一种残膜回收机防缠绕挑膜装置的制 一种秧草收获机用电力驱动行走机构

一种多陶瓷热障涂层的残余应力检测方法与流程

2022-02-20 14:33:41 来源:中国专利 TAG:


1.本发明涉及陶瓷热障涂层应力检测技术领域,尤其涉及多陶瓷热障涂层的残余应力检测方法。


背景技术:

2.随着发动机推重比及进气口温度的不断增加,传统8ysz材料在大于1200℃使用时会发生明显烧结和相结构转变,为了延长tbcs使用寿命同时适应更高温度需求,双陶瓷tbcs结构应用而生。即就是新材料被制备于8ysz材料之上保护底下的8ysz材料及底层高温合金,8ysz材料可以缓和上层陶瓷层及基体之间的热膨胀不匹配,从而适用更高温度的使用工况。但是双陶瓷tbcs服役环境更加复杂,失效位置更多位于陶瓷层内部,因此陶瓷层内部的应力的演化过程是失效的机理的研究核心。材料断裂的精确计算设计混沌理论等数学上无法精确求解的理论,纯粹理论方法对于涂层失效的研究效果是有限的,这就需要实验上提供足够的热障涂层热循环过程中的应力信息。尽管现有很多方法能测量材料的应力,但是tbc热循环过程中的应力很复杂,加上各种测量方法本身的限制,对tbc的应力测量仍有很高难度。近年来,有关涂层应力测量的研究工作也比较多,衍射法因测试过程不损害涂层具有明显优势,最常用的x射线衍射(x-ray diff raction)、拉曼光谱(raman spectra)和中子衍射(neutron diff raction)技术等。而x射线和拉曼主要缺点是其探测深度较浅,通常为几十微米,仅能反映涂层表层应力状态,且尽管中子衍射可探测涂层深部的残余应力,但是能够达到较高分辨率的中子源在世界范围屈指可数,极大限制了其在tbc中的应用。


技术实现要素:

3.本发明的目的是提供一种多陶瓷热障涂层的残余应力检测方法,通过陶瓷材料中混合一定比例易受晶体场影响且对环境变化特别敏感的荧光材料,利用等离子喷涂技术将混合好粉末材料喷涂于细长结构的长方体条状基体上,构建荧光发光峰与应力状态关系,通过对服役后热障涂层荧光发射谱峰信息采集,进而实现陶瓷热障涂层陶瓷层内部残余应力的测试,且通过依次沉积不同掺杂体系的陶瓷热障涂层材料,实现多陶瓷涂层的应力检测。
4.本发明多陶瓷热障涂层的残余应力检测方法,包括以下步骤:
5.(1)混料:将陶瓷层材料粉末与发光特性荧光材料粉末混合,利用混料机将复合粉末混合均匀,得到混合陶瓷粉末;
6.(2)喷涂:对细长状金属基体进行喷砂处理,然后利用等离子喷涂系统,将步骤(1)所得混合陶瓷粉末喷于所述金属基体上,得到陶瓷热障涂层;
7.(3)构建荧光发光峰与应力状态关系:将步骤(2)制备的陶瓷热障涂层样品置于电子万能试验机进行三点弯曲变形实验,对涂层面朝上和朝下分别进行应力加载,对加载后的涂层选取每5~10mm固定间隔点的试样,利用荧光分度计进行荧光检测,得到涂层发射光
谱,分析不同应力状态下荧光发射光谱特征峰位移与未施加应力的喷涂态峰位移偏差,构建并拟合应力与发射光谱特征峰位移关系,得到应力检测依据,获得应力与受力后荧光峰偏移关系;所述应力为压应力或拉应力;
8.(4)应力检测:陶瓷热障涂层服役一段时间后,检测其荧光发射光谱特征峰位移,通过获得不同掺杂体系的发射谱峰信息,利用已知应力与特征峰关系,反推涂层应力,实现陶瓷热障涂层残余应力检测;
9.(5)重复步骤(1)~(3),在金属基体依次沉积不同掺杂体系的混合陶瓷粉末,得到不同陶瓷热障涂层,构建不同陶瓷热障涂层的应力与发射光谱特征峰位移关系;然后按照步骤(4)的方法,实现多陶瓷热障涂层残余应力检测。
10.优选的,步骤(1)所述陶瓷涂层材料为la2zr2o7(lzo)和gd2zr2o7(gzo)中的任意一种,所述荧光材料为y2o3:eu
3
荧光粉末,所述荧光材料与陶瓷层材料的质量比为1%~30%。
11.优选的,步骤(1)所述混料机的转速为300~600r/min。
12.优选的,步骤(1)所述混料机中有混料球,球料比10:1~10:4,所述混料球为氧化锆或氧化铝球。
13.优选的,步骤(2)所述基体尺寸为长度10~20cm,厚度3~5mm,宽度5~10mm。
14.优选的,步骤(2)所述喷砂采用的是粒度100目~300目的刚玉砂,喷砂压力0.6~0.8mpa。
15.优选的,步骤(2)所述等离子喷涂系统的喷涂功率为20~45kw,喷涂距离为70~120mm。
16.优选的,步骤(2)所述涂层厚度为150~500μm。
17.优选的,步骤(3)所述三点弯曲变形实验的跨度为10~20cm,加载速度为0.1mm/min~0.05mm/min,所述跨度的具体值根据样品尺寸确定。
18.优选的,步骤(3)所述荧光检测采用cukα靶,波长为电流为80ma~120ma,电压为60kv~100kv,扫描范围为20
°
~100
°
,步长为0.02
°
~0.06
°

19.本技术多陶瓷热障涂层的残余应力检测方法,可依次沉积不同掺杂体系的陶瓷热障涂层材料:a a1,b b1
……
n n1(其中a,b

n可以为相同材料,也可是不同材料。a1,b1

n1同理),如图1所示。构建不同陶瓷涂层的应力与发射光谱特征峰位移关系,实现多陶瓷涂层的应力检测。
20.与现有技术相比,本发明具有以下有益效果:
21.本发明利用荧光粒子发射谱特征峰在受到应力后,荧光粒子基质晶格畸变导致其发射谱特征峰定量偏移,通过确定应力与荧光发射谱特征峰位移的定量对应关系,构建tbcs应力测试基础。选不同发光特性荧光粉末作为应力响应单元。通过对服役后热障涂层荧光发射谱峰信息采集,进而实现多陶瓷热障涂层陶瓷层内部残余应力的测试。
附图说明
22.图1为依次沉积不同掺杂体系的陶瓷层材料的示意图;
23.图2为实施例1发射光谱中波长为624nm对应发光强度随eu
3
添加量变化趋势图;
24.图3为实施例1不同拉应力下(lzo/y2o3:eu
3
)复合体系归一化荧光发射光谱图
(600~630nm范围);
25.图4为实施例1中归一化光谱的谱带重心波长与拉应力的拟合函数曲线;
26.图5为实施例1中归一化光谱的谱带重心波长与压应力的拟合函数曲线;
具体实施方式
27.下面结合实施例对本发明作进一步说明。
28.本发明提供了一种多陶瓷热障涂层的残余应力检测方法,首先进行混料,将陶瓷层材料与发光特性荧光材料按照不同质量比混合,构成复合发光体系。
29.以陶瓷层材料la2zr2o7和发光特性荧光材料y2o3:eu
3
荧光粉末为例,发射光谱中波长为624nm对应发光强度随eu
3
添加量变化趋势图,如图2所示。如图2所示,随着荧光材料添加量的增加,发光峰最强峰强先增后减,在添加量为6%时达到最大。对于其他不同陶瓷体系存在类似情况。
30.以下实施例中,为确保检测信号强度,并最大程度不影响涂层本身性能,限定荧光材料为y2o3:eu
3
荧光粉末,荧光材料添加量为6%。
31.实施例1
32.一种多陶瓷热障涂层的残余应力检测方法,步骤如下:
33.(1)混料:将陶瓷层材料la2zr2o7与发光特性荧光材料y2o3:eu
3
荧光粉末按照质量比为6%混合,利用行星式混料机将复合粉末混合均匀,得到混合陶瓷粉末;
34.所述混料机的转速为500r/min;所述混料机中有氧化锆混料球,球料比10:1;
35.(2)喷涂:对细长状金属基体(长度15cm,厚度3mm,宽度5mm)进行喷砂处理,然后利用等离子喷涂系统,将步骤(1)所得混合陶瓷粉末喷于所述金属基体上,得到厚度为300μm的复合涂层(lzo/y2o3:eu
3
);
36.所述喷砂采用的是粒度300目的刚玉砂,喷砂压力0.6mpa;所述等离子喷涂系统的喷涂功率为35kw,喷涂距离为85mm;
37.(3)构建荧光发光峰与应力状态关系:将步骤(2)制备的复合涂层样品置于电子万能试验机进行三点弯曲变形实验,对涂层面朝上和朝下分别进行应力加载,对加载后的涂层选取每5~10mm固定间隔点的试样,利用荧光分度计进行荧光检测,得到复合涂层发射光谱,分析不同应力状态下荧光发射光谱特征峰位移与未施加应力的喷涂态峰位移偏差,构建并拟合应力与发射光谱特征峰位移关系,得到陶瓷热障涂层内部的应力检测依据,获得压应力和拉应力与受力后荧光峰偏移关系;
38.所述三点弯曲变形实验的跨度为14cm,加载速度为0.05mm/min,所述跨度的具体值根据样品尺寸确定;所述荧光检测采用cukα靶,波长为电流为8100ma,电压为80kv,扫描范围为20
°
~100
°
,步长为0.05
°

39.测试不同拉应力下(lzo/y2o3:eu
3
)复合体系归一化荧光发射光谱,如图3所示。由图3可知,在拉应力的作用下,样品的荧光发射光谱在616
±
1nm处的峰值波长表现出eu
3
的特征发射峰,荧光发射峰的重心波长发生了可见的偏移,荧光光谱发射带向长波长方向移动。由于拉应力的作用下,试样变形区范围内的横截面积变小,激发光照射范围内被激发的荧光颗粒数量相应的减小。
40.将不同拉应力下光谱的谱带重心波长数据进行线性拟合,得到(lzo/y2o3:eu
3
)复
合体系的拉应力状态与荧光光谱带的重心波长之间的关系。图4为(lzo/y2o3:eu
3
)复合体系归一化光谱计算得到的谱带重心波长与拉应力的拟合函数曲线,谱带重心与拉应力呈线性关系,拉应力传感方程为λ
t
=614.0747 0.16931σ
t
,灵敏度为0.16931nm/n,r2=0.96721。
41.将不同压应力下光谱的谱带重心波长数据进行线性拟合,得到(lzo/y2o3:eu
3
)复合体系的压应力状态与荧光光谱带的重心波长之间的关系。图5为(lzo/y2o3:eu
3
)复合体系归一化光谱计算得到的谱带重心波长与压应力的拟合函数曲线,谱带重心与压应力呈线性关系,压应力传感方程为λ
p
=618.51424-0.20856σ
p
,灵敏度为0.20856nm/n,r2=0.99489。
42.(4)应力检测:将复合热障涂层置于1150℃梯度热循环服役4400分钟后,通过上述应力传感方程,推测出涂层内部服役后压应力为160mpa。
43.实施例2
44.一种多陶瓷热障涂层的残余应力检测方法,步骤如下:
45.(1)混料:将陶瓷层材料gd2zr2o7(gzo)与发光特性荧光材料y2o3:eu
3
荧光粉末按照质量比为6%混合,利用行星式混料机将复合粉末混合均匀,得到混合陶瓷粉末;
46.所述混料机的转速为500r/min;所述混料机中有氧化锆混料球,球料比10:1;
47.(2)喷涂:对细长状金属基体(长度15cm,厚度3mm,宽度5mm)进行喷砂处理,然后利用等离子喷涂系统,将步骤(1)所得混合陶瓷粉末喷于所述金属基体上,得到厚度为300μm的复合涂层(gzo/y2o3:eu
3
);
48.所述喷砂采用的是粒度300目的刚玉砂,喷砂压力0.7mpa;所述等离子喷涂系统的喷涂功率为38kw,喷涂距离为85mm;
49.(3)构建荧光发光峰与应力状态关系:将步骤(2)制备的复合涂层样品置于电子万能试验机进行三点弯曲变形实验,对涂层面朝上和朝下分别进行应力加载,对加载后的涂层选取每5mm固定间隔点的试样,利用荧光分度计进行荧光检测,得到复合涂层发射光谱,分析不同应力状态下荧光发射光谱特征峰位移与未施加应力的喷涂态峰位移偏差,构建并拟合应力与发射光谱特征峰位移关系,得到陶瓷热障涂层内部的应力检测依据,获得压应力和拉应力与受力后荧光峰偏移关系;
50.所述三点弯曲变形实验的跨度为14cm,加载速度为0.05mm/min,所述跨度的具体值根据样品尺寸确定;所述荧光检测采用cukα靶,波长为电流为100ma,电压为80kv,扫描范围为20
°
~100
°
,步长为0.05
°

51.拉应力传感方程为λ
t
=605.06830 0.17852σ
t
,灵敏度为0.17852nm/n,压应力传感方程为λ
p
=609.56258-0.18654σ
p
,灵敏度为0.18654nm/n。
52.(4)应力检测:将复合热障涂层置于1300℃梯度热循环服役1600分钟后,计算出涂层内部服役后压应力为210mpa。
53.实施例3
54.根据实施例1步骤(1)~(3)的方法,在金属基体依次沉积不同掺杂体系的陶瓷热障涂层材料,首先沉积lzo与发光特性荧光材料y2o3:eu
3
荧光粉末按照质量比为6%混合的热障涂层陶瓷层,其次在该复合涂层之上按照实施例2步骤(1)~(3)的方法沉积gzo与发光特性荧光材料y2o3:eu
3
荧光粉末按照质量比为6%混合的热障涂层陶瓷层,实现表层为gzo/y2o3:eu
3
,下层为lzo/y2o3:eu
3
的多陶瓷层复合结构,厚度各为150μm。下层lzo/y2o3:
eu
3
的荧光发光峰与应力状态方程如实施例1,下层gzo/y2o3:eu
3
的荧光发光峰与应力状态方程如实施例2。实施例3是gzo与lzo涂层的组合,实施例1和2中的关系同样适用于实施例3,从而推测出实施例3中对应层的应力。
55.对上述多陶瓷层复合结构进行残余应力检测,将复合涂层置于1200℃梯度热循环条件服役1200分钟后,推测出gzo涂层内部服役后压应力为180mpa,下层lzo涂层内部服役后压应力为130mpa。
56.以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。
再多了解一些

本文用于企业家、创业者技术爱好者查询,结果仅供参考。

发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表

相关文献