一种残膜回收机防缠绕挑膜装置的制 一种秧草收获机用电力驱动行走机构

液体加热器具的制作方法

2021-12-17 11:49:00 来源:中国专利 TAG:
液体加热器具的制作方法

本发明涉及液体加热器具,尤其涉及一种能够选择性地加热少量液体的液体加热器具。

背景技术

液体加热器具,例如水壶,在许多家庭中很常见。水壶可用于将通常多达1.7升体积的水加热至沸腾。然而,用户常常仅需要将相对少量的水加热至沸腾,比如说如果他们正在制作单杯热饮的话。依据水壶,可能难以精确地将单杯饮品所适量的水灌入水壶,因此水壶经常被过度灌装。这种过度灌装导致需要更多的能量来将一定体积的水加热到所期望的温度。由于水壶通常具有固定的功率输出,这最终导致用户不得不等待更长的时间以使水达到所期望的温度。此外,这不仅意味着用户必须等待更长的时间,而且加热过剩水量所需的额外能量常常被浪费,因为多余的水通常留在水壶中冷掉。全世界数百万人每天多次使用水壶,因此,加热未使用的水量所浪费的能量是显著的。

在WO2010/094945中可以看到解决上述问题的一种尝试。其中公开了一种具有水加热腔室的器具,该水加热腔室分成被隔板分开的第一加热腔室和第二加热腔室。用户可致动阀选择性地打开和关闭第一加热腔室和第二加热室之间的流体连通。第一腔室直接由加热元件加热。根据用户希望加热的水量,他们可以控制用户可致动阀以关闭第一下腔室,使得仅第一腔室中的水被加热,或者打开阀使得在第一腔室和第二腔室中的水均被加热。在WO’945的图2c和图2d中,用户可致动阀包括在隔板的一侧上布置成圆形的一系列孔。孔由用户致动旋转阀板选择性地关闭。

如本领域技术人员将理解的,为了操作WO’945中公开的器具,用户首先必须用水灌装储器。然后,他们必须根据所期望的操作模式操作用户可致动阀。如果他们希望仅通过加热第一腔室中的水来分配较小的体积,则必须先打开用户可致动阀、让水灌装第一腔室,再在第一腔室一装满时就关闭用户可致动阀。在操作之后,当第一腔室中的水被加热并被分配时,如果用户希望操作该器具以再次仅加热第一腔室中的水,则他们必须再次打开用户可致动阀、让水灌装第一腔室,然后再次关闭用户可致动阀。每次在需要一定体积的被加热液体时都必须打开和关闭阀门很不方便,尤其是当用户希望能够以快速操作加热少量的液体时。



技术实现要素:

本发明旨在提供一种改进的器具,从第一方面来看,本发明提供一种液体加热器具,包括:

液体储器,所述液体储器包括第一腔室,所述第一腔室布置在第二腔室下方并且由在二者之间延伸的隔板分开,

加热装置,所述加热装置布置成在使用时加热容纳在所述第一腔室内的液体;

第一阀、第二阀和设置在所述隔板中的浮阀,以选择性地允许液体在所述第一腔室和所述第二腔室之间流动,其中所述第一阀和所述第二阀布置成使得将所述第一阀和所述第二阀连接到所述隔板的中心的相应直线具有钝角分隔,并且其中所述浮阀包括浮阀构件,所述浮阀构件布置成浮动并与阀座配合,从而关闭所述浮阀以防止液体流过所述浮阀;

至少一个阀关闭构件,所述阀关闭构件布置成选择性地关闭所述第一阀和所述第二阀;以及

液体出口,所述液体出口在所述第一腔室中并与设置在所述器具上的分配出口流体连通,以便当所述第一阀和所述第二阀关闭时允许液体从所述第一腔室分配。

因此,本领域技术人员将会看到,液体加热器具可以有效地以两种不同的模式操作。液体加热器具可以在第一阀和第二阀关闭的第一模式,即“热杯”模式下操作,其中它用于直接从第一腔室分配固定体积的液体。因此,器具可以在需要时快速地加热更小体积的液体。器具也可以在第一阀和第二阀打开的第二模式下操作。在此模式中,液体将在第一腔室中的液体被加热装置加热时在第一腔室和第二腔室之间流动。第二模式可以被认为对应于“水壶”模式。用户可以根据他们所期望的加热液体的体积,通过控制阀关闭构件的位置来选择操作的类型。

在使用中,在液体储器灌装有液体时,由于浮阀中的浮阀构件,液体将通过浮阀自由地从第二腔室流入第一腔室。如果储器灌装有足够量的液体,这将引起浮阀构件浮动并与其阀座配合。

一旦浮阀构件与其阀座配合,这将关闭第一腔室,从而防止任何另外的液体进入或离开第一腔室。然后可以操作加热装置以加热第一腔室中的该体积的液体。

有利地,由于浮阀构件的布置,当在热杯模式下使用时,液体加热器具在第一腔室已经灌装有预定量的液体、并且不需要用户的任何交互时,自动关闭第一腔室。这与WO’945中所见的和如上所述的需要用户的交互来关闭用户可致动阀相反。因此,这简化了用户对设备的操作。

在第一阀和第二阀关闭的热杯操作模式中,当操作加热装置时,其将使第一腔室中的液体温度升高。由于第一腔室内的液体无法外泄,其温度将持续上升。随着温度升高并最终达到沸腾,第一腔室内的压力将增加。该压力可以用作将液体向分配出口经由液体出口排出第一腔室的装置。当然,可以提供附加的或可替代的用于分配的装置,例如布置成从第一腔室抽取热水的泵。不管用于分配的装置如何,由于液体沸腾产生的蒸汽压力将保持住浮阀构件使得其与阀座配合,从而保持浮阀关闭。

一旦所有液体都从第一腔室分配,并且蒸汽压力下降,则浮阀不再保持抵靠其阀座,从而允许液体再灌装第一腔室。同样,当第一腔室被灌装时,浮阀构件将浮动并与阀座配合,从而关闭浮阀并因此关闭第一腔室。然后液体加热器具立即准备好再次以热杯模式操作。因此,如本领域技术人员将理解的,根据本发明的这些实施例的液体加热器具构造为自动地再灌装以及关闭第一腔室,使得其可以快速且更容易地再次在热杯模式下操作。

在第一阀和第二阀打开,即器具在水壶模式下操作的情况下,当加热装置被操作时,例如,被供电时,第一腔室中的液体将被加热并且将产生对流,其导致被加热的水从第一腔室流出进入第二腔室中,从而加热第二腔室内的液体,同时来自第二腔室的较冷的水流入第一腔室以在其中被加热。经过足够的时间后,液体储器内的整个体积的液体将达到沸腾。

申请人已经认识到,提供由钝角分隔的至少第一阀和第二阀有助于促进对流的发展,这可以改善这种操作模式下的加热均匀性。申请人已经发现,单个阀可能限制第一和第二加热室之间的液体流动,导致每个腔室中的液体混合不充分。这可能导致第一腔室内的液体过热,并且导致第二腔室中的液体没有充分加热。此外,第一腔室中的液体过热可能导致第一腔室内的蒸汽积聚。在器具还包括具有在检测到干烧时关闭加热装置电源的干烧检测装置的适当的控制器的情况下,申请人已经发现,如果只有一个阀,或者有两个角度分隔不足的阀,可能会导致过热,这会致使这种干烧检测被触发并因此停止器具的进一步操作。局部沸腾和混合不充分也可能引起不期望的噪音和器具的摇动。通过提供第一阀和第二阀以促进对流的发展,可以避免这种过热风险。此外,申请人已经发现,第一腔室和第二腔室之间的对流越强,腔室中的液体被加热得越均匀。

在一组实施例中,第一阀和第二阀位于隔板的外围部分,即沿着从隔板的中心穿过相应的阀延伸到隔板的外围的直线,进一步朝着隔板的外围。因此,例如在优选地,隔板基本上是圆形的情况下,在这样的实施例中,相应的阀将处于沿着半径的至少一半处。

隔板中的第一阀和第二阀的角度和径向间隔可能影响可能形成的对流的强度。申请人已经认识到,在第一阀和第二阀打开,并且液体加热器具有效地以水壶模式操作时,分隔第一阀和第二阀有助于促进对流的发展。在一组实施例中,钝角间隔至少为120°,例如,至少为150°。例如,第一阀和第二阀可以基本上或完全径向相对。在其他条件相同的情况下,阀分隔的越远,对流可能就越强,因为较热的水通过同一阀从第一腔室流出的机会就越小,而较冷的水则试图从同一阀进入第一腔室。如前所述,改善形成较强对流的可能性可以提高液体储器内的液体可以被加热的速度和效率。

加热装置可以例如包括底板加热装置,其例如为如本领域所公知的安装在液体腔室的基部的底侧的带有护套的电加热元件的形式。这种带有护套的电加热元件可以例如形成为马蹄形,其电端子位于马蹄形的每个末端。可以理解的是,在第一腔室的底侧设置有这样的马蹄形加热元件,第一腔室的靠近马蹄形加热元件的两端之间的空间的部分将不会被加热元件直接加热。而第一腔室的其余部分,特别是紧邻加热元件的部分,将更直接地被加热,从而被加热到更高的温度。这将导致第一腔室内的液体之间的温差。在一组实施例中,第一阀和第二阀中的至少一个布置在加热元件的两个端子之间的区域的正上方。利用根据该组实施例的阀装置,在使用时,其他阀周围的液体温度将高于端子上方的阀周围的液体温度。因此,可形成对流,使得被加热的液体将倾向于经由第一阀离开第一腔室,并且液体将经由第二阀进入第一腔室。水离开第一腔室的出口和进入第一腔室的入口的分离进一步有助于产生强对流,因此有助于提供更有效的液体加热。

更通常地,在一组实施例中,第一阀和第二阀定位成使其经受来自加热元件的不同的加热程度。这可以通过上述布置有利地实现,但是也存在其他可能的方式。例如,第一阀和第二阀中的一个可以直接位于加热元件的垂直上方,而另一个可以位于其径向内侧(或外侧)。

虽然本发明可以通过两个阀外加浮阀来实现,但是在一组实施例中,提供了一个或多个其他阀。通常来讲,具有更多阀将在阀打开时通过对流增强混合并降低沸腾液体中的动能。其他阀优选地分布在第一阀和第二阀之间,例如,使得第一阀、第二阀和其他阀围绕隔板周向分布。本文中提到的第一阀和第二阀应当被视为同等地指代任何这样的其他阀(如果提供的话)。

阀可以简单地包括开孔。然而,在一组实施例中,栅格、格栅或网格层设置在一个、多于一个或所有相应的孔中。这可以有助于限制可以通过孔的气泡的尺寸,从而有助于进一步限制沸腾液体中的动能。

至少当液体加热器具布置在水平面上时,将第一腔室和第二腔室分隔开的隔板基本上是水平的。或者,隔板可以与水平面成一定角度布置,例如与水平面成0°-10°的角度。然而,在一组实施例中,隔板具有圆顶形状。在这样一组的实施例中,隔板是对称的,使得最高点基本上位于隔板的中心。在另一组实施例中,浮阀布置在隔板的最高点(例如中心)处。将浮阀布置在该位置有助于在第一腔室充满液体时释放第一腔室内的留存空气,以确保其可被完全灌装。

可以为第一阀和第二阀(以及任何其他阀)提供单独的阀关闭构件。在一组实施例中,共用阀关闭构件设置成选择性地关闭第一阀和第二阀,并且在提供其他阀的情况下,关闭其他阀。这简化了结构和操作。共用阀关闭构件可采用许多合适的形式中的任何一种,例如活塞或滑动件,但在一组实施例中,共用阀关闭构件包括铰接翻板,铰接翻板例如铰接地安装在隔板上,以便可以在阀打开的抬高位置和阀关闭的降低位置之间移动。

如上所述的铰接翻板将需要有足够的表面积来覆盖阀的开口,以便关闭阀。在设置多个分布在隔板周围的阀的优选情况下,申请人已经认识到,即使在抬高位置,这种铰接翻板的表面积也可以代表第二腔室的内部横截面的显着比例,并且这可能会阻碍前面描述的对流。因此,在一组实施例中,铰接翻板在阀之间,即在其各个部分之间,设有一个或多个孔,当铰接翻板处于其降低位置时需要铰接翻板关闭阀。当铰接翻板处于其抬高位置时,孔可以帮助允许液体从其流过。

铰接翻板通常需要成形为使得其确实能够阻碍浮阀。因此,其可以具有当铰接翻板处于其降低位置时供浮阀穿过的孔,并且除此之外上述孔也都存在。

液体加热器具可以包括另外的加热装置,例如布置在第二腔室内以向其液体内容物提供补充加热。然而,申请人已经认识到,第一腔室和第二腔室的布置,二者之间的隔板包括第一阀和第二阀,意味着布置成加热第一腔室的内容物的加热装置可足以加热第一腔室和第二腔室两者中的液体。因此,在一组实施例中,布置成加热第一腔室中的液体的加热装置是液体加热器具中的唯一加热装置。单一加热装置的使用,而不是为第一腔室和第二腔室的每个都提供单独的加热装置,可以降低液体加热器具的总成本和复杂性。

当第一阀和第二阀打开,即器具处于水壶模式时,一旦第一腔室和第二腔室内的液体已被加热,液体可以简单地从液体储器中倒出。然而,在一组实施例中,液体储器包括壶嘴,壶嘴布置成允许液体从器具中倾倒出来。壶嘴可以布置在第二腔室上/第二腔室中。壶嘴可以允许更加可控地从液体加热器具倾倒液体。这可能是特别重要的,例如在倾倒沸水时。

在包括壶嘴的实施例中,优选地,第一阀或第二阀或被提供的其他阀中的一个,基本上在壶嘴下方布置在隔板中。以这种方式定位阀意味着当器具以水壶模式使用时,当器具倾斜以便将液体倒出壶嘴时,可以将基本上所有的液体排出第一腔室。如本领域技术人员将理解的,如果没有将阀设置在壶嘴下方,当器具倾斜时,一部分液体可能被留存在第一腔室内。例如当需要液体储器的全部内容物时,这可能是不被期望的。

在一组实施例中,液体加热器具还包括手柄,第一阀或第二阀或被提供的其他阀中的一个基本上与手柄相对布置在隔板中。如本领域技术人员将理解的,当用户清空器具的内容物时,手柄通常是使器具倾斜的部分。因此,通过与手柄相对地布置阀,这可以有助于确保以与上述关于壶嘴的类似方式,从液体储器中倒出最大量的液体。

当第一阀和第二阀关闭的情况下操作器具,即在热杯模式下,当第一腔室内的液体被充分加热时,它可以直接从液体出口分配到分配出口。如上所述,第一腔室内的液体可以在压力下从第一腔室中排出,这种压力例如是随着液体受热而在第一腔室内增加的蒸汽压力。当通过蒸汽压力驱动液体的分配时,蒸汽可能在分配时随液体逸出,这可能导致蒸汽和液体从分配出口不规则地分配。这可能是危险的,因为蒸汽的分配可能对用户造成伤害。因此,在一组实施例中,液体加热器具还包括分配腔室,分配腔室布置在液体出口和分配出口之间,使得液体在通过分配出口之前首先经过分配腔室。申请人已经认识到,通过提供分配腔室,当被加热的液体通过分配腔室时,被加热的液体和蒸汽可以分离,从而允许被加热的液体以较为规则的方式分配。这可能更安全,并且提供更多层流的液体流出分配出口。

分配腔室可以布置在第二腔室内,优选地布置在其上部。在一组实施例中,分配腔室包括与第一腔室的液体出口连通的液体入口,与分配出口连通的第一液体出口,以及与第二腔室液体连通的第二液体出口,以允许未分配的水回流到第二腔室。在另一组实施例中,分配腔室包括布置成选择性地关闭第一液体出口或第二液体出口的阀元件。

液体加热器具可包括任何合适的装置,该装置用于在第一腔室或第二腔室内的液体温度达到所期望的温度时停止加热装置操作,例如,关闭电源。例如,液体加热器具可以包括连接到热敏电阻的电子控制器,该热敏电阻对第一腔室和第二腔室中的一个或两个中的液体温度敏感。当电子控制器检测到已达到某种状态时,例如,当达到沸腾时,电子控制器可以切断加热元件的电源以终止加热。然而,在一组实施例中,液体加热器具包括热机械元件,其布置成对器具内的温度敏感,并且布置成当热机械元件检测到预定温度时切断到加热装置的电源。预定温度可以例如对应于蒸汽的典型最低温度。可以为第一腔室和第二腔室中的每一个提供单独的热机械元件,然而,在一组实施例中,热机械元件布置成用于第一腔室和第二腔室两者。申请人已经认识到使用单个热机械元件可以降低器具的制造成本。热机械元件可包括双金属传感器,例如以典型的蒸汽开关的方式。

在包括分配腔室的实施例中,优选地,热机械元件布置在分配腔室中,或与分配腔室流体连通,并且分配腔室还包括布置成允许来自第二腔室的蒸汽进入的蒸汽入口。因此,在这样的一组实施例中,在热机械元件布置在分配腔室中的情况下,热机械元件将能够检测进入分配腔室的蒸汽,其指示液体已经被加热并且已从第一腔室被分配,即在热杯操作模式下。此外,第二腔室中的蒸汽可以通过蒸汽入口自由地进入分配腔室,因此热机械元件也能够检测第二腔室中液体的沸腾,即当器具以水壶操作模式操作时。

在一组实施例中,分配出口在分配位置和非分配位置之间可移动,并且联接到阀关闭构件,使得当分配出口移动到分配位置时,阀关闭构件被移动以关闭第一阀和第二阀,并且当分配出口移动到非分配位置时,阀关闭构件被移动以打开第一阀和第二阀。分配位置可以例如对应于分配出口从器具伸出,并且非分配位置对应于分配出口缩回到器具中。因此,如本领域技术人员将理解的,用户可以使用分配出口本身作为控制器具的操作类型的手段,申请人已经认识到该手段可以是用于选择操作类型的特别直观的手段。由于分配出口可以直接对用户可见,所以其还可以例如允许用户通过观察分配出口的位置,快速且容易地确定器具所处的构造。分配出口可以以任何合适的方式可移动地布置。例如,分配出口可以包括来自器具的主体的选择性地突出的可旋转或枢转布置。

在一组可能重叠的实施例中,分配出口在分配位置和非分配位置之间可移动,并且联接到阀关闭构件,使得当阀关闭构件移动以关闭第一阀和第二阀时,分配出口移动到其分配位置,并且当阀关闭构件移动以打开第一阀和第二阀时,分配出口移动到其非分配位置。因此,阀关闭构件还可用于在其分配位置和非分配位置之间移动分配出口,从而消除了用户单独操作分配出口和阀关闭构件的需要。

液体加热器具可包括在第一加热腔室内的加热装置,例如以浸入式加热元件的形式,直接加热容纳在其中的液体。然而,在一组实施例中,液体加热器具包括布置成加热第一腔室的基部的底板加热装置。在另一组实施例中,液体加热器具包括带有护套的电加热元件。

器具的尺寸,特别是第一腔室和第二腔室的容积可依据器具的特定预期用途。在一组实施例中,第一腔室的容积为50ml至500ml,例如350ml。这样的容积可以对应于例如用于杯子这样的容器的适合的分配体积。这允许用户刚好为单杯被加热液体加热足够的水。如前所述,这既加快了加热过程,又减少了能源的浪费。提供具有例如350ml容积的第一腔室可允许在热杯模式下操作时分配250ml被加热的液体。在热杯模式下,从第一腔室分配的液体量可以是可变的,这可以通过多种方式来控制,例如,可以通过在分配一定体积之后阻止液体流动,或者通过可变高度的堰装置来实现。

液体加热器具可以是有绳类型,即电源线可以与器具整体设置,或者可以直接嵌入器具中。然而,在一组实施例中,液体加热器具是无绳加热器具。在另一组实施例中,液体储器布置成与相应的电源基座配合。液体储器可包括无绳电连接器,并且电源基座可包括相应的无绳电适配器。基座上的无绳电适配器和相应的无绳电连接器可以是允许液体储器基本上不考虑其与电源基座的相对角度方向而置于电源基座上的类型。

如本领域技术人员所理解的,液体加热器具可用于加热任何合适的液体,例如水。

附图说明

现在将仅通过示例的方式并参考附图描述本发明的一些优选实施例,其中:

图1是根据本发明实施例的液体加热器具的立体图;

图2是图1中所示的液体加热器具的局部剖视图;

图3是下方第一腔室的单独视图;

图4是类似于图3的视图,其中包括铰接翻板;

图5是类似于图4的视图,其中铰接翻板处于其抬高位置;

图6和图7是隔板的底侧视图,其示出了加热元件的相对位置;

图8和图9是示出了分配出口和铰接翻板之间的连接的单独视图;

图10示出了器具的横截面,示出了分配腔室的底侧;

图11示出了分配腔室的截面图;

图12示出了摇臂阀装置的放大单独视图;

图13示出了器具的横截面,以显露分配腔室上的蒸汽入口和排放出口;

图14示出了在垂直于壶嘴手柄轴线的平面上的器具的不同横截面;

图15是根据本发明的另一个实施例的下腔室的单独视图;

图16是类似于图15的视图,其中包括铰接翻板,并处于其抬高位置;

图17是类似于图16的视图,其中铰接翻板处于其降低位置;以及

图18和图19是图15的隔板的底侧视图,其示出了加热元件的相对位置。

具体实施方式

图1至图14示出了根据本发明的第一实施例的液体加热器具或其部件。图1示出了液体加热器具的立体图,以下称为器具。器具包括液体储器2、壶嘴4、手柄6和分配出口翻板8(在图1中以闭合位置示出)。器具的顶部用盖子10封闭,盖子10分别带有灌装翻板12和一对接通-关断按钮14,16。器具还包括无绳电源基座18,无绳电源基座18具有设置在中心的用于向器具供电的360°无绳基座连接器20。

图2示出了器具的局部剖视图,其示出了液体储器2的内部。隔板22将液体储器2分成第一腔室24a和第二腔室24b。隔板22包括中心浮阀装置26和许多其他阀,这些阀在该图中不是清晰可见的,但将参考图3至图5详细描述。第一腔室24a的基部由金属板28封闭,金属板28的底侧固定有带有护套的加热元件30和本领域公知的热敏控制单元32,其接收无绳基座18的无绳电连接器20(参见图1)。

图3是下腔室24a的单独视图,其示出了隔板22的上表面。如前所述,可以在中心看到浮阀装置26。这与申请人的热杯器具中创建的构造相同,并且在WO 2008/081159中有更详细的描述。如图3所示,近似垂直的分配导管34被密封到隔板22并从隔板22朝向其后部延伸,通风导管36也是一样,其内部节流以向腔室24a提供可控程度的压力释放。在隔板的后部还有铰链安装凸台38,在使用时铰链安装在铰链安装凸台38上,但为了清楚起见,图3中省略了铰链。

一系列七个近似矩形的孔40围绕隔板的其余部分的周围部分分布,使得它们的长轴基本上是径向的。一对孔40之间的较大间隙容纳压力释放阀42。每个孔都由相应的合成橡胶密封圈44框住。

图4和图5示出了下腔室,其中铰接翻板46就位。其与前面提到的凸台38铰接,使得铰接翻板46可以从图4所示的降低位置向上旋转到图5所示的抬高位置。翻板46限定了许多孔。两个孔48,50分别容纳上述的分配出口和通风管34、36。另一个孔52容纳压力释放阀42。剩余的孔54布置成使得当翻板46处于其降低位置时,它们之间的腹板部分覆盖并密封隔板中的孔40(借助于相应的垫圈44)。因此可以看出,隔板22中的孔40形成一系列阀,这些阀可以根据铰接翻板46的位置来打开或关闭,因此铰接翻板46当做阀关闭构件。稍后将更详细地解释,孔48至孔54允许水在铰接翻板如图5所示被抬高时通过铰接翻板。

图6和图7示出了从底侧看的隔板22以及带有护套的加热元件30如何相对于在其中限定的矩形孔40布置。应当理解,这些视图省略了底板28和热控制单元,以便能够理解这种关系。

从图6中可以看出,中心浮阀26包括浮阀构件26a,浮阀构件26a受到由星形基部26b形成的引导件约束,从基部26b延伸出四个柱26c。星形基部26b和四个柱26c一起约束浮阀构件26a的运动。限制浮阀构件26a的运动可有助于确保浮阀构件26a在需要时可靠地关闭阀26。如果没有适当地约束,浮阀构件26a可以旋转,或远离相应的阀座移动,并且不再能够关闭阀26。如本领域技术人员所理解的,当第一腔室24a充满液体,例如水,浮阀构件26将在引导件26c内向上浮动。

带有护套的加热元件30是传统的“马蹄形”结构,其在任一端具有一对电端子56,在本领域中称为“不发热引线”。众所周知,该元件的这部分在使用中不会产生大量的热量。因此,由两个不发热引线56覆盖并在两个不发热引线56之间延伸的区域明显被加热得少于与元件30的其余部分直接相邻的区域。可以看出,该相对未加热的区域对应于两个阀孔40a,40b的位置。相比之下,其他阀孔,例如40c,40d,进一步围绕元件30位于其加热部分的正上方。例如,将孔40a的中心连接到隔板22的中心的直线57a与将孔40c的中心连接到隔板的中心的类似直线57c形成大约120°的角度。此外,将孔40b的中心连接到隔板的中心的直线57b与将孔40d的中心连接到隔板的中心的直线57d形成大约150°的角度。

阀40的这种角度间隔提供了加热速率的差异,这有利于驱动使水通过隔板22以将上腔室24a和下腔室24b之间的水混合的对流。

图8示出了用于抬高和降低铰接翻板46的机构的细节。这里可以看出,翻板46包括铰链凸台58(在前面的图中省略),铰链凸台58铰接地安装在连杆构件60的一端。连杆构件的另一端连接到另一附接到分配翻板8的连杆62。在图8中示出了可以接近分配喷口64的突出位置。除了在该位置,图9示出了相同的机构,分配翻板处于其缩回位置。因此,显而易见的是,当分配翻板8被推出使得分配喷口64可接近时,连杆构件60将铰接翻板阀关闭构件46移动到其降低位置,从而关闭下腔室24a和上腔室24b之间的隔板22中的阀40。这对应于处于“热杯”模式的器具,其操作将在下面描述。

相反,当如图9所示推入分配翻板8时,这抬起了连杆60,62并因此抬高铰接翻板阀关闭构件46,从而打开两个腔室24a,24b之间的阀40。这对应于处于水壶模式的器具。

转到图10,可以看到示出上腔室24b和分配腔室65的截面图。用于分配翻板的壳体66的后部也可看到有管道68将其连接到分配腔室65。

分配腔室的底壁70具有四个另外的孔,这可以在图10中看到。这些孔中的一个孔72是通风导管36的入口。在分配腔室的底壁70上还有用于分配导管34的入口74和排放出口76,排放出口76选择性地允许分配腔室65中的水排入主腔室24b。最终孔与伸入到分配腔室中的管77连通,如果分配腔室中的水位上升太高,则管77起溢流作用。其还有助于允许在水壶模式期间从主上腔室24b中的液体产生的蒸汽进入分配腔室65以供蒸汽开关检测(参见图12)。

图11显示了分配腔室的放大截面图。特别地,可以看到摇臂阀机构,摇臂阀机构包括摇臂构件78,在摇臂构件78的任一端处具有相应的阀构件80,82。其中一个阀构件80布置成选择性地关闭排放出口76,而另一个阀构件82布置成当其支承在相应的阀座83上时,选择性地关闭通向分配喷口的管68的口部。摇臂阀机构在图12中更详细地示出。

图12更详细地示出了摇臂阀机构,但是是从图11的相反侧观察。从图12中可以看出,摇臂构件78受到与一对横向突出的销86(图12中仅可见其中一个)接合的轭构件84的作用,销86接收在相应的长狭槽88中。这允许轭构件84的垂直运动转换成摇臂构件78的枢转运动。摇臂构件78围绕一对接合在相应的框架(图中未示出)中的枢转突起90(仅其中一个可见)枢转。轭构件的突出部分92与偏心弹簧致动器94接合,使得摇臂机构在两个位置中的任一个位置稳定:阀构件80,82中的相应一个与其相应的阀座接合。如本领域技术人员将理解的,双稳态弹簧可以布置成作用在致动装置的任何部分上,以便将其保持在任一位置。

图12还示出了蒸汽开关96,其可以是申请人的R48蒸汽开关之一。致动器构件98联接到蒸汽开关96。致动器构件98具有近似T形形状,其一端处具有一对横向突出销100(仅一个销可见),并且另一端处具有舌部102。突出销100容纳在轭构件84中的D形槽104中,这意味着轭构件84的向下运动将向突出销100施加力并因此迫使蒸汽开关96进入其关断位置。反之则不然——蒸汽开关96可以移动到其关断位置,而不会引起轭构件84的运动,因为突出销100可以在D形槽104内自由向下移动。在致动器98的另一端,舌部102与具有限定在其中的矩形孔108的蒸汽门106接合,从而当蒸汽开关枢转到其关断位置时,舌部102垂直向上运动(如图12所示的逆时针方向)。

最后在图12中,可以看到用户接通按钮14和用户关断按钮16。这些被布置成使得接通按钮14上的向下压力提供作用在致动器构件98上的向下的力,该向下的力将蒸汽开关96按压到其接通位置,从而关闭相关的电路,如本领域中已知的那样。该动作引起致动器98的另一端处的突出销100的相应抬高,使得如果轭构件84处于降低位置,对应于阀82与其阀座83配合而另一阀80被抬高,则轭构件84将再次被迫向上,从而使该位置反转。

相反,关断按钮16上的向下压力导致致动器构件98在另一个方向上倾斜,从而关闭蒸汽开关96并且按钮直接支撑在轭构件84的顶部上,将其向下推动以移动阀构件82与其阀座83配合并将阀构件80抬离其阀座以将其打开。该动作还将致动器构件98的另一端处的蒸汽门106抬高。因此,可以理解的是,用户可以使用接通按钮14和关断按钮16迫使摇臂构件进入其稳定位置中的任何一个,并且该动作也将迫使蒸汽开关96接通或关断,但是蒸汽开关96也可以在其自身动作下关断而不影响摇臂构件78的位置,从而影响两个阀构件80,82的状态。

图13示出了器具和分配腔室65的另一截面图,其示出了前面讨论的阀构件80中的一个与其相应的阀座配合,以关闭分配腔室65的排放出口76(如图10所示)。同样可见的是蒸汽门106,特别是其中的孔108,其与壳体中的相应孔对齐,其原因将在后面解释。该图还示出了用于分配导管34的入口,更具体地,示出了在分配腔室65内从其向上延伸的突出管110。如前所示,这允许沸水和蒸汽从下腔室24a输送到分配腔室65中,但是与围绕其布置的挡板壁112一起,有助于防止来自分配腔室的水回流到下腔室。壁112还可以帮助分散从下腔室向上推动的水的一些动能。为通风导管36的入口72设置类似的突出管114和挡板壁116。

图14示出了移除了摇臂阀机构的器具的截面图,从而更清楚地示出了排放出口76。

现在将参考图1至图14描述器具的操作。

首先,用户将通过以下方法灌装器具:把器具从无绳底座18上抬起,掀起灌装盖12,并放在水龙头下让水灌装器具。水将首先进入主腔室24b,但水也能至少通过浮阀26流入下腔室24a。然而,如果器具已经处于如图9所示的水壶模式,水当然也将通过附加阀40进入下腔室24a。当第一腔室24a充满液体时,浮阀构件26a将在图6中所示的引导件26c内向上浮动,直到它们与它们各自的阀座接合,从而关闭阀26。

然后,用户将器具放回到无绳基座18上,现在要决定是以水壶模式还是热杯模式操作该器具。这依据所需的热水量而定。如果选择了水壶模式,则用户将确保分配翻板8被压入,使得侧面分配喷口64不再可见。这如图9所示。这将具有抬高铰接翻板构件46并允许水流过隔板22中的阀40的效果。然后,用户将按下接通按钮14,这将具有接通蒸汽开关96的效果,从而向元件30供电。其还具有拉起轭构件84并因此倾斜摇臂阀构件78的效果,使得阀80关闭分配腔室65的排放出口76。

当元件30开始加热下腔室中的水时,建立对流使得热水通过阀40从下腔室24a上升到主腔室24b中,并且通过阀40中的其他几个阀吸入较冷的水。更具体地,由于与例如阀40d的其它阀相比,施加到在元件的不发热引线56正上方的阀40a,40b附近的水中的较低的加热功率,水将优先通过元件正上方的阀上升并通过不发热引线56附近的阀40a,40b下沉,从而建立强对流,这导致两个腔室24a,24b中的水均匀加热。通过铰接翻板构件46中的孔54促进在上腔室内的混合。

随着持续加热,两个腔室24a,24b中的水最终将沸腾,从而产生通过溢流出口/蒸汽入口77进入分配腔室65的蒸汽。蒸汽最终到达蒸汽开关96,因此蒸汽开关96切换到其关断状态并切断对加热元件的电力供应。然而,如前所述,这不会引起轭构件84或摇臂阀构件78的运动。一旦如上所述关断了元件,通过用户用手柄6提起容器并以已知的方式倒出,沸水可以从壶嘴4被倒出。然后可以再灌装该器具并以完全相同的方式使用。

如果在灌装之后用户决定以热杯模式操作器具,则他们仅需要将侧面分配翻板8按出以露出分配喷口64。如前所述,这具有降低铰接翻板阀关闭构件46的作用,从而关闭上腔室24a和下腔室24b之间的矩形阀40。假设器具已经充满了足够的水,浮阀26将在此阶段关闭,因此下腔室24a与收缩的通风导管36有效地气密隔开。然后,如前所述使用接通按钮14接通器具时,元件通电并开始仅加热下腔室24a中的水。

随着水量被加热,第一腔室24a内的压力将逐渐增加。当水达到沸点时,第一腔室内将有足够的蒸汽压力迫使被加热的水沿导管34进入分配腔室65。离开进入分配腔室的水的蒸汽最终穿过蒸汽门106中的小孔108并因此撞击在蒸汽开关96上。这导致开关关断并因此断开加热元件的电力。这还使蒸汽门106被抬高,从而使其中的孔108与壳体中的孔脱离对齐,从而防止任何其他蒸汽撞击蒸汽开关。这有助于更快地重置蒸汽开关。存储在底板28的带有护套的加热元件30中的热能将继续加热第一腔室24a内的水,直到所有的水在蒸汽压力下被迫沿导管34进入分配腔室65。在此过程中,由于蒸汽产生的压力,浮阀构件26a将保持抵靠其阀座,即使它不再浮动在第一腔室24a内的水上。这防止第一腔室24a再灌装,从而确保仅分配第一腔室24a的容积。

在元件被关断后不久,第一腔室24a内的压力将下降并且浮阀构件26a将下降,使得第二上腔室24b内的水可以再灌装第一腔室24a。可以再次操作该器具以提供另一杯沸水。当然,用户可以在此时决定将器具切换回水壶模式。此后操作将如前所述。

分配腔室65内的水可以通过打开的阀82从分配腔室中流出并进入连接到分配喷口64的管68,在分配喷口64处用户将放置诸如杯子的合适的容器。分配腔室65有利地提供一空间用于使被加热的水和相关的蒸汽分离,使得主要是被加热的水通过分配喷口64排出,而不是水和蒸汽的混合物,其可能在分配时引起液体溅射。这可以提供更多层流的液体流出分配喷口64,并且可以减少可能危险的分配蒸汽的量。

如果在任一模式的操作期间,用户决定停止操作,他们可以按下关断按钮16,其将具有关闭蒸汽开关96并因此切断元件30的电源的效果,但是也将具有按下轭构件84并因此逆时针倾斜摇臂阀构件78(如图12所示),使得排放出口阀80打开并且分配出口阀82关闭的效果。这将立即停止从分配喷口64分配任何沸水,并且将允许分配腔室65中剩余的任何水通过排放出口76回流到主腔室24b中。

图15-图17是根据本发明的另一个实施例的下腔室24a’的单独视图。与第一实施例相反,应注意,除了下腔室24a’和主腔室(未示出)之间的浮阀26’之外,仅有两个(较大的)阀40a’,40b’。这些阀保留了特征,然而它们基本上径向相对(即具有钝角分隔)。如图18和图19所示,阀中的一个阀40a’位于元件30’的不发热引线56’上方,而另一个阀40b’位于元件的主要加热部分上方。如关于第一实施例所解释的,这建立了强对流。

参照图16和图17,铰接翻板46’类似地相应地构造成当处于降低位置(图17)时关闭阀40a’,40b’以对应于分配翻板打开的热杯模式,并当处于抬高位置(图16)时打开阀40a’,40b’以对应于分配翻板关闭的水壶模式。然而,可以注意到在水壶模式中,不包括允许水流穿过的额外的孔。容纳导管和压力释放阀的孔以及其倾斜的角度可以允许足够的循环。

因此,本领域技术人员将会看到,已经描述了本发明的具体示例,但是这些不应该被认为是对本发明的限制,因为存在可以实现本发明的许多不同方式。例如,并不是必须提供单个共用阀构件,也不需要铰接这个构件。

再多了解一些

本文用于企业家、创业者技术爱好者查询,结果仅供参考。

发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表

相关文献