的一种无线振动传感器电池剩余寿命预测系统,包括:数据获取模块301,用于获取当前阶段目标无线振动传感器的监测数据;所述监测数据包括电池电压值、温度值和采集时间戳。
42.数据处理模块302,用于对所述当前阶段目标无线振动传感器的监测数据进行特征参数提取,得到当前阶段监测特征数据;所述当前阶段监测特征数据至少包括:电池电压平均值、温度平均值和采集时间戳最大值。
43.剩余寿命预测模块303,用于基于所述当前阶段监测特征数据和电池剩余寿命预测模型,确定当前阶段所述目标无线振动传感器的剩余寿命。
44.所述电池剩余寿命预测模型是基于机器学习回归算法确定的。
45.其中,所述电池剩余寿命预测模型的确定过程为:构建训练数据集和测试数据集。
46.采用所述训练数据集对机器学习回归算法进行训练,得到初步电池剩余寿命预测模型。
47.基于所述测试数据集和所述初步电池剩余寿命预测模型,判断所述初步电池剩余寿命预测模型是否满足设定要求;若是,则将所述初步电池剩余寿命预测模型确定为最终的电池剩余寿命预测模型;若否,则调整所述初步电池剩余寿命预测模型的网络参数,并返回步骤采用所述训练数据集对机器学习回归算法进行训练,得到初步电池剩余寿命预测模型。
48.本说明书中各个实施例采用递进的方式描述,每个实施例重点说明的都是与其他
实施例的不同之处,各个实施例之间相同相似部分互相参见即可。对于实施例公开的系统而言,由于其与实施例公开的方法相对应,所以描述的比较简单,相关之处参见方法部分说明即可。
49.本文中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想;同时,对于本领域的一般技术人员,依据本发明的思想,在具体实施方式及应用范围上均会有改变之处。综上所述,本说明书内容不应理解为对本发明的限制。
再多了解一些

本文用于企业家、创业者技术爱好者查询,结果仅供参考。

发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表

相关文献