一种残膜回收机防缠绕挑膜装置的制 一种秧草收获机用电力驱动行走机构

提升Mesh链路传输效率的方法、装置及相关设备与流程

2021-11-09 23:16:00 来源:中国专利 TAG:

提升mesh链路传输效率的方法、装置及相关设备
技术领域
1.本技术涉及通信技术领域,特别涉及一种提升mesh链路传输效率的方法、装置及相关设备。


背景技术:

2.无线mesh网络是一种与传统无线蜂窝网络完全不同的新型无线网络架构。在无线mesh网络中,节点之间都是对等的,每个节点都可以发送和接收信号,每个节点都可以与一个或者多个对等节点进行通信。和传统蜂窝网络相比,无线mesh网络具有组网灵活简便、网络可靠性高以及覆盖范围大等明显优势,特别适用于专网集群通信。
3.在无线mesh网络具备多种优势的基础上,如何进一步提升mesh链路的传输效率成为研究的目标。


技术实现要素:

4.为解决上述技术问题,本技术实施例提供一种提升mesh链路传输效率的方法、装置及相关设备,以达到提升mesh链路的传输效率的目的,技术方案如下:
5.一种提升mesh链路传输效率的方法,应用于无线mesh网络中的发送节点,该方法包括:
6.确定当前信道质量指示cqi;
7.判断所述当前cqi是否大于预设cqi门限;
8.若是,则按照第一资源分配模式分配物理传输资源,并更新模式切换标识,所述第一资源分配模式下,每个无线帧中每个子帧的第一个ofdm符号均作为物理控制信道的可用物理传输资源;
9.若否,则按照第二资源分配模式分配物理传输资源,并更新所述模式切换标识,所述第二资源分配模式下,每个无线帧中每个子帧的前n个ofdm符号均作为所述物理控制信道的可用物理传输资源,所述n为大于1的整数;
10.所述模式切换标识用于指示所述mesh网络中接收节点按照所述发送节点使用的资源分配模式,进行数据处理。
11.优选的,所述第二资源分配模式下,每个所述无线帧中第一子帧的第m个ofdm符号作为主同步信号的可用物理传输资源,每个所述无线帧中第一子帧的第k个ofdm符号作为辅同步信号的可用物理传输资源,每个所述无线帧中第二子帧的第k个ofdm符号作为发现信号的可用物理传输资源,第一子帧为多个所述无线帧中的任意一个子帧,所述第一子帧为多个所述无线帧中的任意一个子帧,所述第二子帧为多个所述无线帧中的任意一个子帧且与所述第一子帧不同,所述m为大于所述n的整数,所述k为大于所述m的整数。
12.优选的,所述m等于9,所述k等于10。
13.优选的,所述n为2~4中的任意一个整数。
14.优选的,所述按照第一资源分配模式分配物理传输资源,并更新模式切换标识,包
括:
15.按照第一资源分配模式分配物理传输资源,并更新模式切换标识为0;
16.所述按照第二资源分配模式分配物理传输资源,并更新所述模式切换标识,包括:
17.按照第二资源分配模式分配物理传输资源,并更新所述模式切换标识为1。
18.优选的,所述当前信道质量指示cqi的确定过程,包括:
19.获取接收节点反馈的cqi,将所述接收节点反馈的cqi乘以第一权重与将历史cqi乘以第二权重之和,作为所述当前信道质量指示cqi。
20.一种提升mesh链路传输效率的方法,应用于无线mesh网络中的接收节点,该方法包括:
21.接收所述无线mesh网络中的发送节点发送的数据;
22.从接收到的所述数据中解析出模式切换标识;
23.按照所述模式切换标识对应的资源分配模式,进行数据处理;
24.所述资源分配模式包括第一资源分配模式或第二资源分配模式,所述第一资源分配模式下,每个无线帧中每个子帧的第一个ofdm符号均为物理控制信道的可用物理传输资源,所述第二资源分配模式下,每个无线帧中每个子帧的前n个ofdm符号均为所述物理控制信道的可用物理传输资源,所述n为大于1的整数。
25.优选的,所述按照所述模式切换标识对应的资源分配模式,进行数据处理的步骤之后,还包括:
26.进一步估计cqi并反馈给发送节点。
27.一种提升mesh链路传输效率的装置,应用于无线mesh网络中的发送节点,该装置包括:
28.确定模块,用于确定当前信道质量指示cqi;
29.判断模块,用于判断所述当前cqi是否大于预设cqi门限;
30.第一分配模块,用于若当前cqi大于预设cqi门限,则按照第一资源分配模式分配物理传输资源,并更新模式切换标识,所述第一资源分配模式下,每个无线帧中每个子帧的第一个ofdm符号均作为物理控制信道的可用物理传输资源;
31.第二分配模块,用于若当前cqi不大于预设cqi门限,则按照第二资源分配模式分配物理传输资源,并更新所述模式切换标识,所述第二资源分配模式下,每个无线帧中每个子帧的前n个ofdm符号均作为所述物理控制信道的可用物理传输资源,所述n为大于1的整数;
32.所述模式切换标识用于指示所述mesh网络中接收节点按照所述发送节点使用的资源分配模式,进行数据处理。
33.优选的,所述第二资源分配模式下,每个所述无线帧中第一子帧的第m个ofdm符号作为主同步信号的可用物理传输资源,每个所述无线帧中第一子帧的第k个ofdm符号作为辅同步信号的可用物理传输资源,每个所述无线帧中第二子帧的第k个ofdm符号作为发现信号的可用物理传输资源,第一子帧为多个所述无线帧中的任意一个子帧,所述第一子帧为多个所述无线帧中的任意一个子帧,所述第二子帧为多个所述无线帧中的任意一个子帧且与所述第一子帧不同,所述m为大于所述n的整数,所述k为大于所述m的整数。
34.优选的,所述m等于9,所述k等于10。
35.优选的,所述n为2~4中的任意一个整数。
36.优选的,所述第一分配模块,具体用于:
37.按照第一资源分配模式分配物理传输资源,并更新模式切换标识为0;
38.所述第二分配模块,具体用于:
39.按照第二资源分配模式分配物理传输资源,并更新所述模式切换标识为1。
40.优选的,所述确定模块,具体用于:
41.获取接收节点反馈的cqi,将所述接收节点反馈的cqi乘以第一权重与将历史cqi乘以第二权重之和,作为所述当前信道质量指示cqi。
42.一种提升mesh链路传输效率的装置,应用于无线mesh网络中的接收节点,该装置包括:
43.接收模块,用于接收所述无线mesh网络中的发送节点发送的数据;
44.解析模块,用于从接收到的所述数据中解析出模式切换标识;
45.数据处理模块,用于按照所述模式切换标识对应的资源分配模式,进行数据处理;
46.所述资源分配模式包括第一资源分配模式或第二资源分配模式,所述第一资源分配模式下,每个无线帧中每个子帧的第一个ofdm符号均为物理控制信道的可用物理传输资源,所述第二资源分配模式下,每个无线帧中每个子帧的前n个ofdm符号均为所述物理控制信道的可用物理传输资源,所述n为大于1的整数。
47.优选的,所述装置还包括:
48.估计模块,用于进一步估计cqi并反馈给发送节点。
49.一种无线mesh网络中的发送节点,包括:存储器和处理器;
50.存储器,用于存储程序;
51.所述处理器,用于运行所述程序,当所述处理器运行所述程序时,所述处理器实现了如上述任意一项所述的提升mesh链路传输效率的方法。
52.一种无线mesh网络中的接收节点,包括:存储器和处理器;
53.存储器,用于存储程序;
54.所述处理器,用于运行所述程序,当所述处理器运行所述程序时,所述处理器实现了如上述所述的提升mesh链路传输效率的方法。
55.一种提升mesh链路传输效率的系统,包括:如上述所述的无线mesh网络中的发送节点及如上述所述的无线mesh网络中的接收节点。
56.与现有技术相比,本技术的有益效果为:
57.在本技术中,通过判断当前cqi是否大于预设cqi门限,来确定当前信道质量的好坏,在当前cqi大于预设cqi门限时,说明当前信道质量较好,可以按照第一资源分配模式分配物理传输资源,为每条控制信息分配较少的物理传输资源,可以满足较低的解调门限的要求,保证可以对信息进行正确解调,在当前cqi不大于预设cqi门限时,说明当前信道质量较差,可以按照第二资源分配模式为每条控制信息分配较多的物理传输资源,以满足较高的解调门限的要求,保证可以对信息进行正确解调,以此提高mesh链路的传输效率。
附图说明
58.为了更清楚地说明本技术实施例中的技术方案,下面将对实施例描述中所需要使
用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本技术的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
59.图1是本技术提供的一种提升mesh链路传输效率的方法实施例1的流程图;
60.图2是本技术提供的第一资源分配模式的示意图;
61.图3是本技术提供的一种提升mesh链路传输效率的方法实施例2的流程图;
62.图4是本技术提供的一种资源分配的示意图;
63.图5是本技术提供的一种提升mesh链路传输效率的方法实施例3的流程图;
64.图6是本技术提供的一种提升mesh链路传输效率的装置的逻辑结构示意图。
具体实施方式
65.下面将结合本技术实施例中的附图,对本技术实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本技术一部分实施例,而不是全部的实施例。基于本技术中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本技术保护的范围。
66.本技术实施例公开了一种提升mesh链路传输效率的方法,应用于无线mesh网络中的发送节点,该方法包括:判断当前信道质量指示cqi是否大于预设cqi门限;若是,则按照第一资源分配模式分配物理传输资源,并更新模式切换标识,所述第一资源分配模式下,每个无线帧中每个子帧的第一个ofdm符号均作为物理控制信道的可用物理传输资源,所述模式切换标识用于指示所述mesh网络中接收节点按照所述发送节点使用的资源分配模式,进行数据处理;若否,则按照第二资源分配模式分配物理传输资源,并更新所述模式切换标识,所述第二资源分配模式下,每个无线帧中每个子帧的前n个ofdm符号均作为所述物理控制信道的可用物理传输资源,所述n为大于1的整数。在本技术中,可以提升mesh链路的传输效率。
67.接下来对本技术实施例公开的提升mesh链路传输效率的方法进行介绍,如图1所示的,为本技术提供的一种提升mesh链路传输效率的方法实施例1的流程图,应用于无线mesh网络中的发送节点,方法可以包括以下步骤:
68.步骤s11、确定当前信道质量指示cqi。
69.步骤s12、判断当前信道质量指示cqi是否大于预设cqi门限。
70.若是,说明当前信道质量较好,则执行步骤s13;若否,说明当前信道质量较差,则执行步骤s14。
71.其中预设的cqi门限可以依据系统消息传输性能、控制消息传输性能、上行harq反馈消息传输性能等因素设定。
72.步骤s13、按照第一资源分配模式分配物理传输资源,并更新模式切换标识,所述第一资源分配模式下,每个无线帧中每个子帧的第一个ofdm符号均作为物理控制信道的可用物理传输资源,所述模式切换标识用于指示所述mesh网络中接收节点按照所述发送节点使用的资源分配模式,进行数据处理。
73.基于所述第一资源分配模式下,每个无线帧中每个子帧的第一个ofdm符号均作为物理控制信道的可用物理传输资源,在具体分配物理传输资源时,可以从每个无线帧中每
个子帧的第一个ofdm符号选取资源元素,作为物理控制信道的物理传输资源。
74.第一资源分配模式可以理解为:现有技术中的资源分配模式,具体可以参见图2,如图2所示,每个无线帧包括20个子帧,每个子帧包括14个ofdm符号,最后一个ofdm符号用于gp,其他ofdm符号用于消息和数据的承载。其中,用户参考符号占用子帧#0-18的第1/4/8/11个ofdm符号;物理广播信道(bch)占用子帧0的第6个ofdm符号的中间180个资源元素;主同步信号(pss)和辅同步信号(sss)仅主节点发送,分别占用子帧0的第2个和第3个ofdm符号的中间72个资源元素;发现信号(dis)仅从节点发送,占用第2个ofdm符号的中间72个资源元素;物理接入信道占用最后一个无线帧的最后一个子帧的第2个时隙。
75.物理控制信道(cch)占用子帧#0~n1-1第1个ofdm符号的非参考信号的物理元素,物理共享信道占用除上述所述信道/信号占用的物理元素之外的所有可用物理元素。在第一个ofdm符号上,除去用户参考符号外,剩余资源元素共组成13个控制信道元素(cce),其中下行harq ack占用了3个cce,剩余10个cce可用于控制信息传输,目前支持的cce聚合等级为2和4,即每条控制信息占用2个或4个cce。
76.步骤s14、按照第二资源分配模式分配物理传输资源,并更新所述模式切换标识,所述第二资源分配模式下,每个无线帧中每个子帧的前n个ofdm符号均作为所述物理控制信道的可用物理传输资源,所述n为大于1的整数。
77.在当前信道质量较差的情况下,需要较高的解调门限来保证可以正确解调,但是较高的解调门限则需要为物理控制信道分配更多的物理传输资源,因此可以按照第二资源分配模式分配物理传输资源。在第二资源分配模式下,每个无线帧中每个子帧的前n个ofdm符号均作为所述物理控制信道的可用物理传输资源,可以保证从每个子帧的多个ofdm符号中为物理控制信道分配物理传输资源,以满足物理控制信道需要较多的物理传输资源的需求。
78.需要说明的是,n的取值可以根据数据和控制信息的解调门限和/或一个子帧内同时通信的用户数目等条件决定。如,若数据和控制信息的解调门限较高,或,一个子帧内同时通信的用户数目较多,则需要为控制信息预留更多的资源,且由于频域上带宽是固定的,因此需要从时域上预留更多的物理传输资源(可以理解为ofdm符号),因此需要n为大于1的整数。
79.优选的,n的可以为2~4中的任意一个整数。
80.需要说明的是,第一资源分配模式对应的模式切换标识与第二资源分配模式对应的模式切换标识不同。可以设置在第一资源分配模式下,模式切换标识为0,在第二资源分配模式下,模式切换标识为1。
81.相应地,所述按照第一资源分配模式分配物理传输资源,并更新模式切换标识,可以包括:
82.按照第一资源分配模式分配物理传输资源,并更新模式切换标识为0;
83.所述按照第二资源分配模式分配物理传输资源,并更新所述模式切换标识,可以包括:
84.按照第二资源分配模式分配物理传输资源,并更新所述模式切换标识为1。
85.其中,模式切换标识可以表示为cfi,可以参考3gpp let协议中的设计对cfi进行信道编码,在cfi为0或1的情况下,cfi的信道编码可以参见表1。
86.表1
87.cfi取值信道编码0<0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1>1<1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0>
88.在本技术中,通过判断当前cqi是否大于预设cqi门限,来确定当前信道质量的好坏,在当前cqi大于预设cqi门限时,说明当前信道质量较好,可以按照第一资源分配模式分配物理传输资源,为每条控制信息分配较少的物理传输资源,可以满足较低的解调门限的要求,保证可以对信息进行正确解调,在当前cqi不大于预设cqi门限时,说明当前信道质量较差,可以按照第二资源分配模式为每条控制信息分配较多的物理传输资源,以满足较高的解调门限的要求,保证可以对信息进行正确解调,以此提高mesh链路的传输效率。
89.作为本技术另一可选实施例,参照图3,为本技术提供的一种提升mesh链路传输效率的方法实施例2的流程示意图,本实施例主要是对上述实施例1描述的提升mesh链路传输效率的方法的细化方案,如图3所示,该方法可以包括但并不局限于以下步骤:
90.步骤s21、确定当前信道质量指示cqi。
91.步骤s22、判断当前信道质量指示cqi是否大于预设cqi门限。
92.若是,则执行步骤s23;若否,则执行步骤s24。
93.步骤s23、按照第一资源分配模式分配物理传输资源,并更新模式切换标识,所述第一资源分配模式下,每个无线帧中每个子帧的第一个ofdm符号均作为物理控制信道的可用物理传输资源,所述模式切换标识用于指示所述mesh网络中接收节点按照所述发送节点使用的资源分配模式,进行数据处理。
94.步骤s24、按照第二资源分配模式分配物理传输资源,并更新所述模式切换标识,所述第二资源分配模式下,每个无线帧中每个子帧的前n个ofdm符号均作为所述物理控制信道的可用物理传输资源,且所述第二资源分配模式下,每个所述无线帧中第一子帧的第m个ofdm符号作为主同步信号的可用物理传输资源,每个所述无线帧中第一子帧的第k个ofdm符号作为辅同步信号的可用物理传输资源,每个所述无线帧中第二子帧的第k个ofdm符号作为发现信号的可用物理传输资源。
95.所述n为大于1的整数,第一子帧为多个所述无线帧中的任意一个子帧,所述第一子帧为多个所述无线帧中的任意一个子帧,所述第二子帧为多个所述无线帧中的任意一个子帧且与所述第一子帧不同,所述m为大于所述n的整数,所述k为大于所述m的整数。
96.在所述第二资源分配模式下,每个所述无线帧中第一子帧的第m个ofdm符号作为主同步信号的可用物理传输资源,每个所述无线帧中第一子帧的第k个ofdm符号作为辅同步信号的可用物理传输资源,每个所述无线帧中第二子帧的第k个ofdm符号作为发现信号的可用物理传输资源,可以避免为物理控制信道的可用物理传输资源区域对主同步信号(pss)、辅同步信号(css)及发现信号(dis)的影响。
97.优选的,所述m可以等于9,所述k等于10。即,将同一个子帧内的第9个ofdm符号作为主同步信号的可用物理传输资源,第10个ofdm符号作为辅同步信号的可用物理传输资源,将某一个子帧内的第10个ofdm符号作为发现信号的可用物理传输资源。以两个子帧为例,对资源分配进行说明,如图4所示,在同一个子帧内将第9个ofdm符号作为主同步信号的可用物理传输资源,将第10个ofdm符号作为辅同步信号的可用物理传输资源,在另一个子
帧内将第10个ofdm符号作为发现信号的可用物理传输资源。
98.具体地设计方案,一个无线帧(20ms)包括静态子帧和动态子帧,静态子帧数量和网络中节点数量相同,其余子帧为动态子帧,pss/sss在静态子帧中,dis在动态子帧中。pss/sss分别调整到一个子帧内的第9个和第10个ofdm符号上,dis调整到一个子帧内的第10个ofdm符号上。
99.步骤s24为实施例1中步骤s14的一种具体实施过程。
100.作为本技术另一可选实施例,参照图5,为本技术提供的一种提升mesh链路传输效率的方法实施例3的流程示意图,本实施例主要是对上述实施例1描述的提升mesh链路传输效率的方法的细化方案,如图5所示,该方法可以包括但并不局限于以下步骤:
101.步骤s31、获取接收节点反馈的cqi,将所述接收节点反馈的cqi乘以第一权重与将历史cqi乘以第二权重之和,作为当前信道质量指示cqi。
102.获取接收节点反馈的cqi,将所述接收节点反馈的cqi乘以第一权重与将历史cqi乘以第二权重之和,作为当前信道质量指示cqi,实现cqi的平滑处理,使当前cqi更加可靠。
103.第一权重和第二权重可以根据需要进行灵活设置,本实施例中不做限制。
104.历史cqi可以理解为:上一次确定出的cqi。
105.步骤s31为实施例1中步骤s11的一种具体实施过程。
106.步骤s32、判断当前信道质量指示cqi是否大于预设cqi门限。
107.若是,则执行步骤s33;若否,则执行步骤s34。
108.步骤s33、按照第一资源分配模式分配物理传输资源,并更新模式切换标识,所述第一资源分配模式下,每个无线帧中每个子帧的第一个ofdm符号均作为物理控制信道的可用物理传输资源,所述模式切换标识用于指示所述mesh网络中接收节点按照所述发送节点使用的资源分配模式,进行数据处理。
109.步骤s34、按照第二资源分配模式分配物理传输资源,并更新所述模式切换标识,所述第二资源分配模式下,每个无线帧中每个子帧的前n个ofdm符号均作为所述物理控制信道的可用物理传输资源,所述n为大于1的整数。
110.步骤s33-s34的详细过程可以参见实施例1中步骤s12-s13的相关介绍,在此不再赘述。
111.在本技术的实施例4中,介绍另外一种提升mesh链路传输效率的方法,应用于无线mesh网络中的接收节点,该方法可以包括以下步骤:
112.a11、接收所述无线mesh网络中的发送节点发送的数据。
113.所述无线mesh网络中的发送节点发送的数据中包含模式切换标识,模式切换标识由发送节点在按照资源分配模式分配物理传输资源之后进行更新。不同的资源分配模式下,模式切换标识不同。
114.所述资源分配模式包括第一资源分配模式或第二资源分配模式,所述第一资源分配模式下,每个无线帧中每个子帧的第一个ofdm符号均为物理控制信道的可用物理传输资源,所述第二资源分配模式下,每个无线帧中每个子帧的前n个ofdm符号均为所述物理控制信道的可用物理传输资源,所述n为大于1的整数。
115.如,第一资源分配模式下,模式切换标识为0;第二资源分配模式下,模式切换标识为1。
116.a12、从接收到的所述数据中解析出模式切换标识。
117.a13、按照所述模式切换标识对应的资源分配模式,进行数据处理。
118.如,若模式切换标识为0,则按照模式切换标识对应的第一资源分配模式,进行解映射和数据解调;若模式切换标识为1,则按照模式切换标识对应的第二资源分配模式,进行解映射和数据解调。
119.在本技术的实施例5中,介绍另外一种提升mesh链路传输效率的方法,应用于无线mesh网络中的接收节点,该方法可以包括以下步骤:
120.a21、接收所述无线mesh网络中的发送节点发送的数据。
121.a22、从接收到的所述数据中解析出模式切换标识。
122.a23、按照所述模式切换标识对应的资源分配模式,进行数据处理。
123.步骤a21-a23的详细过程可以参见实施例4中步骤a11-a13的相关介绍,在此不再赘述。
124.a24、进一步估计cqi并反馈给发送节点。
125.接收节点进一步估计cqi并反馈给发送节点,可以提高发送节点确定当前cqi的可靠性。
126.接下来对本技术提供的提升mesh链路传输效率的装置进行介绍,下文介绍的提升mesh链路传输效率的装置与上文介绍的提升mesh链路传输效率的方法可相互对应参照。
127.如图6所示,提升mesh链路传输效率的装置可以包括:确定模块11、判断模块12、第一分配模块13和第二分配模块14。
128.确定模块11,用于确定当前信道质量指示cqi。
129.判断模块12,用于判断当前cqi是否大于预设cqi门限;
130.第一分配模块13,用于若当前cqi大于预设cqi门限,则按照第一资源分配模式分配物理传输资源,并更新模式切换标识,所述第一资源分配模式下,每个无线帧中每个子帧的第一个ofdm符号均作为物理控制信道的可用物理传输资源;
131.第二分配模块14,用于若当前cqi不大于预设cqi门限,则按照第二资源分配模式分配物理传输资源,并更新所述模式切换标识,所述第二资源分配模式下,每个无线帧中每个子帧的前n个ofdm符号均作为所述物理控制信道的可用物理传输资源,所述n为大于1的整数;
132.所述模式切换标识用于指示所述mesh网络中接收节点按照所述发送节点使用的资源分配模式,进行数据处理。
133.本实施例中,所述第二资源分配模式下,还可以每个所述无线帧中第一子帧的第m个ofdm符号作为主同步信号的可用物理传输资源,每个所述无线帧中第一子帧的第k个ofdm符号作为辅同步信号的可用物理传输资源,每个所述无线帧中第二子帧的第k个ofdm符号作为发现信号的可用物理传输资源,第一子帧为多个所述无线帧中的任意一个子帧,所述第一子帧为多个所述无线帧中的任意一个子帧,所述第二子帧为多个所述无线帧中的任意一个子帧且与所述第一子帧不同,所述m为大于所述n的整数,所述k为大于所述m的整数。
134.本实施例中,所述m可以等于9,所述k可以等于10。
135.本实施例中,所述n可以为2~4中的任意一个整数。
136.本实施例中,所述第一分配模块12,具体可以用于:
137.按照第一资源分配模式分配物理传输资源,并更新模式切换标识为0;
138.所述第二分配模块,具体可以用于:
139.按照第二资源分配模式分配物理传输资源,并更新所述模式切换标识为1。
140.本实施例中,确定模块11具体可以用于:
141.获取接收节点反馈的cqi,将所述接收节点反馈的cqi乘以第一权重与将历史cqi乘以第二权重之和,作为所述当前信道质量指示cqi。
142.在本技术的另一个实施例中,提供另外一种提升mesh链路传输效率的装置,应用于无线mesh网络中的接收节点,该装置包括:
143.接收模块,用于接收所述无线mesh网络中的发送节点发送的数据;
144.解析模块,用于从接收到的所述数据中解析出模式切换标识;
145.数据处理模块,用于按照所述模式切换标识对应的资源分配模式,进行数据处理;
146.所述资源分配模式包括第一资源分配模式或第二资源分配模式,所述第一资源分配模式下,每个无线帧中每个子帧的第一个ofdm符号均为物理控制信道的可用物理传输资源,所述第二资源分配模式下,每个无线帧中每个子帧的前n个ofdm符号均为所述物理控制信道的可用物理传输资源,所述n为大于1的整数。
147.本实施例中,上述提升mesh链路传输效率的装置还可以包括:
148.估计模块,用于进一步估计cqi并反馈给发送节点。
149.在本技术的另一个实施例中,提供一种无线mesh网络中的发送节点,包括:存储器和处理器;
150.存储器,用于存储程序;
151.所述处理器,用于运行所述程序,当所述处理器运行所述程序时,所述处理器实现了如实施例1-3中任意一个实施例所述的提升mesh链路传输效率的方法。
152.在本技术的另一个实施例中,提供一种无线mesh网络中的接收节点,包括:存储器和处理器;
153.存储器,用于存储程序;
154.所述处理器,用于运行所述程序,当所述处理器运行所述程序时,所述处理器实现了如实施例4所述的提升mesh链路传输效率的方法。
155.在本技术的另一个实施例中,介绍一种提升mesh链路传输效率的系统,可以包括:无线mesh网络中的发送节点及无线mesh网络中的接收节点。
156.无线mesh网络中的发送节点可以参见前述实施例介绍的无线mesh网络中的发送节点,在此不再赘述。
157.无线mesh网络中的接收节点可以参见前述实施例介绍的无线mesh网络中的接收节点,在此不再赘述。
158.需要说明的是,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似的部分互相参见即可。对于装置类实施例而言,由于其与方法实施例基本相似,所以描述的比较简单,相关之处参见方法实施例的部分说明即可。
159.最后,还需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作
之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个
……”
限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
160.为了描述的方便,描述以上装置时以功能分为各种单元分别描述。当然,在实施本技术时可以把各单元的功能在同一个或多个软件和/或硬件中实现。
161.通过以上的实施方式的描述可知,本领域的技术人员可以清楚地了解到本技术可借助软件加必需的通用硬件平台的方式来实现。基于这样的理解,本技术的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品可以存储在存储介质中,如rom/ram、磁碟、光盘等,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本技术各个实施例或者实施例的某些部分所述的方法。
162.以上对本技术所提供的一种提升mesh链路传输效率的方法、装置及相关设备进行了详细介绍,本文中应用了具体个例对本技术的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本技术的方法及其核心思想;同时,对于本领域的一般技术人员,依据本技术的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本技术的限制。
再多了解一些

本文用于企业家、创业者技术爱好者查询,结果仅供参考。

发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表

相关文献