一种残膜回收机防缠绕挑膜装置的制 一种秧草收获机用电力驱动行走机构

考虑频率稳定约束的电力系统最小惯量评估方法及系统与流程

2022-02-20 07:34:32 来源:中国专利 TAG:


1.本发明涉及电力系统技术领域,并且更具体地,涉及一种考虑频率稳定约束的电力系统最小惯量评估方法及系统。


背景技术:

2.作为目前最成熟和最具发展前景的可再生能源,风力发电和光伏发电近年来保持着强劲的发展势头。截至2017年中,我国风电装机达1.54亿千瓦,光伏发电装机达1.02亿千瓦,合计占全国发电装机的比例超过13%。其中,新疆、青海、宁夏、冀北等16个省级电网的新能源已成为第二大装机电源,新疆、青海等四省新能源装机占本地电源总装机比例超过30%。可以预见,不远的未来某些局部电网新能源占比可能达到80%甚至更高,超高占比新能源并网运行将成为未来电源结构的重要特征。
3.与传统同步系统相比,高比例电力电子电力系统中大规模新能源接入替代了部分同步机组,新能源电力电子解耦特性及其最大功率跟踪模式,使系统惯量水平逐渐相对减小且调频能力相对减弱。加之特高压大容量跨区直流输电投入使用,阻断了扰动下跨区惯量支撑及功率响应,严重恶化大扰动下系统频率稳定性。
4.系统惯量相对减小使扰动下频率特性发生巨大变化。一方面,惯量减小导致扰动下频率变化率(rate of change of frequency,rocof)增大,增大分布式电源脱网风险的同时也威胁着常规机组安全运行。此外,较大rocof可能使同步机产生滑极现象,造成内部结构损坏。另一方面,惯量减小使频率最低点进一步降低,触发第三道防线低频减载的可能性增大,严重情况将导致调速系统尚未动作频率已经崩溃,或通过充足一次调频调节也无法使频率恢复。
5.为使扰动后rocof不超过分布式电源防孤岛保护设定值造成其脱网和损坏同步机,并且为一次调频留有足够的调节时间,避免触发第三道防线,高比例电力电子电力系统需要保证一定的惯量水平。针对电力系统惯量逐渐相对减小带来的上述频率问题,国内外已开展惯量评估研究,实时监测系统惯量水平,掌握系统惯量支撑能力,但在电力系统最小惯量评估方面主要依据运行经验及系统仿真获得,缺乏理论支撑。如何考虑频率稳定约束,提出最小惯量评估方法是亟待解决的问题。


技术实现要素:

6.针对现有技术中存在的大规模电力电子电源接入导致电力系统惯量逐渐减小,严重威胁电力系统频率稳定的技术问题,本发明提供一种考虑频率稳定约束的电力系统最小惯量评估方法及系统。
7.根据本发明的一个方面,提供了一种考虑频率稳定约束的电力系统最小惯量评估方法,包括:在考虑小扰动频率稳定约束时,基于预设的第一评估规则,确定电力系统的第一最小惯量;
在考虑大扰动频率稳定约束时,基于预设的第二评估规则,确定电力系统的第二最小惯量;在同时考虑小扰动频率稳定约束和大扰动频率稳定约束时,基于预设的第三评估规则,确定电力系统的第三最小惯量。
8.可选地,在考虑小扰动频率稳定约束时,基于预设的第一评估规则,确定电力系统的第一最小惯量,包括:在仅考虑火电调频且不考虑负荷频率调节时,将预先建立的电力系统的频率响应模型进行简化,得到电力系统的频率响应模型的开环传递函数;确定随着新能源接入电力系统后开环传递函数的根轨迹增益的变化表达式;根据电力系统的系统参数以及根轨迹增益的变化表达式,确定根轨迹增益的临界稳定值;根据开环传递函数的根轨迹增益和临界稳定值,确定电力系统的第一最小惯量。
9.可选地,频率响应模型的表达式为:式中,h为系统惯性常数,
∆fcoi
为惯量中心频率,

pm为等值发电机的机械功率变化量,

pd为扰动功率,d为负荷频率调节系数,除h为有名值外,其余均为标幺值;电力系统的频率响应模型的开环传递函数为:式中,kg为一次调频下垂系数,h为系统惯性常数,t
ch
为蒸汽室时间常数,tg为调速器时间常数,s为微分算子;随着新能源比例增加,根轨迹增益中h和kg的变化表达式为:式中,h0和k
g0
分别为替代前电力系统惯量和下垂系数,kh_
sg
和kg_
sg
分别为被替代的常规机组惯量和下垂系数比例。
10.可选地,在考虑大扰动频率稳定约束时,基于预设的第二评估规则,确定电力系统的第二最小惯量,包括:在考虑大扰动频率稳定约束时,判断电力系统的类别,其中电力系统的类别包括电力系统是送端电网、电力系统是受端电网以及电力系统既是送端电网又是受端电网;在考虑大扰动频率稳定约束并且电力系统是送端电网时,确定电力系统是送端电网时的第二最小惯量;在考虑大扰动频率稳定约束并且电力系统是受端电网时,确定电力系统是受端电网时的第二最小惯量;在考虑大扰动频率稳定约束并且电力系统既是送端电网又是受端电网时,确定电力系统既是送端电网又是受端电网时的第二最小惯量。
11.可选地,在考虑大扰动频率稳定约束并且电力系统是送端电网时,确定电力系统是送端电网时的第二最小惯量,包括:在考虑大扰动频率稳定约束并且电力系统是送端电网时,确定电力系统的第一频率约束值和电力系统可能发生的第一最大扰动功率;在等值发电机的机械功率变化量为零并且仅惯量和负荷频率调节作用时,将预先建立的电力系统的频率响应模型进行简化,得到电力系统的频率响应简化模型的表达式;根据频率响应简化模型的表达式,确定电力系统的惯量中心频率表达式;根据惯量中心频率表达式、第一频率约束值、第一最大扰动功率、负荷频率调节系数以及安控动作时间,分别确定适用于无显著频率空间分布的电力系统的第二最小惯量以及适用于考虑频率空间分布和负荷电压特性的电力系统的第二最小惯量。
12.可选地,根据惯量中心频率表达式、第一频率约束值、第一最大扰动功率、负荷频率调节系数以及安控动作时间,确定适用于无显著频率空间分布的电力系统的第二最小惯量,包括:当惯量中心频率表达式中的扰动功率为最大扰动功率、惯量中心频率为最大惯量中心频率约束以及时间取安控动作时间时,电力系统的惯量为最小惯量;根据惯量中心频率表达式、负荷频率调节系数、安控动作时间、第一频率约束值以及第一最大扰动功率,确定适用于无显著频率空间分布的电力系统的第二最小惯量。
13.可选地,根据惯量中心频率表达式、第一频率约束值、第一最大扰动功率、负荷频率调节系数以及安控动作时间,确定适用于考虑频率空间分布和负荷电压特性的电力系统的第二最小惯量,包括:将扰动点所在子区域与电力系统的惯量中心所在子区域分别等值为两台机;根据惯量响应阶段扰动功率分配机理,确定扰动点附近的频率变化率和惯量中心的频率变化率之间的关联关系;考虑静态负荷电压特性对电力系统不平衡功率的影响,确定施加在电力系统惯量上的不平衡功率;根据惯量中心频率表达式、负荷频率调节系数、安控动作时间、第一频率约束值、第一最大扰动功率、惯量中心频率与扰动点频率关联关系以及负荷电压特性,确定在不忽略负荷频率调节作用时,适用于考虑频率空间分布和负荷电压特性的电力系统的第二最小惯量;根据惯量中心频率表达式、负荷频率调节系数、安控动作时间、第一频率约束值、第一最大扰动功率、惯量中心频率与扰动点频率关联关系以及负荷电压特性,确定在忽略负荷频率调节作用时,适用于考虑频率空间分布和负荷电压特性的电力系统的第二最小惯量。
14.可选地,电力系统的频率响应简化模型的表达式为:式中,h为系统惯性常数,
∆fcoi
为惯量中心频率,

pd为扰动功率,d为负荷频率调节系数,除h为有名值外,其余均为标幺值;电力系统的惯量中心频率表达式为:
式中,h为系统惯性常数,
∆fcoi
为惯量中心频率,

pd为扰动功率,d为负荷频率调节系数,除h为有名值外,其余均为标幺值;适用于无显著频率空间分布的电力系统的第二最小惯量的计算公式为:式中,
∆fcoi_max
为惯量中心最大频率偏差约束值,d为负荷频率调节系数,

p
max
为电力系统可能发生的最大扰动功率,tc为安控动作时间。
15.可选地,扰动点附近的频率变化率和惯量中心的频率变化率之间的关联关系的表达式为:式中,

pk、ek分别为扰动点所在子区域机组分担功率与惯量,

p
coi
、e
coi
分别为惯量中心机组分担功率与惯量,α为量化系数,xk、x
coi
分别为扰动点与相应区域联络线的等效电抗,
∆fk_max

∆fmax
分别为频率偏差约束值和惯量中心频率约束值;考虑静态负荷电压特性对电力系统不平衡功率的影响的表达式为:式中,

p
load(u)
为负荷功率改变量;p
load
为负荷功率;为恒阻抗负荷比例、为恒电流负荷比例;为电压变化量;为恒功率负荷比例,且满足,则电力系统的不平衡功率为;在不忽略负荷频率调节作用时,适用于考虑频率空间分布和负荷电压特性的电力系统的第二最小惯量的计算公式为:式中,

p
load(u)
为负荷功率改变量,d为负荷频率调节系数,

p
max
为电力系统可能发生的最大扰动功率,
∆fk_max
为频率偏差约束值,α为频率空间分布量化系数,tc为安控动作时间;在忽略负荷频率调节作用时,适用于考虑频率空间分布和负荷电压特性的电力系统的第二最小惯量的计算公式为:式中,

p
load(u)
为负荷功率改变量,

p
max
为电力系统可能发生的最大扰动功率,
∆fk_max
为频率偏差约束值,α为频率空间分布量化系数,tc为安控动作时间。
16.可选地,在考虑大扰动频率稳定约束并且电力系统是受端电网时,确定电力系统是受端电网时的第二最小惯量,包括:在考虑大扰动频率稳定约束并且电力系统是受端电网时,确定电力系统的第二频率约束值和电力系统可能发生的第二最大扰动功率;根据预先建立的电力系统的频率响应模型,确定电力系统的频率最低点偏差的表达式;根据频率最低点偏差的表达式,计算频率最低点偏差为预设频率值时的新能源接入比例;根据电力系统的系统惯性常数和计算的新能源接入比例,确定电力系统是受端电网时的第二最小惯量。
17.可选地,电力系统的频率最低点偏差的表达式为:式中,

p
max
为系统可能发生的最大扰动功率,d负荷频率调节系数,r为无新能源接入时的系统一次调频调差系数,k为新能源接入比例,h为无新能源接入时的系统惯量,t为系统一次调频响应时间,,,,,;电力系统是受端电网时的第二最小惯量的计算公式为:h
min
=h(1-k),式中h为无新能源接入时系统惯量,k为新能源接入比例。
18.可选地,在考虑大扰动频率稳定约束并且电力系统既是送端电网又是受端电网时,确定电力系统既是送端电网又是受端电网时的第二最小惯量,包括:在考虑大扰动频率稳定约束并且电力系统既是送端电网又是受端电网时,分别确定电力系统是送端电网时的第二最小惯量和电力系统是受端电网时的第二最小惯量;将电力系统是送端电网时的第二最小惯量和电力系统是受端电网时的第二最小惯量中的较大值确定为电力系统既是送端电网又是受端电网时的第二最小惯量。
19.可选地,在同时考虑小扰动频率稳定约束和大扰动频率稳定约束时,基于预设的第三评估规则,确定电力系统的第三最小惯量,包括:将电力系统的第一最小惯量和电力系统的第二最小惯量中的较大值确定为在同时考虑小扰动频率稳定约束和大扰动频率稳定约束时电力系统的第三最小惯量。
20.根据本发明的另一个方面,提供了一种考虑频率稳定约束的电力系统最小惯量评估系统,包括:第一最小惯量确定模块,用于在考虑小扰动频率稳定约束时,基于预设的第一评估规则,确定电力系统的第一最小惯量;第二最小惯量确定模块,用于在考虑大扰动频率稳定约束时,基于预设的第二评
估规则,确定电力系统的第二最小惯量;第三最小惯量确定模块,用于在同时考虑小扰动频率稳定约束和大扰动频率稳定约束时,基于预设的第三评估规则,确定电力系统的第三最小惯量。
21.可选地,第一最小惯量确定模块具体用于:在仅考虑火电调频且不考虑负荷频率调节时,将预先建立的电力系统的频率响应模型进行简化,得到电力系统的频率响应模型的开环传递函数;确定随着新能源接入电力系统后开环传递函数的根轨迹增益的变化表达式;根据电力系统的系统参数以及根轨迹增益的变化表达式,确定根轨迹增益的临界稳定值;根据开环传递函数的根轨迹增益和临界稳定值,确定电力系统的第一最小惯量。
22.可选地,第二最小惯量确定模块具体用于:在考虑大扰动频率稳定约束时,判断电力系统的类别,其中电力系统的类别包括电力系统是送端电网、电力系统是受端电网以及电力系统既是送端电网又是受端电网;在考虑大扰动频率稳定约束并且电力系统是送端电网时,确定电力系统是送端电网时的第二最小惯量;在考虑大扰动频率稳定约束并且电力系统是受端电网时,确定电力系统是受端电网时的第二最小惯量;在考虑大扰动频率稳定约束并且电力系统既是送端电网又是受端电网时,确定电力系统既是送端电网又是受端电网时的第二最小惯量。
23.可选地,第三最小惯量确定模块具体用于:将电力系统的第一最小惯量和电力系统的第二最小惯量中的较大值确定为在同时考虑小扰动频率稳定约束和大扰动频率稳定约束时电力系统的第三最小惯量。
24.根据本发明的又一个方面,提供了一种计算机可读存储介质,所述存储介质存储有计算机程序,所述计算机程序用于执行本发明上述任一方面所述的方法。
25.根据本发明的又一个方面,提供了一种电子设备,所述电子设备包括:处理器;用于存储所述处理器可执行指令的存储器;所述处理器,用于从所述存储器中读取所述可执行指令,并执行所述指令以实现本发明上述任一方面所述的方法。
26.从而,考虑我国最大扰动功率通常来自直流闭锁,导致送端高频和受端低频问题,且送端、受端电网运行特性和频率约束不同,本发明所提供一种考虑频率稳定约束的系统最小惯量评估方法及系统由三部分构成,一是考虑小扰动频率稳定的系统最小惯量评估,二是考虑大扰动频率稳定的系统最小惯量评估,三是同时考虑小扰动和大扰动频率稳定的系统最小惯量评估。本发明根据送端、受端电网频率稳定约束和可能发生的最大扰动功率计算电力系统最小惯量需求,为电力系统开机方式和运行方式安排提供指导。从而,通过本发明可评估满足送端、受端电网频率稳定约束的电力系统最小惯量需求,为电力系统运行方式和开机安排提供指导,避免大功率扰动触发第三道防线造成切机/切负荷等风险。进而解决了大规模电力电子电源接入导致电力系统惯量逐渐减小,严重威胁电力系统频率稳定的技术问题。
附图说明
27.通过参考下面的附图,可以更为完整地理解本发明的示例性实施方式:图1是本发明一示例性实施例提供的考虑频率稳定约束的电力系统最小惯量评估方法的流程示意图;图2是本发明一示例性实施例提供的电力系统的频率响应模型的示意图;图3是本发明一示例性实施例提供的电力系统简化后的频率响应模型的示意图;图4是本发明一示例性实施例提供的开环传递函数的根轨迹图;图5是本发明一示例性实施例提供的新能源接入对电力系统稳定性影响的一个示意图;图6是本发明一示例性实施例提供的新能源接入对电力系统稳定性影响的另一个示意图;图7是本发明一示例性实施例提供的送端电网的频率响应模型的示意图;图8是本发明一示例性实施例提供的等值系统图;图9是本发明一示例性实施例提供的rocof约束下最小惯量的三维图;图10是本发明一示例性实施例提供的简化等效频率模型;图11是本发明一示例性实施例提供的受端电网最小惯量的三维图;图12是本发明一示例性实施例提供的电力系统最小惯量需求的三维图;图13是本发明一示例性实施例提供的电力系统最小惯量需求的俯视图;图14是本发明一示例性实施例提供的考虑大扰动频率稳定的最小惯量评估的流程图;图15是本发明一示例性实施例提供的电力系统的简化模型与psasp仿真频率曲线的对比图;图16是本发明一示例性实施例提供的考虑频率稳定约束的电力系统最小惯量评估系统的结构示意图;以及图17是本发明一示例性实施例提供的电子设备的结构。
28.具体实施方式
29.下面,将参考附图详细地描述根据本发明的示例实施例。显然,所描述的实施例仅仅是本发明的一部分实施例,而不是本发明的全部实施例,应理解,本发明不受这里描述的示例实施例的限制。
30.应注意到:除非另外具体说明,否则在这些实施例中阐述的部件和步骤的相对布置、数字表达式和数值不限制本发明的范围。
31.本领域技术人员可以理解,本发明实施例中的“第一”、“第二”等术语仅用于区别不同步骤、设备或模块等,既不代表任何特定技术含义,也不表示它们之间的必然逻辑顺序。
32.还应理解,在本发明实施例中,“多个”可以指两个或两个以上,“至少一个”可以指一个、两个或两个以上。
33.还应理解,对于本发明实施例中提及的任一部件、数据或结构,在没有明确限定或
者在前后文给出相反启示的情况下,一般可以理解为一个或多个。
34.另外,本发明中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,a和/或b,可以表示:单独存在a,同时存在a和b,单独存在b这三种情况。另外,本发明中字符“/”,一般表示前后关联对象是一种“或”的关系。
35.还应理解,本发明对各个实施例的描述着重强调各个实施例之间的不同之处,其相同或相似之处可以相互参考,为了简洁,不再一一赘述。
36.同时,应当明白,为了便于描述,附图中所示出的各个部分的尺寸并不是按照实际的比例关系绘制的。
37.以下对至少一个示例性实施例的描述实际上仅仅是说明性的,决不作为对本发明及其应用或使用的任何限制。
38.对于相关领域普通技术人员已知的技术、方法和设备可能不作详细讨论,但在适当情况下,技术、方法和设备应当被视为说明书的一部分。
39.应注意到:相似的标号和字母在下面的附图中表示类似项,因此,一旦某一项在一个附图中被定义,则在随后的附图中不需要对其进行进一步讨论。
40.本发明实施例可以应用于终端设备、计算机系统、服务器等电子设备,其可与众多其它通用或专用计算系统环境或配置一起操作。适于与终端设备、计算机系统、服务器等电子设备一起使用的众所周知的终端设备、计算系统、环境和/或配置的例子包括但不限于:个人计算机系统、服务器计算机系统、瘦客户机、厚客户机、手持或膝上设备、基于微处理器的系统、机顶盒、可编程消费电子产品、网络个人电脑、小型计算机系统﹑大型计算机系统和包括上述任何系统的分布式云计算技术环境,等等。
41.终端设备、计算机系统、服务器等电子设备可以在由计算机系统执行的计算机系统可执行指令(诸如程序模块)的一般语境下描述。通常,程序模块可以包括例程、程序、目标程序、组件、逻辑、数据结构等等,它们执行特定的任务或者实现特定的抽象数据类型。计算机系统/服务器可以在分布式云计算环境中实施,分布式云计算环境中,任务是由通过通信网络链接的远程处理设备执行的。在分布式云计算环境中,程序模块可以位于包括存储设备的本地或远程计算系统存储介质上。
42.示例性方法图1是本发明一示例性实施例提供的考虑频率稳定约束的电力系统最小惯量评估方法的流程示意图。本实施例可应用在电子设备上,如图1所示,考虑频率稳定约束的电力系统最小惯量评估方法100包括以下步骤:步骤101,在考虑小扰动频率稳定约束(rocof约束)时,基于预设的第一评估规则,确定电力系统的第一最小惯量。
43.可选地,步骤101包括:步骤101-1:在仅考虑火电调频且不考虑负荷频率调节时,将预先建立的电力系统的频率响应模型进行简化,得到电力系统的频率响应模型的开环传递函数。
44.在本发明实施例中,电力系统的频率响应特性通常可表示为单机带集中负荷模型,并考虑火电、水电及新能源频率调节特性,如图2所示,电力系统的频率响应模型的表达式为:
式中,h为系统惯性常数(单位s),
∆fcoi
为惯量中心频率,

pm为等值发电机的机械功率变化量,

pd为扰动功率,d为负荷频率调节系数,除h为有名值外,其余均为标幺值;若仅考虑火电调频且不考虑负荷频率调节(对应于较小的负荷频率调节),可将电力系统的频率响应模型简化为图3,得到电力系统的频率响应模型的开环传递函数为:式中,kg为一次调频下垂系数,h为系统惯性常数,t
ch
为蒸汽室时间常数,tg为调速器时间常数,s为微分算子。
45.步骤101-2:确定随着新能源接入电力系统后开环传递函数的根轨迹增益的变化表达式。
46.可选地,根轨迹增益中参数h和kg的变化表达式为:式中,h0和k
g0
分别为替代前电力系统惯量和下垂系数,kh_
sg
和kg_
sg
分别为被替代的常规机组惯量和下垂系数比例。
47.步骤101-3:根据电力系统的系统参数以及根轨迹增益的变化表达式,确定根轨迹增益的临界稳定值。
48.在本发明实施例中,开环传递函数的根轨迹如图4所示。其中,开环传递函数中的参数h=3、kg=20、t
ch
=0.3、tg=0.2。通过图4可以看出,随着根轨迹增益增大,主导极点向右移动,电力系统稳定性减弱。从而,在参数h=3、kg=20、t
ch
=0.3、tg=0.2时,根轨迹增益为时临界稳定,临界稳定值为139。
49.步骤101-4:根据开环传递函数的根轨迹增益和临界稳定值,确定电力系统的第一最小惯量。
50.在本发明实施例中,新能源不同替代方式对电力系统的小扰动频率稳定影响不同。若新能源替代具备一次调频的同步机,则电力系统惯量与下垂系数均减小,假设同比例减小(即kh_
sg
=kg_
sg
),此时根轨迹增益不变,电力系统小扰动频率稳定性不变,仅会增大扰动下频率偏差,如图5所示,随着渗透率增加,频率曲线下移,但振荡特性基本不变。
51.若新能源替代了无一次调频能力的常规机组,电力系统惯量减小而下垂系数不变,根轨迹增益将增大,系统稳定性变差,存在振荡失稳风险;在高比例新能源系统,基于绝对频差反馈的新能源快速调频可等效增大系统下垂系数,使电力系统呈现弱惯量支撑和强调频特性,同样会导致根轨迹增益增大,小扰动稳定性变差。如图6所示,当h减小至1s(对应m=2s,根据m=2h,其中m为惯性时间常数),而kg维持20不变时,电力系统振荡失稳。
52.下垂系数(kg)越大和响应时间(t
ch
,tg)越小,受小扰动频率稳定约束的系统最小惯量需求越大。为提高稳定性,应适当增加系统惯量或减小下垂系数(降低最小惯量需求)。从而,当开环传递函数中的参数h=3、kg=20、t
ch
=0.3、tg=0.2时,可进一步得出考虑小扰动频
率稳定的电力系统的第一最小惯量的计算式为:需要特别说明的是,上述的根轨迹增益的临界稳定值(即,139)和第一最小惯量的计算式(即,)是基于参数h=3、kg=20、t
ch
=0.3、tg=0.2得出的。当参数h、kg、t
ch
、tg为其他值时,根轨迹增益的临界稳定值会改变,则电力系统的第一最小惯量的计算式中响应时间的系数也会改变。因此,对于任意电力系统,可通过上述步骤计算其受小扰动频率稳定约束的系统最小惯量。
53.步骤102,在考虑大扰动频率稳定约束(频率最大偏差约束)时,基于预设的第二评估规则,确定电力系统的第二最小惯量。
54.可选地,步骤102包括:步骤102-1:在考虑大扰动频率稳定约束时,判断电力系统的类别,其中电力系统的类别包括电力系统是送端电网、电力系统是受端电网以及电力系统既是送端电网又是受端电网。
55.步骤102-2:在考虑大扰动频率稳定约束并且电力系统是送端电网时,确定电力系统是送端电网时的第二最小惯量。
56.可选地,步骤102-2包括:步骤102-2-1:在考虑大扰动频率稳定约束并且电力系统是送端电网时,确定电力系统的第一频率约束值和电力系统可能发生的第一最大扰动功率;在本发明实施例中,通常为直流闭锁后安控动作(安控动作时间通常小于0.3s),频率不超过50.6hz。那么,电力系统的第一频率约束值
∆fk_max
=50.6hz-50hz=0.6hz,
∆fk_max
的具体取值参照实际电网安控要求。
57.第一最大扰动功率为

p
max
,对于我国送端电网,通常为电力系统最大一条外送直流闭锁,当前系统最大直流功率为8000mw。
58.步骤102-2-2:在等值发电机的机械功率变化量为零并且仅惯量和负荷频率调节作用时,将预先建立的电力系统的频率响应模型进行简化,得到电力系统的频率响应简化模型的表达式;在本发明实施例中,送端电网300ms频率约束,一次调频尚未有效动作,则电力系统的频率响应模型的表达式中的等值发电机的机械功率变化量为零(即

pm=0),仅惯量和负荷频率调节作用,得到送端电网的频率响应模型如图7所示,则电力系统的频率响应简化模型的表达式为:式中,h为系统惯性常数(单位s),
∆fcoi
为惯量中心频率,

pd为扰动功率,d为负荷频率调节系数,除h为有名值外,其余均为标幺值。
59.步骤102-2-3:根据频率响应简化模型的表达式,确定电力系统的惯量中心频率表达式;
可选地,电力系统的惯量中心频率表达式为:式中,h为系统惯性常数(单位s),
∆fcoi
为惯量中心频率,

pd为扰动功率,d为负荷频率调节系数,除h为有名值外,其余均为标幺值。
60.步骤102-2-4:基于根据惯量中心频率表达式、第一频率约束值、第一最大扰动功率、负荷频率调节系数以及安控动作时间,分别确定适用于无显著频率空间分布的电力系统的第二最小惯量以及适用于考虑频率空间分布和负荷电压特性的电力系统的第二最小惯量。
61.可选地,步骤102-2-4包括:步骤102-2-4-1:当惯量中心频率表达式中的扰动功率为最大扰动功率、惯量中心频率为最大惯量中心频率约束值以及时间取安控动作时间时,电力系统的惯量为最小惯量;步骤102-2-4-2:根据惯量中心频率表达式、负荷频率调节系数、安控动作时间、第一频率约束值以及第一最大扰动功率,确定适用于无显著频率空间分布的电力系统的第二最小惯量。
62.可选地,适用于无显著频率空间分布的电力系统的第二最小惯量的计算公式为:式中,
∆fcoi_max
为惯量中心最大频率偏差约束值,d为负荷频率调节系数,

p
max
为电力系统可能发生的最大扰动功率,tc为安控动作时间。
63.在本发明实施例中,仅适用于无显著频率空间分布的小系统,对于大系统需考虑频率空间分布和负荷电压特性。
64.可选地,步骤102-2-4-2包括:(1)将扰动点所在子区域与电力系统的惯量中心所在子区域分别等值为两台机;(2)根据惯量响应阶段扰动功率分配机理,确定扰动点附近的频率变化率和惯量中心的频率变化率之间的关联关系;在本发明实施例中,通常系统频率约束为系统内最大频率偏差不超过约束值,一般位于近扰动点,则需将最大频率偏差约束转换至惯量中心处。转换方法为:将扰动点所在子区域与系统惯量中心所在子区域分别等值为两台机,如图8所示,其中k为功率扰动点,sgk为近扰动点所在区域等值机组,sg
coi
为惯量中心所在区域等值机组,xk、x
coi
分别为扰动点与相应区域联络线的等效电抗。
65.从而,根据惯量响应阶段扰动功率分配机理,得到扰动点附近的频率变化率(rocof
k_max
)和惯量中心的频率变化率(rocof
max
)之间的关联关系的表达式为:式中,

pk、ek分别为扰动点所在子区域机组分担功率与惯量,

p
coi
、e
coi
分别为惯
量中心机组分担功率与惯量,α为量化系数,xk、x
coi
分别为扰动点与相应区域联络线的等效电抗,
∆fk_max

∆fmax
分别为频率偏差约束值和惯量中心频率约束值。
66.(3)考虑静态负荷电压特性对电力系统不平衡功率的影响,确定施加在电力系统惯量上的不平衡功率;考虑静态负荷电压特性对电力系统不平衡功率的影响的表达式为:式中,

p
load(u)
为负荷功率改变量;p
load
为负荷功率;为恒阻抗负荷比例、为恒电流负荷比例;为电压变化量;为恒功率负荷比例,且满足,则电力系统的不平衡功率为。
67.(4)根据惯量中心频率表达式、负荷频率调节系数、安控动作时间、第一频率约束值、第一最大扰动功率、惯量中心频率与扰动点频率关联关系以及负荷电压特性,确定在不忽略负荷频率调节作用时,适用于考虑频率空间分布和负荷电压特性的电力系统的第二最小惯量;可选地,在不忽略负荷频率调节作用(即,d不等于0)时,适用于考虑频率空间分布和负荷电压特性的电力系统的第二最小惯量的计算公式为:式中,

p
load(u)
为负荷功率改变量,d为负荷频率调节系数,

p
max
为电力系统可能发生的最大扰动功率,
∆fk_max
为频率偏差约束值,α为频率空间分布量化系数,tc为安控动作时间。
68.(5)根据惯量中心频率表达式、负荷频率调节系数、安控动作时间、第一频率约束值、第一最大扰动功率、惯量中心频率与扰动点频率关联关系以及负荷电压特性,确定在忽略负荷频率调节作用时,适用于考虑频率空间分布和负荷电压特性的电力系统的第二最小惯量。
69.可选地,在忽略负荷频率调节作用(即,d=0)时,适用于考虑频率空间分布和负荷电压特性的电力系统的第二最小惯量的计算公式为:式中,

p
load(u)
为负荷功率改变量,

p
max
为电力系统可能发生的最大扰动功率,
∆fk_max
为频率偏差约束值,α为频率空间分布量化系数,tc为安控动作时间。
70.在本发明实施例中,按计算电力系统的第二最小惯量的三维图如图9所示(其中α=1,

p
load(u)
=0,

p
max
=0.1pu),可以看出,随着扰动功率增加和rocof约束增加,电力系统的第二最小惯量逐渐增大。
71.步骤102-3:在考虑大扰动频率稳定约束并且电力系统是受端电网时,确定电力系统是受端电网时的第二最小惯量。
72.可选地,步骤102-3包括:步骤102-3-1:在考虑大扰动频率稳定约束并且电力系统是受端电网时,确定电力系统的第二频率约束值和电力系统可能发生的第二最大扰动功率;在本发明实施例中,通常为直流闭锁后不触发受端电网第三道防线造成低频减载(通常49hz),即频率最低点不低于49hz。那么,电力系统的第二频率约束值
∆fmin
=49hz-50hz=-1hz,具体取值参照实际电网要求。
73.对于我国电网,通常为系统最大一条馈入直流闭锁,电力系统可能发生的第二最大扰动功率为

p
max

74.步骤102-3-2:根据预先建立的电力系统的频率响应模型的表达式,确定电力系统的频率最低点偏差的表达式;在本发明实施例中,电力系统整体一次调频特性在某种程度上可等效为一阶惯性环节,如图10所示。其中r(1/kg)和t分别为系统一次调频等效调差系数和响应时间常数,k为新能源接入比例(又可称为渗透率)。
75.可选地,对频率响应模型的表达式进行推导,得到电力系统的频率最低点偏差的表达式为:式中,

p
max
为系统可能发生的最大扰动功率,d负荷频率调节系数,r为系统一次调频调差系数(,r0为当前系统下垂系数,k0为当前系统渗透率),k为新能源接入比例,h为无新能源接入时的系统惯量(,h0为当前系统惯量,k0为当前系统渗透率),t为系统一次调频响应时间,,,,,。
76.步骤102-3-3:根据频率最低点偏差的表达式,计算频率最低点偏差为预设频率值时的新能源接入比例;在本发明实施例中,根据式,迭代计算(最低点为49hz)时的新能源接入比例k。
77.步骤102-3-4:根据电力系统的系统惯性常数和计算的新能源接入比例,确定电力系统是受端电网时的第二最小惯量。
78.可选地,电力系统是受端电网时的第二最小惯量的计算公式为:h
min
=h(1-k),式中h为无新能源接入时的系统惯性常数,k为新能源接入比例。
79.在本发明实施例中,电力系统是受端电网时的第二最小惯量的三维图如图11所示
(其中

pd=-0.2p.u.,r=0.05,t=1s,d=0s),可以看出随着扰动功率增加和频率约束严格,电力系统最小惯量需求增加。
80.步骤102-4:在考虑大扰动频率稳定约束并且电力系统既是送端电网又是受端电网时,确定电力系统既是送端电网又是受端电网时的第二最小惯量。
81.可选地,步骤102-4包括:步骤102-4-1:在考虑大扰动频率稳定约束并且电力系统既是送端电网又是受端电网时,分别确定电力系统是送端电网时的第二最小惯量和电力系统是受端电网时的第二最小惯量;步骤102-4-2:将电力系统是送端电网时的第二最小惯量和电力系统是受端电网时的第二最小惯量中的较大值确定为电力系统既是送端电网又是受端电网时的第二最小惯量。
82.在本发明实施例中,在送端电网一次调频调速器未参与情况下,基于频率偏差约束的电力系统最小惯量评估可转换为基于rocof约束的最小惯量评估,而受端电网是基于频率最大偏差约束的惯量评估。若一个电网既是送端也是受端,或同时存在rocof约束和频率最大偏差约束,则其最小惯量取两约束下的较大值,即式中,为rocof约束下的系统最小惯量(即,电力系统是送端电网时的第二最小惯量),为频率最大偏差约束下的最小惯量(即,电力系统是受端电网时的第二最小惯量)。
83.其中,电力系统最小惯量需求如图12和图13所示,图12和图13中的频率最低点约束对应于上述的频率最大偏差约束。考虑rocof约束及频率最低点约束的系统最小惯量评估流程如图14所示。
84.步骤103,在同时考虑小扰动频率稳定约束和大扰动频率稳定约束时,基于预设的第三评估规则,确定电力系统的第三最小惯量。
85.可选地,步骤103包括:将电力系统的第一最小惯量和电力系统的第二最小惯量中的较大值确定为在同时考虑小扰动频率稳定约束和大扰动频率稳定约束时电力系统的第三最小惯量。
86.在本发明实施例中,电力系统的最小惯量需求需既满足小扰动频率稳定(不引发频率振荡),又满足大扰动下频率稳定(频率偏差不触发第三道防线),则同时考虑小扰动和大扰动频率稳定的系统最小惯量为:式中,为小扰动频率约束下的系统最小惯量(对应于电力系统的第一最小惯量),为大扰动频率约束下的最小惯量(对应于电力系统的第二最小惯量)。
87.具体应用的最佳实施例:
电力系统为受端电网的仿真验证:电力系统常规机组均为火电机组,电力电子电源占比30%且不参与频率调节,最大扰动为8000mw馈入直流闭锁。采用前述受端频率响应模型,当风电比例增加到47%时,频率最低点到达门槛值(49.25hz),对应最小惯量为202gvas。采用psasp仿真平台对其进行验证,逐渐增加风电替换同步机比例,当风电比例为49.5%时到达频率阈值,对应惯量为198gvas,与简化模型最小惯量基本一致,频率曲线如图15所示。
88.从而,考虑我国最大扰动功率通常来自直流闭锁,导致送端高频和受端低频问题,且送端、受端电网运行特性和频率约束不同,本发明所提供一种考虑频率稳定约束的系统最小惯量评估方法及系统由三部分构成,一是考虑小扰动频率稳定的系统最小惯量评估,二是考虑大扰动频率稳定的系统最小惯量评估,三是同时考虑小扰动和大扰动频率稳定的系统最小惯量评估。本发明根据送端、受端电网频率稳定约束和可能发生的最大扰动功率计算电力系统最小惯量需求,为电力系统开机方式和运行方式安排提供指导。从而,通过本发明可评估满足送端、受端电网频率稳定约束的电力系统最小惯量需求,为电力系统运行方式和开机安排提供指导,避免大功率扰动触发第三道防线造成切机/切负荷等风险。进而解决了大规模电力电子电源接入导致电力系统惯量逐渐减小,严重威胁电力系统频率稳定的技术问题。
89.示例性系统图16是本发明一示例性实施例提供的考虑频率稳定约束的电力系统最小惯量评估系统的结构示意图。如图16所示,系统1600包括:第一最小惯量确定模块1610,用于在考虑小扰动频率稳定约束时,基于预设的第一评估规则,确定电力系统的第一最小惯量;第二最小惯量确定模块1620,用于在考虑大扰动频率稳定约束时,基于预设的第二评估规则,确定电力系统的第二最小惯量;第三最小惯量确定模块1630,用于在同时考虑小扰动频率稳定约束和大扰动频率稳定约束时,基于预设的第三评估规则,确定电力系统的第三最小惯量。
90.可选地,第一最小惯量确定模块1610具体用于:在仅考虑火电调频且不考虑负荷频率调节时,将预先建立的电力系统的频率响应模型进行简化,得到电力系统的频率响应模型的开环传递函数;确定随着新能源接入电力系统后开环传递函数的根轨迹增益的变化表达式;根据电力系统的系统参数以及根轨迹增益的变化表达式,确定根轨迹增益的临界稳定值;根据开环传递函数的根轨迹增益和临界稳定值,确定电力系统的第一最小惯量。
91.可选地,频率响应模型的表达式为:式中,h为系统惯性常数,
∆fcoi
为惯量中心频率,

pm为等值发电机的机械功率变化量,

pd为扰动功率,d为负荷频率调节系数,除h为有名值外,其余均为标幺值;电力系统的频率响应模型的开环传递函数为:
式中,kg为一次调频下垂系数,h为系统惯性常数,t
ch
为蒸汽室时间常数,tg为调速器时间常数,s为微分算子;随着新能源比例增加,根轨迹增益中h和kg的变化表达式为:式中,h0和k
g0
分别为替代前电力系统惯量和下垂系数,kh_
sg
和kg_
sg
分别为被替代的常规机组惯量和下垂系数比例。
92.可选地,第二最小惯量确定模块1620具体用于:在考虑大扰动频率稳定约束时,判断电力系统的类别,其中电力系统的类别包括电力系统是送端电网、电力系统是受端电网以及电力系统既是送端电网又是受端电网;在考虑大扰动频率稳定约束并且电力系统是送端电网时,确定电力系统是送端电网时的第二最小惯量;在考虑大扰动频率稳定约束并且电力系统是受端电网时,确定电力系统是受端电网时的第二最小惯量;在考虑大扰动频率稳定约束并且电力系统既是送端电网又是受端电网时,确定电力系统既是送端电网又是受端电网时的第二最小惯量。
93.可选地,第二最小惯量确定模块1620还具体用于:在考虑大扰动频率稳定约束并且电力系统是送端电网时,确定电力系统的第一频率约束值和电力系统可能发生的第一最大扰动功率;在等值发电机的机械功率变化量为零并且仅惯量和负荷频率调节作用时,将预先建立的电力系统的频率响应模型进行简化,得到电力系统的频率响应简化模型的表达式;根据简化频率响应模型的表达式,确定电力系统的惯量中心频率表达式;根据惯量中心频率表达式、第一频率约束值、第一最大扰动功率、负荷频率调节系数以及安控动作时间,分别确定适用于无显著频率空间分布的电力系统的第二最小惯量以及适用于考虑频率空间分布和负荷电压特性的电力系统的第二最小惯量。
94.可选地,第二最小惯量确定模块1620还具体用于:当惯量中心频率表达式中的扰动功率为最大扰动功率、惯量中心频率为最大惯量中心频率约束值以及时间取安控动作时间时,电力系统的惯量为最小惯量;根据惯量中心频率表达式、负荷频率调节系数、安控动作时间、第一频率约束值以及第一最大扰动功率,确定适用于无显著频率空间分布的电力系统的第二最小惯量。
95.可选地,第二最小惯量确定模块1620还具体用于:将扰动点所在子区域与电力系统的惯量中心所在子区域分别等值为两台机;根据惯量响应阶段扰动功率分配机理,确定扰动点附近的频率变化率和惯量中心的频率变化率之间的关联关系;考虑静态负荷电压特性对电力系统不平衡功率的影响,确定施加在电力系统惯量上的不平衡功率;
根据惯量中心频率表达式、负荷频率调节系数、安控动作时间、第一频率约束值、第一最大扰动功率、惯量中心频率与扰动点频率关联关系以及负荷电压特性,确定在不忽略负荷频率调节作用时,适用于考虑频率空间分布和负荷电压特性的电力系统的第二最小惯量;根据惯量中心频率表达式、负荷频率调节系数、安控动作时间、第一频率约束值、第一最大扰动功率、惯量中心频率与扰动点频率关联关系以及负荷电压特性,确定在忽略负荷频率调节作用时,适用于考虑频率空间分布和负荷电压特性的电力系统的第二最小惯量。
96.可选地,电力系统的频率响应简化模型的表达式为:式中,h为系统惯性常数,
∆fcoi
为惯量中心频率,

pd为扰动功率,d为负荷频率调节系数,除h为有名值外,其余均为标幺值;电力系统的惯量中心频率表达式为:式中,h为系统惯性常数,
∆fcoi
为惯量中心频率,

pd为扰动功率,d为负荷频率调节系数,除h为有名值外,其余均为标幺值;适用于无显著频率空间分布的电力系统的第二最小惯量的计算公式为:式中,
∆fcoi_max
为惯量中心最大频率偏差约束值,d为负荷频率调节系数,

p
max
为电力系统可能发生的最大扰动功率,tc为安控动作时间。
97.可选地,扰动点附近的频率变化率和惯量中心的频率变化率之间的关联关系的表达式为:式中,

pk、ek分别为扰动点所在子区域机组分担功率与惯量,

p
coi
、e
coi
分别为惯量中心机组分担功率与惯量,α为量化系数,xk、x
coi
分别为扰动点与相应区域联络线的等效电抗,
∆fk_max

∆fmax
分别为频率偏差约束值和惯量中心频率约束值;考虑静态负荷电压特性对电力系统不平衡功率的影响的表达式为:式中,

p
load(u)
为负荷功率改变量;p
load
为负荷功率;为恒阻抗负荷比例、为恒电流负荷比例;为电压变化量;为恒功率负荷比例,且满足,则电
力系统的不平衡功率为;在不忽略负荷频率调节作用时,适用于考虑频率空间分布和负荷电压特性的电力系统的第二最小惯量的计算公式为:式中,

p
load(u)
为负荷功率改变量,d为负荷频率调节系数,

p
max
为电力系统可能发生的最大扰动功率,
∆fk_max
为频率偏差约束值,α为频率空间分布量化系数,tc为安控动作时间;在忽略负荷频率调节作用时,适用于考虑频率空间分布和负荷电压特性的电力系统的第二最小惯量的计算公式为:式中,

p
load(u)
为负荷功率改变量,

p
max
为电力系统可能发生的最大扰动功率,
∆fk_max
为频率偏差约束值,α为频率空间分布量化系数,tc为安控动作时间。
98.可选地,第二最小惯量确定模块1620还具体用于:在考虑大扰动频率稳定约束并且电力系统是受端电网时,确定电力系统的第二频率约束值和电力系统可能发生的第二最大扰动功率;根据预先建立的电力系统的频率响应模型,确定电力系统的频率最低点偏差的表达式;根据频率最低点偏差的表达式,计算频率最低点偏差为预设频率值时的新能源接入比例;根据电力系统的系统惯性常数和计算的新能源接入比例,确定电力系统是受端电网时的第二最小惯量。
99.可选地,电力系统的频率最低点偏差的表达式为:式中,

p
max
为系统可能发生的最大扰动功率,d为负荷频率调节系数,r为无新能源接入时的系统一次调频调差系数,k为新能源接入比例,h为无新能源接入时的系统惯量,t为系统一次调频响应时间,,,,,;电力系统是受端电网时的第二最小惯量的计算公式为:h
min
=h(1-k),式中h为无新能源接入时的系统惯量,k为新能源接入比例。
100.可选地,第二最小惯量确定模块1620还具体用于:
在考虑大扰动频率稳定约束并且电力系统既是送端电网又是受端电网时,分别确定电力系统是送端电网时的第二最小惯量和电力系统是受端电网时的第二最小惯量;将电力系统是送端电网时的第二最小惯量和电力系统是受端电网时的第二最小惯量中的较大值确定为电力系统既是送端电网又是受端电网时的第二最小惯量。
101.可选地,第三最小惯量确定模块1630具体用于:将电力系统的第一最小惯量和电力系统的第二最小惯量中的较大值确定为在同时考虑小扰动频率稳定约束和大扰动频率稳定约束时电力系统的第三最小惯量。
102.本发明的实施例的考虑频率稳定约束的电力系统最小惯量评估系统1600与本发明的另一个实施例的考虑频率稳定约束的电力系统最小惯量评估方法100相对应,在此不再赘述。
103.示例性电子设备图17是本发明一示例性实施例提供的电子设备的结构。该电子设备可以是第一设备和第二设备中的任一个或两者、或与它们独立的单机设备,该单机设备可以与第一设备和第二设备进行通信,以从它们接收所采集到的输入信号。图17图示了根据本发明实施例的电子设备的框图。如图17所示,电子设备170包括一个或多个处理器171和存储器172。
104.处理器171可以是中央处理单元(cpu)或者具有数据处理能力和/或指令执行能力的其他形式的处理单元,并且可以控制电子设备中的其他组件以执行期望的功能。
105.存储器172可以包括一个或多个计算机程序产品,所述计算机程序产品可以包括各种形式的计算机可读存储介质,例如易失性存储器和/或非易失性存储器。所述易失性存储器例如可以包括随机存取存储器(ram)和/或高速缓冲存储器(cache)等。所述非易失性存储器例如可以包括只读存储器(rom)、硬盘、闪存等。在所述计算机可读存储介质上可以存储一个或多个计算机程序指令,处理器171可以运行所述程序指令,以实现上文所述的本发明的各个实施例的软件程序的对历史变更记录进行信息挖掘的方法以及/或者其他期望的功能。在一个示例中,电子设备还可以包括:输入系统173和输出系统174,这些组件通过总线系统和/或其他形式的连接机构(未示出)互连。
106.此外,该输入系统173还可以包括例如键盘、鼠标等等。
107.该输出系统174可以向外部输出各种信息。该输出设备174可以包括例如显示器、扬声器、打印机、以及通信网络及其所连接的远程输出设备等等。
108.当然,为了简化,图17中仅示出了该电子设备中与本发明有关的组件中的一些,省略了诸如总线、输入/输出接口等等的组件。除此之外,根据具体应用情况,电子设备还可以包括任何其他适当的组件。
109.示例性计算机程序产品和计算机可读存储介质除了上述方法和设备以外,本发明的实施例还可以是计算机程序产品,其包括计算机程序指令,所述计算机程序指令在被处理器运行时使得所述处理器执行本说明书上述“示例性方法”部分中描述的根据本发明各种实施例的对历史变更记录进行信息挖掘的方法中的步骤。
110.所述计算机程序产品可以以一种或多种程序设计语言的任意组合来编写用于执行本发明实施例操作的程序代码,所述程序设计语言包括面向对象的程序设计语言,诸如java、c 等,还包括常规的过程式程序设计语言,诸如“c”语言或类似的程序设计语言。程
序代码可以完全地在用户计算设备上执行、部分地在用户设备上执行、作为一个独立的软件包执行、部分在用户计算设备上部分在远程计算设备上执行、或者完全在远程计算设备或服务器上执行。
111.此外,本发明的实施例还可以是计算机可读存储介质,其上存储有计算机程序指令,所述计算机程序指令在被处理器运行时使得所述处理器执行本说明书上述“示例性方法”部分中描述的根据本发明各种实施例的对历史变更记录进行信息挖掘的方法中的步骤。
112.所述计算机可读存储介质可以采用一个或多个可读介质的任意组合。可读介质可以是可读信号介质或者可读存储介质。可读存储介质例如可以包括但不限于电、磁、光、电磁、红外线、或半导体的系统、系统或器件,或者任意以上的组合。可读存储介质的更具体的例子(非穷举的列表)包括:具有一个或多个导线的电连接、便携式盘、硬盘、随机存取存储器(ram)、只读存储器(rom)、可擦式可编程只读存储器(eprom或闪存)、光纤、便携式紧凑盘只读存储器(cd-rom)、光存储器件、磁存储器件、或者上述的任意合适的组合。
113.以上结合具体实施例描述了本发明的基本原理,但是,需要指出的是,在本发明中提及的优点、优势、效果等仅是示例而非限制,不能认为这些优点、优势、效果等是本发明的各个实施例必须具备的。另外,上述公开的具体细节仅是为了示例的作用和便于理解的作用,而非限制,上述细节并不限制本发明为必须采用上述具体的细节来实现。
114.本说明书中各个实施例均采用递进的方式描述,每个实施例重点说明的都是与其它实施例的不同之处,各个实施例之间相同或相似的部分相互参见即可。对于系统实施例而言,由于其与方法实施例基本对应,所以描述的比较简单,相关之处参见方法实施例的部分说明即可。
115.本发明中涉及的器件、系统、设备、系统的方框图仅作为例示性的例子并且不意图要求或暗示必须按照方框图示出的方式进行连接、布置、配置。如本领域技术人员将认识到的,可以按任意方式连接、布置、配置这些器件、系统、设备、系统。诸如“包括”、“包含”、“具 有”等等的词语是开放性词汇,指“包括但不限于”,且可与其互换使用。这里所使用的词汇“或”和“和”指词汇“和/或”,且可与其互换使用,除非上下文明确指示不是如此。这里所使用的词汇“诸如”指词组“诸如但不限于”,且可与其互换使用。
116.可能以许多方式来实现本发明的方法和系统。例如,可通过软件、硬件、固件或者软件、硬件、固件的任何组合来实现本发明的方法和系统。用于所述方法的步骤的上述顺序仅是为了进行说明,本发明的方法的步骤不限于以上具体描述的顺序,除非以其它方式特别说明。此外,在一些实施例中,还可将本发明实施为记录在记录介质中的程序,这些程序包括用于实现根据本发明的方法的机器可读指令。因而,本发明还覆盖存储用于执行根据本发明的方法的程序的记录介质。
117.还需要指出的是,在本发明的系统、设备和方法中,各部件或各步骤是可以分解和/或重新组合的。这些分解和/或重新组合应视为本发明的等效方案。提供所公开的方面的以上描述以使本领域的任何技术人员能够做出或者使用本发明。对这些方面的各种修改对于本领域技术人员而言是非常显而易见的,并且在此定义的一般原理可以应用于其他方面而不脱离本发明的范围。因此,本发明不意图被限制到在此示出的方面,而是按照与在此公开的原理和新颖的特征一致的最宽范围。
118.为了例示和描述的目的已经给出了以上描述。此外,此描述不意图将本发明的实施例限制到在此公开的形式。尽管以上已经讨论了多个示例方面和实施例,但是本领域技术人员将认识到其某些变型、修改、改变、添加和子组合。
再多了解一些

本文用于企业家、创业者技术爱好者查询,结果仅供参考。

发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表

相关文献