一种残膜回收机防缠绕挑膜装置的制 一种秧草收获机用电力驱动行走机构

一种疏浚挖槽水动力变化引起的航槽淤积量预测方法与流程

2021-12-17 21:48:00 来源:中国专利 TAG:


1.本发明涉及水运工程领域,特别是涉及一种疏浚挖槽水动力变化引起的航槽淤积量预测方法。


背景技术:

2.航运是河流开发与利用的重要功能及价值,航道浅滩的淤积制约着航道水深的稳定与提升。航道管理部门一般采用航道整治工程、疏浚等措施维持航道水深的畅通。实施航道整治工程,主要是实施护岸、护滩、坝体及护底带等工程措施,实现守护航道范围的洲滩边界,改善航路内的水深。疏浚措施,主要是利用疏浚装备对航路内不满足目标水深的区域进行疏浚,这个区域也一般被称为航道浅滩。航道开挖后往往出现回淤,大量的工程实践、试验研究均表明,航道开挖会在一定程度上破坏局地的水沙动力环境(过水面积、水流速度、水平及纵向流速分布、挟沙力等均发生改变),势必会引起一定的航槽泥沙淤积,以此来平衡或补偿疏浚挖槽带来的效应。
3.在冲积性河流浅滩上进行挖槽,挖槽的断面尺寸要满足航行的要求,同时还要求挖槽内的回淤量小,这样航槽才比较稳定。挖槽不回淤的基本条件是使挖槽后棺内流速大于开挖前该断面的槽内流速,并不小于挖槽河段上游来沙河段的流速。本专利申请研究中,采用流网法的原理推导出确定挖槽断面最佳尺寸的公式,该式可用于冲积性河流浅滩的挖槽设计。三峡工程运行后,长江下游潮汐河段航道浅滩以底沙造床为主,也是航道维护的重点河段,在航道疏浚维护后,航槽回淤量仍较大,增加了航道维护压力。本发明专利以冲积型底沙造床为主的河流为对象,首先推导底沙输移不平衡输沙方程,理论分析挖槽前后浅滩区域的水动力变化(流速、水深、流量等),利用流网法推导了挖槽前后的流速的变化,进而得到挖槽前后浅滩区域的水动力变化引起的淤积量。


技术实现要素:

4.本发明的目的是根据待测水域的水动力变化,获得流速的变化情况,进而得到水动力变化引起的淤积量,来改善航路内的水深情况。
5.为实现上述目的,本发明提供了如下方案:
6.一种疏浚挖槽水动力变化引起的航槽淤积量预测方法,包括:
7.s1、基于待测区域的历史数据,构建底沙输移模型;
8.s2、基于所述底沙输移模型计算待测区域挖槽前的底沙输移量和挖槽后的底沙输移量;
9.s3、基于所述挖槽前的底沙输移量和所述挖槽后的底沙输移量计算航槽淤积量。
10.可选的,所述s1中构建底沙输移模型包括:
11.根据进口断面单位时间的来沙量和出口断面单位时间的排沙量,获得下界面落至河床的单位时间落淤量;
12.根据从悬移区下沉的沙量和从底沙区上扬的沙量,获得上界面净流出沙量;
13.根据所述下界面落至河床的单位时间落淤量和上界面净流出沙量构建底沙输移模型。
14.可选的,所述s2中待测区域挖槽前的底沙输移量的过程包括:
15.基于所述底沙输移模型计算待测区域流速;
16.基于流速计算挖槽前的底沙输移量。
17.可选的,基于所述底沙输移模型计算挖槽后的底沙输移量的过程中包括:
18.基于所述底沙输移模型计算待测区域流速;
19.基于流速计算挖槽后的底沙输移量。
20.可选的,基于所述底沙输移模型计算待测区域流速包括:
21.根据谢才系数公式获得挖槽前航槽断面的流速和平均水深;
22.根据挖槽后流带宽度和平均水深获得挖槽后槽内的流速及平均水深。
23.可选的,基于流速计算挖槽前的底沙输移量的过程中包括:通过数学模型计算得到挖槽前断面的流速分布,计算挖槽前的底沙输移量;
24.利用平面流网法原理确定挖槽前后的流速变化,设挖槽内的水深和挖槽宽度分别为h0和b0;
[0025][0026]
其中,q为通过挖槽断面的流量;n为糙率;j0为挖槽前的比降;b
i
和h
i
为挖槽前流带的宽度和平均水深;
[0027][0028]
根据谢才系数公式有:
[0029]
v0=k0h
02/3
[0030]
式中:v0和h0分别为开挖前航槽断面的平均流速和平均水深;
[0031]
将挖槽前的断面分为两部分,即槽内和槽外;
[0032]
对于槽外有:
[0033]
v
0w
=k0h
0w2/3
[0034]
式中:v
0w
和h
0w
分别为开挖前航槽外区域的平均流速及平均水深;
[0035]
对于槽内有:
[0036]
v
on
=k0h
0n2/3
[0037]
式中:v
0n
和h
0n
分别为挖槽前槽内的平均流速及平均水深;
[0038]
可得到:
[0039]
[0040]
可选的,基于流速计算挖槽后的底沙输移量的过程中包括:根据挖槽后槽内的流速公式计算得到挖槽后航槽内的流速数值,并计算挖槽后的底沙输移量。
[0041]
可选的,基于所述挖槽前的底沙输移量和所述挖槽后的底沙输移量计算航槽淤积量的过程中包括:建立底沙输移量计算公式,
[0042][0043]
式中:v为水流流速(m/s);v
c
为起动临界流速(m/s);ω为沉降速度(m/s);c0为无量纲谢才系数;k为待定常数;
[0044]
因此可得,挖槽后输沙能力之比为:
[0045][0046]
由于假定航槽开挖前后糙率n不变,可得到:
[0047][0048]
最终化简得到:
[0049][0050]
即得挖槽回淤厚度计算公式:
[0051][0052]
为疏浚前底沙输沙能力,v1、h1为疏浚前流速和水深,v2、h2为疏浚后流速和水深,k
m
包含了ω、α、γ等综合参数,为待定系数,通过实测资料分析、概化水槽试验或数学模型计算确定。
[0053]
本发明的有益效果为:
[0054]
本发明以冲积型底沙造床为主的河流为对象,首先推导底沙输移不平衡输沙方程,理论分析挖槽前后浅滩区域的水动力变化(流速、水深、流量等),利用流网法推导了挖槽前后的流速的变化,进而得到挖槽前后浅滩区域的水动力变化引起的淤积量,实现守护航道范围的洲滩边界,改善航路内的水深。
附图说明
[0055]
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
[0056]
图1为本发明实施例整体方案示意图。
具体实施方式
[0057]
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
[0058]
为使本发明的上述目的、特征和优点能够更加明显易懂,下面结合附图和具体实施方式对本发明作进一步详细的说明。
[0059]
如图1所示,一种疏浚挖槽水动力变化引起的航槽淤积量预测方法,包括:s1、基于待测区域的历史数据,构建底沙输移模型;s2、基于所述底沙输移模型计算待测区域挖槽前的底沙输移量和挖槽后的底沙输移量;s3、基于所述挖槽前的底沙输移量和所述挖槽后的底沙输移量计算航槽淤积量。
[0060]
可选的,所述s1中构建底沙输移模型包括:
[0061]
根据进口断面单位时间的来沙量和出口断面单位时间的排沙量,获得下界面落至河床的单位时间落淤量;
[0062]
根据从悬移区下沉的沙量和从底沙区上扬的沙量,获得上界面净流出沙量;
[0063]
根据所述下界面落至河床的单位时间落淤量和上界面净流出沙量构建底沙输移模型。
[0064]
可选的,所述s2中待测区域挖槽前的底沙输移量的过程包括:
[0065]
基于所述底沙输移模型计算待测区域流速;
[0066]
基于流速计算挖槽前的底沙输移量。
[0067]
可选的,基于所述底沙输移模型计算挖槽后的底沙输移量的过程中包括:
[0068]
基于所述底沙输移模型计算待测区域流速;
[0069]
基于流速计算挖槽后的底沙输移量。
[0070]
可选的,基于所述底沙输移模型计算待测区域流速包括:
[0071]
根据谢才系数公式获得挖槽前航槽断面的流速和平均水深;
[0072]
根据挖槽后流带宽度和平均水深获得挖槽后槽内的流速及平均水深。
[0073]
可选的,基于流速计算挖槽前的底沙输移量的过程中包括:通过数学模型计算得到挖槽前断面的流速分布,计算挖槽前的底沙输移量;
[0074]
利用平面流网法原理确定挖槽前后的流速变化,设挖槽内的水深和挖槽宽度分别为h0和b0;
[0075][0076]
其中,q为通过挖槽断面的流量;n为糙率;j0为挖槽前的比降;b
i
和h
i
为挖槽前流带的宽度和平均水深;
[0077]
[0078]
根据谢才系数公式有:
[0079]
v0=k0h
02/3
[0080]
式中:v0和h0分别为开挖前航槽断面的平均流速和平均水深;
[0081]
将挖槽前的断面分为两部分,即槽内和槽外;
[0082]
对于槽外有:
[0083]
v
0w
=k0h
0w2/3
[0084]
式中:v
0w
和h
0w
分别为开挖前航槽外区域的平均流速及平均水深;
[0085]
对于槽内有:
[0086]
v
on
=k0h
0n2/3
[0087]
式中:v
0n
和h
0n
分别为挖槽前槽内的平均流速及平均水深;
[0088]
可得到:
[0089][0090]
可选的,基于流速计算挖槽后的底沙输移量的过程中包括:根据挖槽后槽内的流速公式计算得到挖槽后航槽内的流速数值,并计算挖槽后的底沙输移量。
[0091]
可选的,基于所述挖槽前的底沙输移量和所述挖槽后的底沙输移量计算航槽淤积量的过程中包括:建立底沙输移量计算公式,
[0092][0093]
式中:v为水流流速(m/s);v
c
为起动临界流速(m/s);ω为沉降速度(m/s);c0为无量纲谢才系数;k为待定常数;
[0094]
因此可得,挖槽后输沙能力之比为:
[0095][0096]
由于假定航槽开挖前后糙率n不变,可得到:
[0097][0098]
最终化简得到:
[0099][0100]
即得挖槽回淤厚度计算公式:
[0101]
[0102]
为疏浚前底沙输沙能力,v1、h1为疏浚前流速和水深,v2、h2为疏浚后流速和水深,k
m
包含了ω、α、γ等综合参数,为待定系数,通过实测资料分析、概化水槽试验或数学模型计算确定。
[0103]
以上所述的实施例仅是对本发明优选方式进行的描述,并非对本发明的范围进行限定,在不脱离本发明设计精神的前提下,本领域普通技术人员对本发明的技术方案做出的各种变形和改进,均应落入本发明权利要求书确定的保护范围内。
再多了解一些

本文用于企业家、创业者技术爱好者查询,结果仅供参考。

发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表

相关文献