一种残膜回收机防缠绕挑膜装置的制 一种秧草收获机用电力驱动行走机构

钢板镀铬溶液使用寿命的检测方法与流程

2022-02-24 13:42:16 来源:中国专利 TAG:


1.本发明涉及钢板镀铬溶液,特别涉及一种钢板镀铬溶液使用寿命的检测方法。


背景技术:

2.镀铬钢板是通过在冷轧钢板表面进行电解铬酸盐处理,使钢板表面沉积一层金属铬和铬氧化物膜的经济型罐材料。镀铬钢板表面化学成份稳定,从表面膜溶出的铬离子极其微量,由于其表面无毒性,被广泛应用于食品罐头等包装行业。镀铬钢板还具有镀着量少、成本低、附着力强、涂漆性好、耐温性好、高抗硫性、高耐碱性等优点,还可应用于自行车部件、家庭电器用品、办公用品、建材材料部件、汽车部件等领域。
3.镀铬钢板生产过程中,镀铬溶液的主要成分是铬酸酐(cro3),再加入少量的催化剂(通常包括硫酸、氟化氨、氟硅酸盐、氟硼酸盐、碘酸盐、氯酸盐等)。研究认为,催化剂是对铬酸活性起催化作用,镀铬才有可能顺利而连续地进行,而催化剂本身不参加电极反应,理论上它们是不消耗的。在没有任何外来离子的纯铬酸酐电解液中,阴极上不会发生铬酸的还原反应。镀铬溶液中,铬酸酐易溶于水成为铬酸,该溶液是一种强酸,并以六价铬的多种形式存在,如铬酸氢根(hcro
4-)、铬酸(h2cro4)、重铬酸(h2cr2o7)、三铬酸(h2cr3o
10
)、四铬酸(h2cr4o
13
)等,具有较强的腐蚀性和氧化性。氟化铵镀液体系中,镀铬溶液(简称镀液)包括在生产现场的金属铬段溶液和氧化铬段溶液,分别用于在钢板表面生成金属铬镀层和氧化铬镀层,由于镀液含有的氟、铬等离子具有极强腐蚀性,冷轧基板被腐蚀形成铁离子,再加上原料纯度或其他辊系的腐蚀,镀液中还会包括铝、钛、硅、铜、锌等杂质离子。参见图1,随着生产的进行,镀液中杂质离子逐渐聚集且含量提高,极大地影响了镀液清洁度,甚至会影响到镀铬钢板表面质量。当杂质离子含量达到一定浓度时,镀铬钢板上镀层会出现发花、发黄、变暗、有条纹等诸多质量问题,参见图2,金属铬段溶液中杂质离子浓度较高时导致镀铬钢板表面存在细小颗粒物缺陷。同时,随着杂质离子含量的增加,电镀槽电压上升、镀液电阻增加。
4.目前,大部分镀铬钢板生产厂家对镀液排放管理一般遵循“三个月一小换,六个月一大换”原则,但是在实际生产过程中,不能准确地判断出镀铬溶液的使用寿命,往往是在生产出不合格镀铬钢板时才对镀铬溶液进行处理、更换。此外,镀铬溶液中含有六价铬和氟离子,因此其排放要求非常严格,这也给生产厂家带来较多困难。因此,亟需一种有效的能对镀铬溶液的使用寿命进行分析和判断的方法,对不合规的镀铬溶液及时进行净化或更换,以减少不合格镀铬钢板的产出,减少损失,从而有利于提高经济效益。


技术实现要素:

5.本发明的目的在于提供一种钢板镀铬溶液使用寿命的检测方法,通过检测现场镀铬溶液ph值,并加入添加剂以调控镀铬溶液ph值并改变杂质离子状态,通过分析杂质离子和沉积物从而评价镀铬溶液的使用寿命。
6.本发明是这样实现的:
一种钢板镀铬溶液使用寿命的检测方法,所述镀铬溶液包括在生产现场取得的金属铬段溶液和氧化铬段溶液,所述金属铬段溶液的ph值小于等于1.1,所述氧化铬段溶液的ph值小于等于1.5;所述检测方法的步骤如下:步骤一,基于溶液ph值、杂质离子的粒径和频率分布、杂质离子的沉积物质量、镀铬溶液的使用寿命建立关系模型,包括第一关系模型和第二关系模型;步骤二,取不同时间或不同阶段机组的镀铬溶液,并检测镀铬溶液的ph值;步骤三,将双氧水加入镀铬溶液得到第一溶液,双氧水和镀铬溶液的质量比为5~10:100;步骤四,将氨水或碳酸钠加入第一溶液进行ph值特性调控,逐步增大ph值,并控制第一溶液的ph值的数值范围为3~6;步骤五,对第一溶液进行粒度分析得到溶液中杂质离子的粒径和频率分布;对第一溶液进行离心沉降得到杂质离子的沉积物,并对沉积物烘干称重;步骤六,根据第一关系模型,如满足条件则得到相应的镀铬溶液的使用寿命,否则重复步骤二至步骤五;如第一溶液的ph值在所述数值范围内均不能满足第一关系模型中的条件,则进入下一步骤;步骤七,先重复步骤二和步骤三,然后在第一溶液中添加含有1g/l三价铁离子、0.05g/l铝离子和0.03g/l钛离子的混合溶液得到第二溶液,混合溶液和第一溶液的质量比为18.2~19:100;将氨水或碳酸钠加入第二溶液使其ph值为2;以第二溶液为电解液进行模拟电镀试验后进行离心沉降得到沉积物,并对沉积物烘干称重;根据第二关系模型,得到镀铬溶液的使用寿命。
7.所述镀铬溶液的容积为1l,双氧水的质量浓度为30%,氨水的质量浓度为30%,碳酸钠的浓度为20g/l。
8.所述第一关系模型为:当第一溶液的ph值为3时,粒径为5.6~20.0μm的杂质离子的频率分布小于70%且沉积物质量小于0.5g,则镀铬溶液的使用寿命为大于9个月;当第一溶液的ph值为4时,粒径为20.0~50.0μm的杂质离子的频率分布大于50%且沉积物质量为0.5~1g时,则镀铬溶液的使用寿命为6~9个月;当第一溶液的ph值为5时,粒径为50.0~100.0μm的杂质离子的频率分布大于50%时且沉积物质量为1~2g时,则镀铬溶液的使用寿命为3~6个月;当第一溶液的ph值为6时,粒径大于100.0μm的杂质离子的频率分布大于50%时且沉积物质量大于2g时,则镀铬溶液的使用寿命为3~6个月;所述第二关系模型为:当第二溶液的ph值为2时,如沉积物质量小于20g,则镀铬溶液的使用寿命为约2个月;如沉积物质量大于等于20g,则镀铬溶液的使用寿命为约1个月。
9.所述步骤五和步骤七中,离心沉降的转速为3000~5000rpm。
10.所述步骤七中,所述混合溶液包括可溶性盐物质。
11.所述可溶性盐物质为fecl3、feso4、alcl3或ticl4。
12.所述步骤七中,所述模拟电镀试验的电流密度≥40a/dm2,电解处理时间为2~5分
钟。
13.本发明钢板镀铬溶液使用寿命的检测方法,利用了镀铬溶液中杂质离子浓度和ph值两者相互影响关系,以及杂质离子沉积和粒度分布之间的关联性,对于不同ph值体系,通过加入不同的添加剂,从而改变镀铬溶液中杂质离子的状态,并结合杂质离子粒度分布分析和形成的沉淀物分析,从而实现对镀铬溶液使用寿命的分析和评价。本发明不仅能有效地获得镀铬溶液的健康状态,有助于及时采取处理手段,而且能减少不合格镀铬钢板的产出,提高镀铬钢板表面镀层质量,减少生产损失、提高经济效益。另外,本发明的检测方法也能为镀铬钢板的改进生产提供了具有实用价值的参考依据。
14.本发明与现有技术相比,具有如下有益效果:能对镀铬溶液使用寿命进行分析和评价,提高镀铬钢板生产质量,并减少损失。
附图说明
15.图1为生产现场的金属铬段溶液的杂质离子的浓度变化曲线图;图2为生产现场的金属铬段溶液的ph值为2时产出的镀铬钢板表面缺陷图像。
具体实施方式
16.下面结合具体实施例对本发明作进一步说明。
17.一种钢板镀铬溶液使用寿命的检测方法,适用于氟化铵镀液体系,镀铬钢板生产工艺分为两步法镀铬工艺,第一步采用的镀铬溶液含有高浓度的铬离子和氟离子,在钢板表面生成金属铬镀层,第二步采用的镀液含低浓度的铬离子和氟离子,在钢板表面生成氧化铬镀层。由此,镀铬溶液包括在生产现场取得的金属铬段溶液和氧化铬段溶液,所述金属铬段溶液的ph值应小于等于1.1,所述氧化铬段溶液的ph值应小于等于1.5。
18.这两种镀铬溶液的清洁度和质量均影响着镀铬钢板表面镀层质量,清洁度和质量取决于镀铬溶液中杂质离子fe、al、ti等浓度和镀铬溶液的ph值。
19.根据杂质离子fe、al、ti的溶度积常数和在不同ph值下的沉淀条件,具体为:fe
2
2oh-=fe(oh)2的溶度积常数k
sp
为8.0
×
10-16
,fe
3
3oh-= fe(oh)3的溶度积常数k
sp
为4.0
×
10-38
,表1 列出了不同ph值时的fe(oh)2和fe(oh)3的沉淀条件,如下所示:表1
溶液ph值0.511.522.5[fe
2
]/(mg/l)4.47
×
10
16
4.47
×
10
15
4.47
×
10
14
4.47
×
10
13
4.47
×
10
12
[fe
3
]/(mg/l)70.652.237.06
×
10-2
2.23
×
10-3
7.06
×
10-5
al
3
3oh-=al(oh)3的溶度积常数k
sp
为4.57
×
10-33
,表2列出了不同ph值时的al(oh)3的沉淀条件,如下所示:表2溶液ph值0.511.522.5[al
3
]/(mg/l)3.90
×
10
12
1.23
×
10
11
3.90
×
1091.23
×
1083.90
×
106ti
4
4oh-=ti(oh)4的溶度积常数k
sp
=1.0
×
10-40
,表3列出了不同ph值时的ti(oh)4的沉淀条件,如下所示:表3
表4列出了具体的粒径统计及频率分布,如下所示:表4本发明钢板镀铬溶液使用寿命的检测方法的步骤如下:步骤一,基于溶液ph值、杂质离子的粒径和频率分布、杂质离子的沉积物质量、镀铬溶液的使用寿命建立关系模型,包括第一关系模型和第二关系模型。第一关系模型主要用于检测使用寿命在3个月以上的现场镀铬溶液,第二关系模型主要用于检测使用寿命少于3个月的现场镀铬溶液。一般来说,根据镀铬溶液所处的阶段、使用时间和使用寿命的检测记录可以对镀铬溶液的使用寿命作初步的大致估算。
[0020]
具体地,第一关系模型为:当第一溶液的ph值为3时,粒径为5.6~20.0μm的杂质离子的频率分布小于70%且沉积物质量小于0.5g,则镀铬溶液的使用寿命为大于9个月;当第一溶液的ph值为4时,粒径为20.0~50.0μm的杂质离子的频率分布大于50%且沉积物质量为0.5~1g时,则镀铬溶液的使用寿命为6~9个月;当第一溶液的ph值为5时,粒径为50.0~100.0μm的杂质离子的频率分布大于50%时且沉积物质量为1~2g时,则镀铬溶液的使用寿命为3~6个月;当第一溶液的ph值为6时,粒径大于100.0μm的杂质离子的频率分布大于50%时且沉积物质量大于2g时,则镀铬溶液的使用寿命为3~6个月;其中,所述第一溶液为从现场取样1l镀铬溶液并加入质量浓度为30%的双氧水50~100ml得到,再加入适量的质量浓度30%的氨水或浓度为20g/l碳酸钠用于调控第一溶液的ph值。通过粒度分析得到第一溶液中杂质离子的粒径和频率分布。通过离心沉降得到第一溶液中杂质离子的沉积物,并对沉积物烘干称重。
[0021]
具体地,第二关系模型为:当第二溶液的ph值为2时,如沉积物质量小于20g,则镀铬溶液的使用寿命为约2个月;如沉积物质量大于等于20g,则镀铬溶液的使用寿命为约1个月;其中,所述第二溶液为从现场取样1l镀铬溶液取样、先加入质量浓度为30%的双氧水50
~100ml、再添加含有1g/l三价铁离子、0.05g/l铝离子和0.03g/l钛离子的混合溶液200ml得到,然后第二溶液中加入质量浓度30%的氨水或浓度为20g/l碳酸钠使其ph值为2。将ph值为2的第二溶液作为电解液进行模拟电镀试验(电流密度≥40a/dm2,处理时间为2~5分钟)后进行离心沉降得到沉积物,并对沉积物烘干称重。
[0022]
步骤二,取不同时间或不同阶段机组的镀铬溶液1l,并检测镀铬溶液的ph值。镀铬溶液包括金属铬段溶液和氧化铬段溶液,并做好标记。用ph计对不同时间或不同阶段机组的镀铬溶液进行ph数值检测,由于电极的响应会发生变化,为了获得精确的测量结果,在每次测量ph数值之前,需要对ph计进行校准。
[0023]
步骤三,将质量浓度为30%的双氧水50~100ml加入镀铬溶液得到第一溶液,即控制双氧水和镀铬溶液的质量比为5~10:100。双氧水的作用是将镀铬溶液中部分二价铁氧化成三价铁,三价铁更容易形成fe(oh)3沉淀物。
[0024]
步骤四,将质量浓度为30%的氨水或浓度为20g/l的碳酸钠加入第一溶液进行ph值特性调控,逐步增大ph值,并控制ph值的数值范围为3~6。氨水或碳酸钠的主要作用是调整溶液ph值,当ph值在数值范围3~6时有利于促进三价铁形成沉淀物。ph值特性调控的数值精确度可以通过滴定等方式实现,以满足关系模型中的ph值条件,误差允许范围为
±
0.05,例如ph值需要调控为3时,实际检测到的ph值可以在2.95~3.05范围内。
[0025]
步骤五,对第一溶液进行粒度分析得到溶液中杂质离子的粒径和频率分布;对第一溶液进行离心沉降得到杂质离子的沉积物,并对沉积物烘干称重。优选地,离心沉降的转速为3000~5000rpm。
[0026]
步骤六,根据第一关系模型,如满足条件则得到相应的镀铬溶液的使用寿命,否则重复步骤二至步骤五,需要注意的是每次从现场取样的镀铬溶液在经过步骤二至步骤五的处理后如不符合第一模型中的条件则需要重新取样后再进行步骤二至步骤五,并进一步增大溶液ph值的调控数值;如第一溶液的ph值在所述数值范围内均不能满足第一关系模型中的条件,则进入下一步骤。
[0027]
步骤七,先重复步骤二和步骤三,然后在第一溶液中添加含有1g/l三价铁离子、0.05g/l铝离子和0.03g/l钛离子的混合溶液200ml得到第二溶液,即控制混合溶液和第一溶液的质量比为18.2~19:100;将质量浓度为30%的氨水或浓度为20g/l的碳酸钠加入第二溶液使其ph值为2;以第二溶液为电解液进行模拟电镀试验后进行离心沉降得到沉积物,并对沉积物烘干称重。根据第二关系模型,得到镀铬溶液的使用寿命。优选地,混合溶液包括可溶性盐物质,可溶性盐物质为fecl3、feso4、alcl3或ticl4;模拟电镀试验的电流密度≥40a/dm2,电解处理时间为2~5分钟;离心沉降的转速为3000~5000rpm。
[0028]
另外,当金属铬段溶液的ph值应大于1.1,氧化铬段溶液的ph值应大于1.5的情况下,如杂质离子fe
3
的浓度大于0.8g/l,al
3
的浓度大于0.5g/l,ti
3
的浓度大于153mg/l,杂质离子粒径大于25.08μm时,则镀铬溶液处于不健康状态,需要对其进行及时处理,如净化或更换。
[0029]
实施例1取现场新配置的金属铬段镀铬溶液1l,检测该镀铬溶液的ph值为0.7,并加入30%的双氧水50ml得到第一溶液,采用质量浓度为30%的氨水或浓度为20g/l碳酸钠进行ph值调控,将第一溶液的ph值调控为3,再对第一溶液进行粒度分析得到第一溶液中杂质离子的粒径
和频率分布,并采用离心沉降得到沉积物,离心沉降转速为3000~5000rpm,沉积物烘干称重。
[0030]
检测结果为:第一溶液的ph值调控为3时得到粒径为5.6~20.0μm的杂质离子的频率分布为68.89%,即小于70%,而且相应的沉积物质量小于0.2g,则根据第一关系模型得到该镀铬溶液的使用寿命为大于9个月。
[0031]
实施例2取现场的金属铬段镀铬溶液1l,检测该镀铬溶液的ph值为0.98,并加入30%的双氧水50ml得到第一溶液,采用质量浓度为30%的氨水或浓度为20g/l碳酸钠进行ph值调控,先将ph值调控为3,再对第一溶液进行粒度分析得到第一溶液中杂质离子的粒径和频率分布,并采用离心沉降得到沉积物,离心沉降转速为3000~5000rpm,沉积物烘干称重,得到的粒径为5.6~20.0μm的杂质离子的频率分步和沉积物质量均不满足第一关系模型中的条件。
[0032]
重新从现场取样金属铬段镀铬溶液1l,检测该镀铬溶液的ph值为0.98,并加入30%的双氧水50ml得到第一溶液,采用质量浓度为30%的氨水或浓度为20g/l碳酸钠将ph值调控为4,再对第一溶液进行粒度分析得到第一溶液中杂质离子的粒径和频率分布,并采用离心沉降得到沉积物,离心沉降转速为3000~5000rpm,沉积物烘干称重,检测结果为:当第一溶液的ph值调控为4时得到粒径为20.0~50.0μm的杂质离子的频率分布大于92.99%,沉积物质量为0.75g,则根据第一关系模型得到该镀铬溶液的使用寿命为6~9个月。
[0033]
实施例3取现场的氧化铬段镀铬溶液1l作为第一溶液,检测该镀铬溶液的ph值为1.08,并加入30%的双氧水50ml得到第一溶液,采用质量浓度为30%的氨水或浓度为20g/l碳酸钠进行ph值调控,ph值数值调控范围为3~6,每一次调控完ph值后对第一溶液进行粒度分析得到第一溶液中杂质离子的粒径和频率分布,并采用离心沉降得到沉积物,离心沉降转速为3000~5000rpm,沉积物烘干称重。当ph值调控在某一数值时,如第一溶液中相应粒径的杂质离子的频率分布或沉积物质量不符合第一关系模型中的条件,则重新从现场取样并重复相应的步骤,具体可参考实施例2。
[0034]
检测结果为:当第一溶液的ph值调控为5时得到粒径为50.0~100μm的杂质离子的频率分布大于62.51%,沉积物质量为1.8g,则根据第一关系模型得到该镀铬溶液的使用寿命为3~6个月。
[0035]
实施例4取现场的金属铬段镀铬溶液1l,检测该镀铬溶液的ph值为0.88,并加入30%的双氧水50ml得到第一溶液,采用质量浓度为30%的氨水或浓度为20g/l碳酸钠进行ph值调控,ph值数值调控范围为3~6,每一次调控完ph值后对第一溶液进行粒度分析得到第一溶液中杂质离子的粒径和频率分布,并采用离心沉降得到沉积物,离心沉降转速为3000~5000rpm,沉积物烘干称重。当ph值调控在某一数值时,如第一溶液中相应粒径的杂质离子的频率分布或沉积物质量不符合第一关系模型中的条件,则重新从现场取样并重复相应的步骤,具体可参考实施例2。
[0036]
检测结果为:当第一溶液的ph值调控为6时得到粒径大于100μm的杂质离子的频率分布大于69.43%,沉积物质量为2.8g,则根据第一关系模型得到该镀铬溶液的使用寿命为3~6个月。
[0037]
实施例5取现场的金属铬段镀铬溶液1l,检测该镀铬溶液的ph值为0.95,并加入30%的双氧水50ml得到第一溶液,采用质量浓度为30%的氨水或浓度为20g/l碳酸钠进行ph值调控,ph值数值调控范围为3~6,每一次调控完ph值后对第一溶液进行粒度分析得到第一溶液中杂质离子的粒径和频率分布,并采用离心沉降得到沉积物,离心沉降转速为3000~5000rpm,沉积物烘干称重。当ph值调控在某一数值时,如第一溶液中相应粒径的杂质离子的频率分布或沉积物质量不符合第一关系模型中的条件,则重新从现场取样并重复相应的步骤,具体可参考实施例2。实施例5中,将第一溶液的ph值数值调控范围为3~6时,第一溶液中相应粒径的杂质离子的频率分布和沉积物质量不符合第一关系模型中的条件,则判断该镀铬溶液的使用寿命应少于3个月,则需要重新取样检测并由第二关系模型得到该镀铬溶液的使用寿命。
[0038]
重新从现场取样金属铬段镀铬溶液1l,检测该镀铬溶液的ph值为0.95,先加入30%的双氧水50~100ml,再添加含有1g/l三价铁离子、0.05g/l铝离子和0.03g/l钛离子的混合溶液200ml(包括可溶性盐物质,例如fecl3、feso4、alcl3或ticl4)得到第二溶液,采用质量浓度30%的氨水或浓度为20g/l碳酸钠对第二溶液进ph值调控得到ph值为2的第二溶液。以ph值为2的第二溶液为电解液进行模拟电镀试验,其中,电流密度为45a/dm2,电解处理时间为5分钟,然后进行离心沉降得到沉积物,离心沉降转速为3000~5000rpm,沉积物烘干称重,沉积物质量为27g,则根据第二关系模型得到该镀铬溶液的使用寿命为1个月左右。
[0039]
本发明钢板镀铬溶液使用寿命的检测方法,开发了一种有效评价镀铬溶液使用寿命的检测方法,能提前判断镀铬溶液的健康状态,减少了不合格镀铬钢板的产出,并能有助于提高镀铬钢板表面镀层质量。
[0040]
以上仅为本发明的较佳实施例而已,并非用于限定本发明的保护范围,因此,凡在本发明的精神和原则之内所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。
再多了解一些

本文用于企业家、创业者技术爱好者查询,结果仅供参考。

发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表

相关文献