一种残膜回收机防缠绕挑膜装置的制 一种秧草收获机用电力驱动行走机构

基于发光材料的空气动力学测试方法与流程

2022-02-20 19:31:15 来源:中国专利 TAG:

1.本发明属于光学测量与传感领域,具体是指一种利用应力发光材料在外力作用下辐射的光信号,为空气动力学实物实验提供全角度、无接触、可定量、可回溯评估指标的测试方法,具体涉及一种基于发光材料的空气动力学测试方法。


背景技术:

2.空气动力学实验是空气动力学研究的基本手段,主要研究空气运动规律、空气与物体相互作用等内容。空气动力学实验包括实物实验和模型实验两大类:前者可对实物在空气中高速运动时的受力特性、空气流动规律和伴随发生的物理化学现象进行准确测试,是鉴定各类飞行器气动性能、校准模型实验结果的最终手段,然而测试费用昂贵、条件难于控制;后者主要通过模拟真实流场评估飞行器气动性能,实验易于开展且具备全角度、无接触、可定量、可回溯等优点,然而,仿真模型与真实环境存在参数失真问题,仅适用于产品初级设计阶段,最终仍需开展实物实验。
3.按照空气与实物的运动情况,可将空气动力学实验分为三类:实物静止、空气运动,典型如风洞实验;空气静止、实物运动,典型如飞行实验、火箭橇实验、旋臂实验;空气实物均运动,典型如风洞飞行实验、尾旋实验等。以风洞实验为例,将实物(模型)置于可控气流吹过的管道内,测量作用在实物上的空气动力并观测表面/周围的空气流动现象;单次测试获得的信息越全面、越精确、风洞实验效果越好;空气动力测试手段应尽量避免对实物结构参数的改动;空气流场测试方法应尽量避免影响空气流动(即具备无接触特性);空气动力和空气流场测试结果应具备可视化属性,以获得全面、精确、定量数据。


技术实现要素:

4.针对现有技术中空气动力学实物实验测试成本较高、条件难于控制,迫切需要提高单次实验效率的问题,为了获得更加全面、更加精确、能定量分析、可存储回溯的空气动力和空气流场数据,本发明提出了一种基于发光材料的空气动力学测试方法,能够通过应力致辐射光的强度分布测量实物表面空气动力分布,通过波前畸变分析获取空气流场分布,对飞行器、车辆等高速移动物体的空气动力学设计提供重要支撑。
5.为了达到上述效果,本发明提供的基于发光材料的空气动力学测试方法,包括:
6.步骤一、将应力发光材料喷涂于空气动力学实物实验中的实物表面;
7.步骤二、在空气动力的作用下应力发光材料实现动能向光能的转换,在机械力作用下会辐射光信号,光信号强度与应力大小满足正相关定量关系;
8.步骤三、对光辐射信号的强度信息和相位信息分别进行阵列成像、参量还原、立体重构,实物表面的空气动力分布和空气流场分布。
9.优选的,上述步骤一中辐射信号强度同空气动力大小正相关。
10.优选的,上述光辐射信号在传输过程中受到湍流影响产生波前畸变,波前畸变大小同湍流强度正相关。
11.优选的,上述步骤三通过成像系统、强度探测器、相位探测器的配合使用来实现。
12.优选的,上述强度探测器和相位探测器为阵列型,探测结果为辐射光强度/相位分布而非单一数值。
13.优选的,上述成像系统将实物表面光辐射信号分布清晰完整地成像于探测器光敏面,根据实物大小进行视场或焦距调整。
14.优选的,上述强度探测器和相位探测器通过分束器共享同一成像系统,也可各自配置成像系统。
15.一种实现如上述基于发光材料的空气动力学测试方法的系统,包括阵列型强度探测器、阵列型相位探测器、成像系统、探测系统,强度探测器和相位探测器探测结果为辐射光强度/相位分布而非单一数值;所述成像系统将实物表面光辐射信号分布清晰完整地成像于探测器光敏面,可根据实物大小进行视场或焦距调整;所述探测系统可针对单一参量独立测量,也可同时对多个参量进行测量;所述强度探测器和相位探测器可通过分束器共享同一成像系统,也可各自配置成像系统;所述成像系统可根据背景光情况进行遮挡封装或配置带阻滤波器以降低环境光噪声影响。
16.优选的,上述成像系统、强度探测器、相位探测器的配合使用,对光辐射信号的强度信息和相位信息分别进行阵列成像、参量还原、立体重构,实物表面的空气动力分布和空气流场分布。
17.一种计算机可读存储介质,其上存储有计算机程序,该程序被处理器执行时实现上述方法的步骤。
18.与现有技术相比,本发明为提升空气动力学单次实验效率提供一种全角度、无接触、可定量、可回溯的测试方法,“全角度”体现在通过精确控制成像系统的数量和角度、阵列型强度/相位探测器的灵敏度等参数,在无遮挡条件下有望获取实物表面空气动力分布和空气流场分布的全面信息;“无接触”体现在测量过程中毋须在实物表面安装各类力学传感器,大大降低对实物结构参数的影响,测试结果更加真实可靠;“可定量”体现在能够通过光辐射强度与应力大小之间的对应关系对空气动力分布(而非简单的空气动力值甚至是损坏阈值)进行精准测量;“可回溯”体现在通过重构建模可对各种测试结果(随时间演变过程)的立体显示,将空气动力和空气流场作为空气动力学实物实验的常规指标建档存储,既为空气动力学研究提供了原始数据参考,又为空气动力学设计优化提供了可反复分析的重要依据。
附图说明
19.为了更清楚地说明本发明实施例的技术方案,下面将对本发明实施例中所需要使用的附图作简单地介绍,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
20.图1示出了本发明基于应发光材料的设备安全性与环境适应性测量方法示意图。
具体实施方式
21.下面将详细描述本发明的各个方面的特征和示例性实施例,为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细描
述。应理解,此处所描述的具体实施例仅被配置为解释本发明,并不被配置为限定本发明。对于本领域技术人员来说,本发明可以在不需要这些具体细节中的一些细节的情况下实施。下面对实施例的描述仅仅是为了通过示出本发明的示例来提供对本发明更好的理解。
22.需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括
……”
限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
23.本发明提供一种基于发光材料的空气动力学测试方法的实施例,将应力发光材料喷涂与待测实物表面并置于空气动力学实验环境中;应力发光材料在空气动力的作用下产生光辐射信号;光辐射信号传输过程中受到空气流场的扰动产生波前畸变(相位起伏);通过多个强度探测器和相位探测器可分别提取辐射光信号的强度分布信息和相位抖动信息,并通过光辐射强度与应力大小、波前畸变程度与湍流关系,重构实物表面空气动力分布和实物附近空气流场分布。
24.本发明提供一种基于发光材料的空气动力学测试方法的实施例,包括:
25.s101、将应力发光材料喷涂于空气动力学实物实验中的实物表面;
26.s102、在空气动力的作用下应力发光材料实现动能向光能的转换,在机械力作用下会辐射光信号,光信号强度与应力大小满足正相关定量关系;
27.s103、对光辐射信号的强度信息和相位信息分别进行阵列成像、参量还原、立体重构,实物表面的空气动力分布和空气流场分布。
28.在一些实施例中,应力发光材料包括zns、zns:cu
2
、zns:mn
2
、zns:al
3
/cu
2
、zns:mn
2
/cu
2
、zns:al
3
/mn
2
/cu
2
、sral2o4ca、caznos:sr、caznos:mn、caznos:pr、caznos:ho、caznos:er、caznos:dy、caznos:sm、caznos:eu、caznos:tm、caznos:nd、caznos:yb等其中任意一种。
29.在一些实施例中,应力发光材料实现动能向光能的转换,在机械力作用下会辐射光信号,光信号强度与应力大小满足正相关定量关系;辐射光信号既可处于可见光波段,也可处于紫外、近红外、中红外、远红外等不可见光波段。
30.在一些实施例中,辐射信号强度同空气动力大小正相关。
31.在一些实施例中,光辐射信号在传输过程中受到湍流影响产生波前畸变,波前畸变大小同湍流强度正相关。
32.在一些实施例中,通过成像系统、强度探测器、相位探测器的配合使用,对光辐射信号的强度信息和相位信息分别进行阵列成像、参量还原、立体重构,实物表面的空气动力分布和空气流场分布,为飞行器、车辆等高速移动物体的空气动力学设计提供重要支撑。
33.在一些实施例中,强度探测器和相位探测器为阵列型,探测结果为辐射光强度/相位分布而非单一数值。
34.在一些实施例中,成像系统将实物表面光辐射信号分布清晰完整地成像于探测器光敏面,根据实物大小进行视场或焦距调整。
35.在一些实施例中,强度探测器和相位探测器通过分束器共享同一成像系统,也可各自配置成像系统。
36.本发明提供一种实现基于发光材料的空气动力学测试方法的系统,包括阵列型强度探测器、阵列型相位探测器、成像系统、探测系统。
37.在一些实施例中,强度探测器和相位探测器探测结果为辐射光强度/相位分布而非单一数值;
38.在一些实施例中,成像系统将实物表面光辐射信号分布清晰完整地成像于探测器光敏面,可根据实物大小进行视场或焦距调整;
39.在一些实施例中,探测系统可针对单一参量(空气动力、空气流场)独立测量,也可同时对多个参量进行测量;
40.在一些实施例中,强度探测器和相位探测器可通过分束器共享同一成像系统,也可各自配置成像系统;
41.在一些实施例中,成像系统可根据背景光情况进行遮挡封装或配置带阻滤波器以降低环境光噪声影响。
42.在一些实施例中,实物表面部分位置可安装人工导星辅助空气流场探测。
43.在一些实施例中,成像系统、强度探测器、相位探测器的配合使用,对光辐射信号的强度信息和相位信息分别进行阵列成像、参量还原、立体重构,实物表面的空气动力分布和空气流场分布。
44.本发明提供一种基于发光材料的空气动力学测试方法的实施例,以风洞实验为例,将应力发光材料喷涂于实物(模型)表面并将该实物模型置于风洞内,控制流过风洞的气流参数;空气与实物间相对运动(冲击、摩擦、浮力等)会引起实物表面应力变化,应力发光材料将机械能转化为光能并辐射光信号,光信号强度同应力大小正相关;利用三个或三个以上强度探测器/相位探测器对实物表面辐射光进行强度/相位探测成像;通过光强分布/波前畸变的测试结果构建空气动力分布/空气流场的可视化定量测试结果;通过对单次测试结果的存档回溯和定量分析,既可形成以系统化、精确化、标准化评估指标体系,又可对设计中潜藏的薄弱环节进行精准定位,为各种飞行器、车辆等高速移动物体的迭代优化提供重要依据。
45.如图1所示,本发明还提供了一种实施例,基于应力发光材料的风洞实物实验测试方法,实物(图中飞机模型所示)置于风洞管道中央,可控气流吹入管道内形成的强风作用于实物表面的应力发光材料产生辐射光信号;三个或三个以上成像系统对实物进行全视场成像并收集辐射光信号(图中虚线所示),经分束器分成两路,分别被强度探测器和相位探测器接收;强度探测结果可重构实物表面的光强分布并由此推知空气动力分布;相位探测结果可重构实物表面辐射光信号在传输过程中由湍流产生的波前畸变并由此推知空气流场分布信息;测量结果既可为空气动力学实物实验提供定量评估标准,也可为空气动力学设计优化提供重要参考依据。
46.本发明提供的实施例将应力发光材料喷涂与待测实物表面并置于空气动力学实验环境中;应力发光材料在空气动力的作用下产生光辐射信号;光辐射信号传输过程中受到空气流场的扰动产生波前畸变(相位起伏);通过多个强度探测器和相位探测器可分别提取辐射光信号的强度分布信息和相位抖动信息,并通过光辐射强度与应力大小、波前畸变
程度与湍流关系,重构实物表面空气动力分布和实物附近空气流场分布。
47.本发明还提供一种计算机可读存储介质的实施例,其上存储有计算机程序,该程序被处理器执行时实现上述方法的步骤。
48.本发明提供的实施例,对应参量不局限于空气动力和空气流场,凡通过发光材料产生光辐射信号探测其它参量的传感技术均处于本发明所述测量方法范畴内(如基于热致发光材料的空气摩擦致热测量);本发明不限制探测器型号、数量、位置,不限制建模重构算法和具体展示形式;应用模式包括但不限于飞行器、车辆的空气动力学测试、涡轮叶片形变测试、风车风力监控等。
49.与现有技术空气动力学实物实验不可或缺,然而费用昂贵且实验条件难于控制的劣势相比,本发明为提升空气动力学单次实验效率提供一种全角度、无接触、可定量、可回溯的测试方法:“全角度”体现在通过精确控制成像系统的数量和角度、阵列型强度/相位探测器的灵敏度等参数,在无遮挡条件下有望获取实物表面空气动力分布和空气流场分布的全面信息;“无接触”体现在测量过程中毋须在实物表面安装各类力学传感器,大大降低对实物结构参数的影响,测试结果更加真实可靠;“可定量”体现在能够通过光辐射强度与应力大小之间的对应关系对空气动力分布(而非简单的空气动力值甚至是损坏阈值)进行精准测量;“可回溯”体现在通过重构建模可对各种测试结果(随时间演变过程)的立体显示,将空气动力和空气流场作为空气动力学实物实验的常规指标建档存储,既为空气动力学研究提供了原始数据参考,又为空气动力学设计优化提供了可反复分析的重要依据。
50.为了描述的方便,描述以上装置时以功能分为各种单元分别描述。当然,在实施本技术时可以把各单元的功能在同一个或多个软件和/或硬件中实现。
51.本领域内的技术人员应明白,本发明的实施例可提供为方法、系统、或计算机程序产品。因此,本发明可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本发明可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、cd-rom、光学存储器等)上实施的计算机程序产品的形式。
52.本发明是参照根据本发明实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
53.本技术可以在由计算机执行的计算机可执行指令的一般上下文中描述,例如程序模块。一般地,程序模块包括执行特定任务或实现特定抽象数据类型的例程、程序、对象、组件、数据结构等等。也可以在分布式计算环境中实践本技术,在这些分布式计算环境中,由通过通信网络而被连接的远程处理设备来执行任务。在分布式计算环境中,程序模块可以位于包括存储设备在内的本地和远程计算机存储介质中。
54.这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或
多个方框中指定的功能。
55.这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
56.在一个典型的配置中,计算设备包括一个或多个处理器(cpu)、输入/输出接口、网络接口和内存。
57.内存可能包括计算机可读介质中的非永久性存储器,随机存取存储器(ram)和/或非易失性内存等形式,如只读存储器(rom)或闪存(flashram)。内存是计算机可读介质的示例。
58.计算机可读介质包括永久性和非永久性、可移动和非可移动媒体可以由任何方法或技术来实现信息存储。信息可以是计算机可读指令、数据结构、程序的模块或其他数据。计算机的存储介质的例子包括,但不限于相变内存(pram)、静态随机存取存储器(sram)、动态随机存取存储器(dram)、其他类型的随机存取存储器(ram)、只读存储器(rom)、电可擦除可编程只读存储器(eeprom)、快闪记忆体或其他内存技术、只读光盘只读存储器(cd-rom)、数字多功能光盘(dvd)或其他光学存储、磁盒式磁带,磁带磁磁盘存储或其他磁性存储设备或任何其他非传输介质,可用于存储可以被计算设备访问的信息。按照本文中的界定,计算机可读介质不包括暂存电脑可读媒体(transitory media),如调制的数据信号和载波。
59.还需要说明的是,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、商品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、商品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个
……”
限定的要素,并不排除在包括所述要素的过程、方法、商品或者设备中还存在另外的相同要素。
60.本说明书中的各个实施例均采用递进的方式描述,各个实施例之间相同相似的部分互相参见即可,每个实施例重点说明的都是与其他实施例的不同之处。尤其,对于系统实施例而言,由于其基本相似于方法实施例,所以描述的比较简单,相关之处参见方法实施例的部分说明即可。
61.以上所述仅为本技术的实施例而已,并不用于限制本技术。对于本领域技术人员来说,本技术可以有各种更改和变化。凡在本技术的精神和原理之内所作的任何修改、等同替换、改进等,均应包含在本技术的权利要求范围之内。
再多了解一些

本文用于企业家、创业者技术爱好者查询,结果仅供参考。

发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表

相关文献