一种残膜回收机防缠绕挑膜装置的制 一种秧草收获机用电力驱动行走机构

一种光伏储能供电控制系统的制作方法

2022-02-19 04:12:11 来源:中国专利 TAG:


1.本发明涉及电线电缆技术领域,具体涉及一种光伏储能供电控制系统。


背景技术:

2.光伏发电具有可持续、发电量丰富、安全无污染、发电成本低的优点,但是也有着稳定性低、可靠性差和能量密度分散化的问题。在科技发展的推动下,光伏发电系统的发电量在不断增加,在接入储能设备之后,可以根据电网的电量进行存储管理。
3.但是,随着光伏发电的规模化,电站的储能量逐年提升,但是伴随而来的是单一区域的光伏发电站仅能供给当前区域的负载设备,对于富余的电量只能进行存储,这使得在不同区域建立光伏发电系统时要根据不同区域的负载用电量和功率密度设计储能设备,这不仅增加了储能设备的搭建成本,同时长期会造成一定程度的能量损耗,不能充分提高光伏的能量利用率。
4.因此,如何提供一种支持跨区域光伏供电组网、能够有效提高能源利用率的光伏储能供电控制系统是本领域技术人员亟需解决的问题。


技术实现要素:

5.有鉴于此,本发明提供了一种光伏储能供电控制系统,搭建跨区域光伏组网,能够对本地负载和跨区域负载进行高效、灵活的电能输出控制,提升了光伏电源的能源利用率,减少了能源浪费。
6.为了实现上述目的,本发明采用如下技术方案:
7.一种光伏储能供电控制系统,包括无线控制模块、蓄电池、pwm功率开关和功率跟踪控制器;其中,
8.所述蓄电池接收光伏阵列的母线汇流电流,并连接至所述无线控制模块、所述pwm功率开关和所述功率跟踪控制器;
9.所述无线控制模块通过所述pwm功率开关连接至第一区域负载;所述无线控制模块通过控制器控制所述第一区域负载与市电的连接;
10.所述无线控制模块通过所述功率跟踪控制器连接至第二区域负载;所述蓄电池与所述功率跟踪控制器的连接通路上设置控制开关,所述无线控制模块连接所述控制开关,并控制该通路的通断。
11.优选的,所述无线控制模块无线连接远程控制端,用于接收第二区域负载的供电请求信息。
12.优选的,所述蓄电池与所述无线控制模块的连接通路上设置有隔离开关。
13.优选的,所述无线控制模块通过三极管连接至所述控制器的控制输入端,所述三极管的基极连接所述无线控制模块,所述三极管的集电极连接所述控制器,所述三极管的发射极连接vcc;所述控制器连接市电和第一区域负载;所述控制器为5v控制器。
14.优选的,第二区域负载为多个,且为并联组网,均与所述功率跟踪控制器串联。
15.优选的,所述第一区域负载为与所述蓄电池同区域的本地负载,所述第二区域负载为与所述蓄电池不同区域的跨区域负载。
16.优选的,所述无线控制模块调节pwm的占空比,控制蓄电池向第一区域负载的供电量;
17.当所述蓄电池电量符合第一区域负载供电要求时,所述无线控制模块调节pwm的占空比,使其工作在最大功率状态;
18.当所述蓄电池电量不符合第一区域负载供电要求时,所述无线控制模块调节pwm的占空比,使其工作在限功率状态下,并向所述控制器发出控制信号,接通并调节市电向所述第一区域负载的补偿供电量。
19.优选的,当所述蓄电池电量超过第一区域负载供电要求,且所述无线控制模块接收第二区域负载的供电请求信息时,所述无线控制模块调节所述功率跟踪控制器的额定功率输出值,并控制所述控制开关打开,所述蓄电池向所述第二区域负载输出额定功率大小的供电量。
20.经由上述的技术方案可知,与现有技术相比,本发明的有益效果包括:
21.本发明通过对光伏储能设备的充电、放电控制,有效解决电网消纳问题,同时可以通过对蓄电池跨区域供电功率的平衡,从而保证本地负载电能系统稳定运行的同时,能够对其他区域的负载按需供电,从而成功构建跨区域光伏组网,保障全网供电系统高效运行。降低了储能成本的同时避免了能源浪费。
附图说明
22.为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据提供的附图获得其他的附图;
23.图1为本发明实施例提供的一种光伏储能供电控制系统的原理图;
24.图2为本发明实施例提供的一种光伏储能供电控制流程图。
具体实施方式
25.下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
26.本实施例公开的一种光伏储能供电控制系统,该系统用于实现光伏跨区域负载供电。对于光伏发电站,普遍配置蓄电池组对光伏汇聚形成的多余电量进行存储,在本实施例中,当前光伏发电站配电区域为第一区域,当前光伏发电站配电范围以外的其余配电区域为第二区域。
27.本实施例提供的光伏储能供电控制系统包括无线控制模块、蓄电池、pwm功率开关和功率跟踪控制器;蓄电池接收光伏阵列的母线汇流电流,并连接至无线控制模块、pwm功率开关和功率跟踪控制器;无线控制模块通过pwm功率开关连接至第一区域负载;无线控制
模块通过控制器控制第一区域负载与市电的连接;无线控制模块通过功率跟踪控制器连接至第二区域负载;蓄电池与功率跟踪控制器的连接通路上设置控制开关,无线控制模块连接控制开关,并控制该通路的通断。
28.在使用时,通过光伏阵列吸收太阳能转化成直流电流,并将光伏电压、电流和输出功率通过数字通信结构传入无线控制模块。
29.在一个实施例中,无线控制模块无线连接远程控制端,远程控制端可以为计算机平台,或者为移动终端,用户通过远程获取不同区域无线控制模块采集的所在区域的光伏电压、电流和输出功率,结合蓄电池的储电量,自动分配跨区域供电的区域负载,并向第一区域无线控制模块发送带供电第二区域的供电请求信息。
30.在一个实施例中,蓄电池与无线控制模块的连接通路上设置有隔离开关。当无线控制模块需要维护或检修时,为了对蓄电池进行保护,防止蓄电池在无效操作下向第一区域或第二区域执行供电操作,因此设置隔离开关。
31.在对无效控制模块调试或检修时,切断隔离开关,对蓄电池进行保护。
32.在一个实施例中,无线控制模块通过三极管连接至控制器的控制输入端,三极管的基极连接无线控制模块,三极管的集电极连接控制器,三极管的发射极连接vcc;控制器连接市电和第一区域负载;控制器为5v控制器。
33.在一个实施例中,无线控制模块调节pwm的占空比,控制蓄电池向第一区域负载的供电量;无线控制模块向第一区域负载供电状态包括如下两种情况:
34.当蓄电池电量符合第一区域负载供电要求时,无线控制模块调节pwm的占空比,使其工作在最大功率状态。此种情况下,蓄电池仅向第一区域负载供电,并且无需接入市电。
35.当蓄电池电量不符合第一区域负载供电要求时,无线控制模块调节pwm的占空比,使其工作在限功率状态下,并向控制器发出控制信号,接通并调节市电向第一区域负载的补偿供电量。此种情况下,蓄电池组储电量较低,无法满足第一区域负载正常工作负荷时,配合市电共同想第一区域负载供电,或者,单独由市电向第一区域负载供电。
36.在一个实施例中,无线控制模块向第二区域负载供电情况如下:
37.当蓄电池电量超过第一区域负载供电要求,且无线控制模块接收第二区域负载的供电请求信息时,无线控制模块调节功率跟踪控制器的额定功率输出值,并控制控制开关打开,蓄电池向第二区域负载输出额定功率大小的供电量。
38.当控制开关闭合后,功率跟踪控制器实时跟踪输出至第二区域负载支路的电量,当蓄电池组输出功率低于额定功率时,无线控制模块自动控制控制开关断开。
39.在一个实施例中,第一区域负载为与蓄电池同区域的本地负载,第二区域负载为与蓄电池不同区域的跨区域负载。
40.在一个实施例中,第二区域负载为多个,且为并联组网,均与功率跟踪控制器串联。跨区域间的负载采用并联组网方式,提高了对第二区域负载供电调控的灵活性。
41.以上对本发明所提供的光伏储能供电控制系统进行了详细介绍,本文中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想;同时,对于本领域的一般技术人员,依据本发明的思想,在具体实施方式及应用范围上均会有改变之处,综上,本说明书内容不应理解为对本发明的限制。
42.对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本发明。
对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本发明的精神或范围的情况下,在其它实施例中实现。因此,本发明将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。
再多了解一些

本文用于企业家、创业者技术爱好者查询,结果仅供参考。

发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表

相关文献