一种残膜回收机防缠绕挑膜装置的制 一种秧草收获机用电力驱动行走机构

一种硫化锑光电晶体管及其制备方法与流程

2022-03-09 05:06:46 来源:中国专利 TAG:

1.本发明属于光电晶体管领域,具体涉及一种硫化锑光电晶体管及其制备方法。


背景技术:

2.硫化锑(sb2s3)是一种具有单一稳定相的二元半导体化合物,可以避免其它二次相的形成,是三维薄膜光电探测器的常用材料。特别是,sb2s3具有1.7 ev~1.8 ev的禁带,在可见光范围内吸收系数高达10
5 cm
−1,具有丰富和环保的组分元素,以及优良的空气稳定性,因此在太阳能电池及光电探测器中获得了广泛的关注。光电晶体管由于其简单的制备方法,开关速度快等优点,已经成为薄膜光电探测器的重点关注对象。目前的光电晶体管多数是以一层光吸收层作为导电沟道,栅压直接作用在沟道上,分离载流子,而在另一种重要的薄膜光电二极管中,其内建电场也具有分离载流子的作用,两者都能提升探测器的性能。目前缺乏一种基于硫化锑薄膜的光电晶体管能综合栅压分离载流子和内建电场分离载流子两种作用的器件。利用栅极电压调控pn结,可以增强载流子分离能力,提升光电流,增强光响应能力,还可以实现自身的开关。栅压调控电信号与栅压调控pn结的结合可以显著改善器件的光探测能力和电开关能力,拓宽硫化锑薄膜探测器的应用范围,并且有望用于高灵敏度、快速响应的器件上。


技术实现要素:

3.本发明的目的在于提供一种硫化锑光电晶体管及其制备方法,该光电晶体管有利于利用栅极电压调控光、电信号,而且结构简单,制造成本低。
4.为实现上述目的,本发明采用的技术方案是:一种硫化锑光电晶体管,所述光电晶体管自下而上依次包括衬底、吸光pn结和表面金属电极,所述衬底包括重掺杂si栅极和设于其上的sio2层,所述吸光pn结包括n型tio2层和设于其上的p型sb2s3吸光层,所述表面金属电极为源、漏金属电极。
5.进一步地,所述光电晶体管为三端无源器件,三端分别为源极、漏极和栅极,器件的光电响应电流通过栅极电压调控。
6.进一步地,上表面的源极、漏极施加的工作电压为-5 v ~ 5 v,下表面的栅极施加的工作电压为-20 v ~ 20 v。
7.进一步地,所述衬底为重掺p型si/sio2片,其中,si栅极为重掺杂的p型si,sio2层为绝缘介质层,sio2层的厚度为50 nm ~ 100 nm。
8.进一步地,所述n型tio2层为pn结区中的n型层,厚度为60 nm ~ 120 nm。
9.进一步地,所述p型sb2s3吸光层为sb2s3薄膜,厚度为200 nm ~ 500 nm。
10.进一步地,所述源、漏金属电极之间的宽度为50 μm ~ 200 μm,源、漏金属电极的长度为200 μm ~ 2000 μm,源、漏金属电极的厚度为50 nm ~ 150 nm。
11.进一步地,所述源、漏金属电极的材质为铝、银或金。
12.本发明还提供了所述硫化锑光电晶体管的制备方法,包括以下步骤:
(1)制备衬底:获取si/sio2片,并将其切成设定边长的正方形,分别使用去离子水、丙酮、无水乙醇进行超声清洗,用氮气吹干;(2)喷涂法制备n型tio2层:将原料c
16h28
o6ti与无水乙醇按照体积比为1:9混合并搅拌均匀作为前驱体溶液;采用喷涂法在玻璃衬底上制备tio2薄膜,在450
ꢀº
c下喷涂6 ~ 12次,然后500
ꢀº
c退火30分钟,冷却后获得tio2薄膜,厚度为60 nm ~ 120 nm;(3)真空法制备p型sb2s3吸光层:采用快速热蒸发法在所述tio2层上沉积硫化锑薄膜,厚度为200 nm ~ 500 nm;蒸发温度为500 ℃ ~ 600 ℃,时间为20 s ~ 40 s;结晶温度为300 ℃ ~ 350 ℃;(4)制备源、漏金属电极:采用热蒸发法在所述硫化锑薄膜上制备源、漏金属电极,厚度为50 nm ~ 150 nm,蒸发时的真空度为10-4 pa,其电极采用条状掩膜板,电极间距50 μm ~ 200 μm。
13.与现有技术相比,本发明具有以下有益效果:(1)本发明的主体材料sb2s3和tio2不仅元素储量丰富,无需任何提纯工艺,而且具有高的稳定性,在空气中长时间不变质。
14.(2)本发明的每一层材料都可以大规模制备,有潜力应用于阵列化光电成像,而且可以与现代硅工艺匹配,可融入集成电路之中,具有商业价值。
15.(3)本发明结构新颖,将栅极调控作用与pn结调控作用合二为一。
16.(4)本发明能够利用栅极电压调控pn结耗尽层宽度,提升晶体管对光信号的响应;(5)本发明能够利用栅极电压调控电信号,实现自身的开关。
附图说明
17.图1是本发明实施例的硫化锑光电晶体管的结构示意图;图2是本发明实施例3中光电晶体管的界面sem形貌;图3是本发明实施例3中硫化锑光电晶体管在不同栅压下的电流-时间输出曲线;图4是本发明实施例3中硫化锑光电晶体管的电开关曲线。
18.图中:1-重掺杂p型si栅极、2-sio2绝缘层、3-tio2层、4-sb2s3吸光层、5-源漏金属电极。
具体实施方式
19.下面结合附图及实施例对本发明做进一步说明。
20.应该指出,以下详细说明都是示例性的,旨在对本技术提供进一步的说明。除非另有指明,本文使用的所有技术和科学术语具有与本技术所属技术领域的普通技术人员通常理解的相同含义。
21.需要注意的是,这里所使用的术语仅是为了描述具体实施方式,而非意图限制根据本技术的示例性实施方式。如在这里所使用的,除非上下文另外明确指出,否则单数形式也意图包括复数形式,此外,还应当理解的是,当在本说明书中使用术语“包含”和/或“包括”时,其指明存在特征、步骤、操作、器件、组件和/或它们的组合。
22.如图1所示,本实施例提供了一种硫化锑光电晶体管,所述光电晶体管自下而上依次包括衬底、吸光pn结和表面金属电极,衬底包括重掺杂si栅极1和设于其上的sio2层2,吸
光pn结包括n型tio2层3和设于其上的p型sb2s3吸光层4,表面金属电极为源、漏金属电极5。
23.其中,光电晶体管为三端无源器件,三端分别为源极、漏极和栅极,器件的光电响应电流通过栅极电压调控。上表面的源极、漏极施加的工作电压为-5 v ~ 5 v,下表面的栅极施加的工作电压为-20 v ~ 20 v。
24.衬底为重掺p型si/sio2片,其中,si栅极为重掺杂的p型si,sio2层为绝缘介质层,sio2层的厚度为50 nm ~ 100 nm。
25.n型tio2层为pn结区中的n型层,厚度为60 nm ~ 120 nm。p型sb2s3吸光层为sb2s3薄膜,厚度为200 nm ~ 500 nm。
26.源极、漏极都为金属电极,其材质为al、ag、au等。源、漏金属电极之间的宽度为50 μm ~ 200 μm,源、漏金属电极的长度为200 μm ~ 2000 μm,源、漏金属电极的厚度为50 nm ~ 150 nm。
27.下面以多个实施例作进一步详述。
28.实施例1硫化锑光电晶体管结构为:硅(重掺p型)/氧化硅(50 nm)/氧化钛(60 nm)/硫化锑(500 nm)/金。
29.硫化锑光电晶体管的栅极1为导电的p型掺杂si片。绝缘层2为不导电的氧化硅,其厚度为50 nm。氧化钛3,其厚度为60 nm。晶体管的吸光层4为硫化锑薄膜,厚度为500 nm。源漏金属电极5为金电极。其制备方法:(1)玻璃衬底清洗:将si/sio2片切成边长为2 cm的正方形,分别使用去离子水、丙酮、无水乙醇超声清洗,用氮气吹干。
30.(2)tio2层制备:将原料c
16h28
o6ti与无水乙醇按照体积比为1:9混合并搅拌均匀作为前驱体溶液。采用喷涂法在玻璃衬底上制备tio2薄膜,在 450
ꢀº
c下喷涂6次,然后500 ℃退火30分钟,冷却后获得tio2薄膜,厚度为60 nm。
31.(3)硫化锑层制备:采用快速热蒸发法在上述tio2层上沉积500 nm硫化锑薄膜。蒸发温度为500 ℃,时间为40 s;结晶温度为300℃。
32.(4)金属电极的制备:在上述硫化锑薄膜上采用热蒸发法制备铝、银、金等,厚度为120 nm,蒸发时的真空度为10-4 pa,其电极采用条状掩膜板,电极间距200 μm。
33.实施例2硫化锑光电晶体管结构为:硅(重掺p型)/氧化硅(100 nm)/氧化钛(60 nm)/硫化锑(500 nm)/金。
34.硫化锑光电晶体管的栅极1为导电的p型掺杂si片。绝缘层2为不导电的氧化硅,其厚度为100 nm。氧化钛3,其厚度为60 nm。晶体管的吸光层4为硫化锑薄膜,厚度为500 nm。源漏金属电极5为金电极。其制备方法:(1)玻璃衬底清洗:与上述实施例1相同。
35.(2)tio2层制备:与上述实施例1相同。
36.(3)硫化锑层制备:与上述实施例1相同。
37.(4)金属电极的制备:与上述实施例1相同。
38.实施例3硫化锑光电晶体管结构为:硅(重掺p型)/氧化硅(100 nm)/氧化钛(60 nm)/硫化
锑(300 nm)/金。
39.硫化锑光电晶体管的栅极1为导电的p型掺杂si片。绝缘层2为不导电的氧化硅,其厚度为100 nm。氧化钛3,其厚度为120 nm。晶体管的吸光层4为硫化锑薄膜,厚度为500 nm。源漏金属电极5为金电极。其制备方法:(1)玻璃衬底清洗:与上述实施例1相同。
40.(2)tio2层制备:与上述实施例1相同。
41.(3)硫化锑层制备:采用快速热蒸发法在上述功能层上沉积300 nm硫化锑薄膜。蒸发温度为500 ℃,时间为25 s;结晶温度为300 ℃。
42.(4)金属电极的制备:与上述实施例1相同。
43.制备得到的硫化锑光电晶体管的截面扫描电镜图如图2所示,硫化锑薄膜在整个截面上是均匀分布的,而且覆盖致密,从截面可看出氧化硅、氧化钛、硫化锑分层明显,无相互扩散的现象。图3是硫化锑光电晶体管输出的电流-时间的变化关系图。其中源漏电压为1 v,光波长为530 nm,光功率为3.3 mw/cm2。从图中可以看出,光电流明显出现了随光照周期变化的趋势,且其响应随周期稳定变化,重复性良好,在同类器件中处于较高水平。图4是硫化锑光电晶体管转移曲线。其中源漏电压为1v。从图中可以看出,光电晶体管在负栅压下,使得pn结正偏,耗尽区变窄,硫化锑内的空穴浓度变大,电流变大,处于开启状态;正栅压下,pn结反偏,耗尽区变宽,硫化锑内的空穴浓度变小,电流变小,处于关闭状态。开关比约为10倍,且表现出p沟道晶体管的特性。随着栅极电压的不同,输出电流表现出稳定的趋势:负栅压使输出电流变大,正栅压使输出电流变小。说明此硫化锑光电晶体管实现了栅极对光、电信号的调制作用。
44.以上所述,仅是本发明的较佳实施例而已,并非是对本发明作其它形式的限制,任何熟悉本专业的技术人员可能利用上述揭示的技术内容加以变更或改型为等同变化的等效实施例。但是凡是未脱离本发明技术方案内容,依据本发明的技术实质对以上实施例所作的任何简单修改、等同变化与改型,仍属于本发明技术方案的保护范围。
再多了解一些

本文用于企业家、创业者技术爱好者查询,结果仅供参考。

发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表

相关文献