一种残膜回收机防缠绕挑膜装置的制 一种秧草收获机用电力驱动行走机构

光学信息采集器及方法与流程

2023-03-24 09:36:36 来源:中国专利 TAG:


1.本技术涉及光学信息采集领域,尤指一种光学信息采集器及方法。


背景技术:

2.基于图像扫描的光学信息采集,包括对机器可读的各种光学信息的采集,常见的机器可读光学信息包括一维码、二维码、ocr图文、紫外防伪码、红外防伪码等。
3.通常,在采集光学信息时需要进行补光,以获取清晰的图像数据。传统的补光方式,在采集光学信息时持续补光,设备发热严重,功耗高。
4.本技术主要发明人开发了中国专利cn201810098421.0中公开的一种低功耗的补光方法,其全部内容作为参考引用于此,其中,光学成像单元在帧周期的曝光时间打开补光,而在帧周期的采样时间关闭补光,通过周期性开启和关闭补光单元,达到降低功耗的目的。
5.光学成像单元的帧周期通常在50ms以内,优秀的光学成像单元,帧周期可以达到20ms以内,这意味着光学成像单元在1s时间内可以采集数十帧图像数据。光学成像单元通常采用数字流的方式连续采集图像数据,而成功识别光学信息通常来自其中的一帧图像数据,当光学信息识别成功时,光学成像单元将不再继续识别后续采集的图像数据,并且停止继续采集光学信息。
6.然而,当光学信息识别成功时,由于光学成像单元采用数字流的方式连续采集图像数据,当通过其中一帧图像数据成功识别光学信息,后续已经连续采集了多帧图像数据,而后续采集的多帧图像数据不用于光学信息识别,造成了功耗的浪费。
7.本技术主要发明人进一步开发了中国专利cn201811485945.1中公开的另一种低功耗的条码扫描系统及方法,其全部内容作为参考引用于此,其中,图像传感器在受触发前处于待机状态,并且在解码成功或解码超时后,图像传感器重新进入待机状态。这种方法与手机行业不同,手机在打开摄像头应用之后,摄像头一直采集和预览图像数据,功耗很高,然而手机并不是长时间使用摄像头,功耗问题可以忽略。条码扫描行业则不同,条码扫描的图像传感器需要长时间使用,如果一直处于工作状态,续航将明显下降。
8.然而,这带来了另一个问题,本技术发明人发现,图像传感器采用数字流方式连续采集图像数据时,如果在解码成功或解码超时之后,控制图像传感器突然中断图像数据采集(此时设备仍然开机,图像传感器仍然上电,但是不会输出和预览图像数据,从而节省功耗),如前所述,图像传感器中可能已经采集了图像数据,尽管这是概率性出现的事件,却也会造成一定的不良影响,而这已经采集的图像数据将不会继续输出,而是存储(残存)于图像传感器的存储区(一些图像传感器配备了单独的缓存器,则图像数据会残存于缓存器;而对于没有配备单独缓存器的图像传感器,则图像数据的电信号残存于图像传感器的像素单元的pn结中),当图像传感器下一次采集图像数据时,会首先输出残存的图像数据。
9.发明人经过研究还发现,采用高通或联发科的某些平台,不仅在图像传感器中可能会残存图像数据,而且在其它存储器,如图像信号处理器的缓存器中,也可能会残存图像
数据。
10.需要开发一些新的技术来解决上述问题。


技术实现要素:

11.本技术创作的目的在于提供降低功耗的光学信息采集器及方法。
12.为实现上述目的,本技术采用以下技术手段:本技术提供一种光学信息采集器,其特征在于,包括:图像传感器,用以采集光学信息的图像数据;解码单元,用以根据预置的解码算法对图像数据进行解码;中央处理器,所述中央处理器经触发控制所述图像传感器采集图像数据,并控制所述解码单元解码图像数据,其中,一旦经由触发,所述中央处理器发出指令丢弃特定帧数的n帧图像数据,其中,特定帧数的n帧图像数据为上一次经触发采集并残存于所述光学信息采集器中的图像数据。
13.可选地,特定帧数的n帧图像数据包括所述图像传感器的存储区中残存的图像数据。
14.可选地,包括图像信号处理器,用以接收所述图像传感器采集的图像数据,并将图像数据传输至所述解码单元,特定帧数的n帧图像数据包括所述图像信号处理器中残存的图像数据。
15.可选地,丢弃特定帧数的n帧图像数据包括:所述解码单元不接收特定帧数的n帧图像数据,或所述解码单元不解码特定帧数的n帧图像数据,或所述解码单元将特定帧数的n帧图像数据的解码信息不输出或不显示。
16.可选地,所述解码单元从第n 1帧图像数据开始解码。
17.本技术提供一种光学信息采集方法,其特征在于,包括:中央处理器经由触发控制图像传感器采集和输出图像数据;中央处理器接收图像数据并发出指令丢弃特定帧数的n帧图像数据,其中,特定帧数的n帧图像数据为上一次经由触发采集并残存的图像数据;解码单元解码图像数据。
18.可选地,特定帧数的n帧图像数据包括所述图像传感器的存储区中残存的图像数据。
19.可选地,通过图像信号处理器接收所述图像传感器采集的图像数据,所述图像信号处理器进一步将图像数据传输至所述解码单元;特定帧数的n帧图像数据包括所述图像信号处理器中残存的图像数据。
20.可选地,丢弃特定帧数的n帧图像数据包括:所述解码单元不接收特定帧数的n帧图像数据,或所述解码单元不解码特定帧数的n帧图像数据,或所述解码单元将特定帧数的n帧图像数据的解码信息不输出或不显示。
21.可选地,所述解码单元从第n 1帧图像数据开始解码。
22.本技术提供一种光学信息采集器,其特征在于,包括:图像传感器,用以采集光学信息的图像数据;解码单元,用以接收和解码图像数据;中央处理器,用以控制所述图像传感器采集图像数据,并控制所述解码单元解码图像数据,其中,经由触发,所述中央处理器控制所述图像传感器以固定帧模式采集和输出固定帧数的图像数据,并控制所述解码单元解码图像数据,且当其中一帧图像数据解码成功时,停止解码固定帧数的图像数据中剩余
的图像数据。
23.可选地,所述固定帧模式包括:当所述解码单元解码成功而所述图像传感器未采集完固定帧数的图像数据,所述图像传感器将继续采集完固定帧数的图像数据并输出固定帧数的图像数据。
24.可选地,所述固定帧模式包括:所述中央处理器控制所述解码单元依次接收并解码固定帧数的图像数据,且当固定帧数的图像数据中最后一帧图像数据未成功解码之时或之前,控制所述图像传感器又一次采集固定帧数的图像数据。
25.可选地,不包括图像信号处理器或不通过图像信号处理器对所述图像传感器采集的图像数据进行优化处理。
26.可选地,所述图像传感器配置为以如下次序采集图像数据:采用预设次数的固定帧模式采集图像数据,以及采用数字流模式连续采集图像数据。
27.本技术提供一种光学信息采集方法,其特征在于,包括:中央处理器经由触发控制图像传感器以固定帧模式采集和输出固定帧数的图像数据;解码单元接收和解码图像数据,且当其中一帧图像数据解码成功时,停止解码固定帧数的图像数据中剩余的图像数据。
28.可选地,当所述解码单元解码成功而所述图像传感器未采集完固定帧数的图像数据,所述图像传感器将继续采集完固定帧数的图像数据并输出固定帧数的图像数据。
29.可选地,所述中央处理器控制所述解码单元依次接收并解码固定帧数的图像数据,且当固定帧数的图像数据中最后一帧图像数据未成功解码之时或之前,控制所述图像传感器又一次采集固定帧数的图像数据。
30.可选地,不包括图像信号处理器或不通过图像信号处理器对所述图像传感器采集的图像数据进行优化处理。
31.可选地,所述图像传感器配置为以如下次序采集图像数据:采用预设次数的固定帧模式采集图像数据,以及采用数字流模式连续采集图像数据。
32.本技术提供一种光学信息采集器,其特征在于,包括:图像传感器,用以采集光学信息的图像数据;存储器,预置了一种或多种解码算法;解码单元,用以接收和解码图像数据;中央处理器,用以控制所述图像传感器以数字流模式连续采集图像数据,并控制所述解码单元依次解码图像数据,一旦所述解码单元解码成功或解码超时,则控制所述图像传感器停止以数字流模式连续采集图像数据,并控制所述图像传感器继续采集和输出固定帧数的图像数据。
33.可选地,所述光学信息采集器不具有图像信号处理器或不通过图像信号处理器对图像数据进行优化处理。
34.可选地,所述图像传感器输出raw格式图像数据,所述解码单元基于raw格式图像数据获取灰度图像数据,并且基于灰度图像数据进行解码。
35.可选地,所述固定帧数的图像数据为一帧或二帧。
36.可选地,所述图像传感器采集的图像数据直接传输至所述解码单元进行解码。
37.本技术提供一种光学信息采集方法,其特征在于,包括:中央处理器控制图像传感器以数字流模式连续采集和输出图像数据;解码单元接收和解码图像数据,一旦所述解码单元解码成功,则控制所述图像传感器停止以数字流模式采集图像数据;控制所述图像传感器继续采集和输出固定帧数的图像数据。
38.可选地,所述光学信息采集器不具有图像信号处理器或不通过图像信号处理器对图像数据进行优化处理。
39.可选地,所述图像传感器输出raw格式图像数据,所述解码单元基于raw格式图像数据获取灰度图像数据,并且基于灰度图像数据进行解码。
40.可选地,所述固定帧数的图像数据为一帧或二帧。
41.可选地,所述图像传感器采集的图像数据直接传输至所述解码单元进行解码。
附图说明
42.图1为本技术一种实施例光学信息采集器的简化框图;图2为本技术一种实施例光学信息采集器的示意图;图3为图2中的光学信息采集器的立体图;图4为本技术一种实施例光学信息采集器的高级框图;图5为本技术一种实施例光学信息采集器通过数字流模式采集光学信息的时序图;图6为本技术一种实施例光学信息采集器采集光学信息的时序图;图7为本技术一种实施例光学信息采集器采集光学信息的又一时序图;图8为本技术另一种实施例光学信息采集器的高级框图;图9为本技术另一种实施例光学信息采集器采集光学信息的时序图;图10为本技术另一种实施例光学信息采集器通过固定帧模式采集光学信息的时序图;图11为本技术另一种实施例光学信息采集器通过混合模式采集光学信息的时序图;图12为本技术另一种实施例光学信息采集器通过另一种混合模式采集光学信息的时序图。
43.具体实施方式的附图标号说明:光学信息采集器100;摄像头1;光学系统2;图像传感器3;补光灯4;中央处理器5;存储器6;图像信号处理器7;解码单元8;壳体9;扫描窗10;显示屏11;按钮12;存储区13;寄存器14;缓冲器15。
具体实施方式
44.为便于更好的理解本技术的目的、结构、特征以及功效等,现结合附图和具体实施方式对本技术作进一步说明。
45.参照图1所示,为一种实施例的光学信息采集器100实现的简化框图。如下面进一步详细说明的,所述光学信息采集器100可用于采集一种或多种光学信息,如一维码、二维码、ocr图文、紫外防伪码、红外防伪码等。
46.所述光学信息采集器100可包括至少一个摄像头1,所述摄像头1可以包括捕获光线的光学系统2(lens)与将光学系统2捕获的光线进行光电转化的图像传感器3(sensor)的组合,所述光学系统2可以包括一个或多个反射镜、棱镜、透镜或其组合,所述图像传感器3也可以为一个或多个,可以是一个所述图像传感器3对应一个/一套所述光学系统2,或者多
个所述图像传感器3可以共用同一个/一套光学系统2,或者多个/多套光学系统2可以共用同一个图像传感器3。所述图像传感器3可以是ccd或cmos或其它类型的图像传感器3,所述图像传感器3用以将光信号转化为电信号,进而输出图像数据的数字信号。
47.所述光学信息采集器100可包括一个或多个补光灯4,所述补光灯4用以在所述摄像头1采集图像数据时,照亮光学信息。当然,在合适的环境光照条件下,可以不使用补光灯4进行补光,或者,所述光学信息采集器100可以不具有补光灯4。所述补光灯4的补光方式可以有多种形式:比如所述补光灯4在所述摄像头1采集光学信息时持续补光;或者所述补光灯4可以是与摄像头1的图像传感器3的曝光时间同步补光,其中,中国专利cn201810098421.0公开了一种补光灯4与图像传感器3的曝光时间同步补光的技术方案,其全部内容作为参考引用于此;所述补光灯4还可以是脉冲式补光,其脉冲时间与图像传感器3的曝光时间的一部分重叠。
48.所述光学信息采集器100还可包括中央处理器5,用以执行各种指令。
49.所述光学信息采集器100还可包括单独的或集成的存储器6,根据需要,所述存储器6中预置了一种或多种解码算法,所述存储器6还可以存储其它的程序或指令。存储器6可以包括一个或多个非暂态存储介质,诸如例如可以是固定的或可移动的易失性和/或非易失性存储器6。具体来说,存储器6可以被配置成存储信息、数据、应用、指令等用于使处理模块能够执行根据本发明的示例实施例的各种功能。例如,存储器6可以被配置成缓冲输入数据用于由中央处理器5处理。另外地或者替代地,存储器6可以被配置成存储由中央处理器5执行的指令。存储器6可以被认为是主存储器6并且被包括在例如以ram或其他形式的易失性存储装置中,易失性存储装置仅在操作期间保持其内容,和/或存储器6可以被包括在非易失性存储装置中,诸如rom、eprom、eeprom、flash或其他类型的存储装置,非易失性存储装置独立于处理模块的电源状态保持存储器6内容。存储器6还可以被包括在存储大量数据的辅助存储设备、诸如外部磁盘存储器6中。在一些实施例中,盘存储器6可以使用输入/输出部件经由数据总线或其它路由部件与中央处理器5通信。辅助存储器6可以包括硬盘、紧致盘、dvd、存储卡或本领域技术人员已知的任何其它类型的大容量存储类型。所述存储器6可以存储了接下来将要描述的多种光学信息采集、传输、处理和解码的流程或方法中的一种或多种。
50.所述光学信息采集器100还可包括图像信号处理器7 (image signal processor,简称isp),图像信号处理器7用以对所述摄像头1采集的图像数据进行优化处理,优化处理包括线性纠正、噪点去除、坏点修补、颜色插值、白平衡矫正、曝光校正等中的一种或多种,以优化图像数据的质量。对于不需要进行颜色识别的光学信息,前述优化处理中的部分或全部,比如颜色插值等,不是必须的。图像信号处理器7可以是通过单核单线程地一次处理一帧图像数据,图像信号处理器7也可以是多核多线程同时处理多帧图像数据。可选地,所述光学信息采集器100可以不具有图像信号处理器7,或不通过图像信号处理器7对图像数据进行优化处理。
51.所述光学信息采集器100还可包括解码单元8,所述解码单元8用以根据预置的解码算法对所述摄像头1采集的图像数据进行解码,进而识别出光学信息,如识别出一维码或二维码的编码信息,或识别ocr图文,或识别各种紫外/红外防伪码的编码信息等。所述解码单元8可以是单核单线程一次解码一帧图像数据,或者所述解码单元8也可以是多核多线程
同时解码多帧图像数据。
52.可选地,所述图像信号处理器7的部分或全部功能模块可集成于所述中央处理器5,如中国专利cn201811115589.4公开了一种集成了图像信号处理器7的中央处理器5,其全部内容作为参考引用于此;可选地,所述图像信号处理器7的部分或全部功能模块可集成于所述图像传感器3;可选地,所述解码单元8也可以集成于所述中央处理器5;可选地,所述存储器6也可以集成于所述中央处理器5。下述实施例中,当通过图像信号处理器7对图像数据进行优化处理时,图像信号处理器7和解码单元8优选地集成于所述中央处理器5,从而可以节省成本;当然,图像信号处理器7和解码单元8也可以不集成于中央处理器5。
53.如图2和图3示出了作为所述光学信息采集器100的一种具体实施例的手持终端的示意图,所述手持终端包括壳体9、显示屏11和按钮12。所述壳体9的前端设有扫描窗10,所述摄像头1收容于壳体9内部,且可以透过所述扫描窗10采集光学信息。可选地,所述光学信息采集器100可以不具有显示屏11,而是将信息输出至单独的显示屏11进行显示。可选地,所述光学信息采集器100可以为固定式、桌面式或其它形式的终端,所述光学信息采集器100也可以作为其它设备的一部分而集成于其它设备。
54.所述中央处理器5经由外部触发发出触发指令,外部触发可以是用户按压特定按钮12或触摸显示屏11的特定区域或用户通过特定的手势操作所述光学信息采集器100而产生的触发。一旦所述中央处理器5经由外部触发,则根据预设算法发出触发指令,进而触发所述图像传感器3采集图像数据。
55.其中,还可以通过图像信号处理器7对图像传感器3采集的图像数据进行优化处理,之后再输出至解码单元8进行解码。参考图4的框图示出的一种具体实施例中,光学信息采集器100采集条码的示意图,用户按压按钮12触发所述补光灯4补光和所述图像传感器3采集图像数据,所述图像信号处理器7可通过mipi接口(移动产业处理器接口mobile industry processor interface ,简称mipi)依序接收并优化处理所述图像传感器3采集的图像数据,所述解码单元8解码所述图像信号处理器7优化处理之后传送过来的图像数据,当其中一帧图像数据成功解码,所述解码单元8将停止解码,并告知所述中央处理器5解码成功,所述中央处理器5发出指令控制所述图像传感器3停止采集图像数据。
56.所述图像传感器3可以通过数字流模式连续采集图像数据,所谓数字流模式,即根据预设算法,所述图像传感器3将在预设时间内连续采集图像数据,所述解码单元8单线程依次解码连续采集的图像数据或多线程同时解码连续采集的图像数据,当解码成功或解码超时,则控制所述图像传感器3停止采集图像数据,和控制所述解码单元8停止解码。比如预设时间为五秒,代表所述图像传感器3将在五秒内连续采集图像数据,若图像传感器3在五秒内采集的图像数据都没有成功解码,则解码超时;若其中一帧图像数据成功解码,即使时间还未达到五秒,中央处理器5也将控制所述图像传感器3停止采集图像数据,并控制所述解码单元8停止解码。
57.如图5示出了一种实施例所述光学信息采集器100通过数字流模式采集光学信息的时序图200,时序图200示出了外部触发的触发信号201、所述补光灯4的补光时序202、所述图像传感器3连续采集图像数据的图像数据采集时序203和解码单元8的解码时序204,其中:触发信号201在高电平触发图像传感器3采集图像数据和补光灯4补光,在低电平触发图像传感器3停止采集图像数据和补光灯4停止补光,所述补光灯4在补光时序202的高电平补
光、在低电平关闭补光;所述图像传感器3的图像数据采集时序203与补光时序202同步,所述图像传感器3在图像数据采集时序203的高电平曝光、在低电平将图像数据输出;图5中虚线箭头代表第一帧图像数据输出至解码单元8解码,所述解码单元8在时间点a接收第一帧图像数据,在时间点b成功解码第一帧图像数据,并将成功解码的信息反馈至所述中央处理器5,所述中央处理器5在时间点c控制所述图像传感器3停止采集图像数据并控制所述补光灯4停止补光。由于信号延迟,触发信号201高电平的上升沿略早于图像数据采集时序203高电平的上升沿,而触发信号高电平的下降沿略早于图像传感器3结束采集图像数据的时间点c。需要说明的是,当环境光充足时,补光并不是必须的。
58.根据时序图200可知,所述解码单元8解码图像数据时,所述图像传感器3同时也在采集新的图像数据,当第一帧图像数据被所述解码单元8解码成功时,所述图像传感器3已经采集了七帧图像数据,其中第二至第七帧图像数据没有传输至所述解码单元8的图像数据,而是存储(残存)于所述图像传感器3的存储区13(缓存或pn结)或所述图像信号处理器7对应的寄存器14中,根据先进先出原则,后采集的图像数据将覆盖之前采集的图像数据,则第七帧图像数据将存储于所述图像信号处理器7的寄存器14中,而第六帧图像数据将存储于所述图像传感器3的存储区13了,而第二至五帧图像数据被覆盖而清除。
59.当所述光学信息采集器100再一次经由触发,采集新的光学信息时,所述解码单元8将最先接收并解码上一次残存于所述图像传感器3的存储区13或图像信号处理器7的寄存器14中的图像数据,这势必会导致解码错误,因为上一次残存的图像数据,并不是新的光学信息的图像数据。
60.可以通过如下方法解决上述问题,避免解码错误。
61.一种可选的方法如图6中的时序图300所示,通过丢弃特定帧数的n帧图像数据,而从第n 1帧图像数据开始解码,达到避免解码错误的目的,其中,n≥1。时序图300示出了外部触发的触发信号301、所述补光灯4的补光时序302、所述图像传感器3连续采集图像数据的图像数据采集时序303和解码单元8的解码时序304,其中:触发信号301在高电平触发图像传感器3采集图像数据和补光灯4补光,在低电平触发图像传感器3停止采集图像数据和补光灯4停止补光,所述补光灯4在补光时序302的高电平补光、在低电平关闭补光;所述图像传感器3的图像数据采集时序303与补光时序302同步,所述图像传感器3在图像数据采集时序303的高电平曝光、在低电平将图像数据输出;由于图像传感器3和图像信号处理器7中各残存一帧图像数据,则丢弃特定帧数n为两帧,图像数据采集时序303中的前两帧图像数据未传输至所述解码单元8,图6中虚线箭头代表第三帧图像数据输出至解码单元8解码,解码时序304中,解码单元8在时间点d接收并解码第三帧图像数据,在时间点e成功解码第三帧图像数据,并将成功解码的信息反馈至所述中央处理器5,由于信号的延迟,在时间点f控制所述图像传感器3停止采集图像数据并控制所述补光灯4停止补光。需要说明的是,当环境光充足时,补光并不是必须的。根据图像数据采集时序302可知,此时图像传感器3已经采集了八帧图像数据,而第八帧图像数据将残存于所述图像信号处理器7的寄存器14中,第七帧图像数据将残存于所述图像传感器3的存储区13。当所述光学信息采集器100再一次经由触发采集新的光学信息,所述光学信息采集器100将会再次丢弃所述图像传感器3和所述图像信号处理器7中残存的两帧图像数据,而从第三帧图像数据开始解码输出,避免解码错误。
62.容易理解的是,丢弃的特定帧数n大于等于上一次采集图像数据时残存的图像数据的帧数即可,而不限定为两帧,比如丢弃所述图像传感器3和所述图像信号处理器7中残存的图像数据,则特定帧数n大于等于两帧。丢弃残存的图像数据可以包括,解码单元8不接收残存的图像数据,或解码单元8虽然接收残存的图像数据,但是不解码残存的图像数据,或虽然解码单元8解码残存的图像数据,但是解码的信息不输出或不显示于显示屏11,输出和显示于显示屏11的信息是新的光学信息的解码信息。比如,已经知道所述图像传感器3的存储区13和所述图像信号处理器7的寄存器14中分别存储了上一次触发采集的图像数据,则在下一次触发采集新的光学信息时,丢弃前两帧图像数据,而将第三帧及以后的图像数据当做新的光学信息的图像数据,进而解码第三帧及以后的图像数据,直至解码成功或解码超时。
63.一种实施例中,所述光学信息采集器100可以不通过图像信号处理器7对图像数据优化处理,图像信号处理器7仅仅接收所述图像传感器3传输的raw格式图像数据,紧接着将不经过优化处理的图像数据传输给解码单元8进行解码,解码单元8直接接收到的是灰度图像数据(只取raw图像数据的亮度信号),方便对图像数据进行二值化解码,而图像信号处理器7仅仅作为单纯的数据传输通道,则图像信号处理器7的寄存器14中没有残存的图像数据;或者所述光学信息采集器100不包括图像信号处理器7,图像传感器3采集的raw图像数据通过dvp接口(digital video port)或lvds(low voltage differential signaling)接口等接口直接传输给所述解码单元8,则只有所述图像传感器3的存储区13中残存有一帧图像数据,则采集新的光学信息时,只需丢弃一帧图像数据即可,第二帧及以后的图像数据为新的光学信息的图像数据,解码第二帧及以后的图像数据,直至解码成功或解码超时;由于从第二帧开始解码光学信息,相对于前一种方式从第三帧开始解码光学信息,节省了一帧图像数据的处理时间和补光时间,可以提高解码速度和降低功耗。这些具体的实施例中,由于不通过图像信号处理器7对图像数据进行优化处理,理论上可以节省一定的图像数据处理时间。
64.具体来说,参考如图7中的时序图400,示出了外部触发的触发信号401、所述补光灯4的补光时序402、所述图像传感器3连续采集图像数据的图像数据采集时序403和解码单元8的解码时序404,其中:触发信号401在高电平触发图像传感器3采集图像数据和补光灯4补光,在低电平触发图像传感器3停止采集图像数据和补光灯4停止补光,所述补光灯4在补光时序402的高电平补光、在低电平关闭补光;所述光学信息采集器100不通过图像信号处理器7对图像数据进行优化,则前一次采集的图像数据,仅有一帧残存于所述图像传感器3的存储区13,光学信息采集器100丢弃第一帧图像数据,图7中虚线箭头代表第二帧图像数据输出至解码单元8解码,解码单元8在时间点g接收并解码第二帧图像数据,在时间点h成功解码第二帧图像数据,并将成功解码的信息反馈至所述中央处理器5,由于信号的延迟,在时间点i所述图像传感器3停止采集图像数据并控制所述补光灯4停止补光。需要说明的是,当环境光充足时,补光并不是必须的。根据图像数据采集时序403可知,此时图像传感器3已经采集了六帧图像数据,而第六帧图像数据将残存于所述图像传感器3的存储区13。当所述光学信息采集器100再一次经由触发采集新的光学信息,所述光学信息采集器100将会再次丢弃所述图像传感器3中残存的一帧图像数据,而从第二帧图像数据开始解码输出,避免解码错误。
65.上述方法中,每次采集新的光学信息时,根据需要,丢弃了一帧或两帧残存的图像数据,可以解决图像传感器3或图像信号处理器7中残存图像数据的问题;可选地,也可根据实际需要,丢弃两帧以上的残存数据。
66.上述方法存在一定的缺陷,即每次采集新的光学信息时,图像传感器3需要输出和丢弃一帧或多种残存的图像数据,解码单元8至少第二帧图像数据才开始解码,浪费时间;可想而知,如果每次采集新的光学信息,图像传感器3输出的第一帧图像数据即为有效图像数据(新的光学信息的图像数据),可以提高效率。
67.可想而知,如果在每次解码成功之后,清空所述图像传感器3的存储区13或图像信号处理器7的寄存器14,使得下一次采集新的光学信息时,不存在残存的图像数据信息,第一帧图像数据即为新的光学信息的图像数据,从而可以直接从第一帧图像数据开始解码,提升解码速度。这可以通过预置的算法来实现,即通过算法控制,在每次解码成功之后,继续清空图像传感器3的存储区13或图像信号处理器7的寄存器14。这种清空图像传感器3的存储区13或图像信号处理器7的寄存器14的预置的算法,通常需要由图像传感器3厂商或图像信号处理器7厂商(或集成了图像信号处理器7的中央处理器5厂商,下同)对算法进行预置。对于光学信息采集器100生产商来说,采购来的图像传感器3或图像信号处理器7,处理图像数据的运算逻辑通常已经被图像传感器3或图像信号处理器7厂商预定义,不容易进行更改,也即当厂商预定义,当图像传感器3或图像信号处理器7中存储的图像数据未解码时,最后一帧图像数据仍然存储在图像传感器3或图像信号处理器7中,那么,光学信息采集器100生产商是难以更改或直接消除图像信号处理器7中残存的图像数据。而且,由于不同的图像传感器3厂商生产的图像传感器3具有不同运算逻辑,不同的图像信号处理器7厂商生产的图像信号处理器7也有不同的运算逻辑,即使光学信息采集器100生产商可以经过调试,直接消除图像传感器3或图像信号处理器7中残存的图像数据,那么在更换图像传感器3或图像信号处理器7之后,又需要重新调试,工作量巨大,如果有一种可移植的方法,清空不同型号的图像传感器3或图像信号处理器7中的残存图像数据,将会节省工作量。
68.如图8所示的一种可选的实施例的框图中,通过绕过图像信号处理器7厂商预定义的图像数据处理流程,来消除残存图像数据。光学信息采集器100不通过图像信号处理器7对图像数据进行优化处理,图像传感器3采集的图像数据通过现有的mipi接口输出至所述图像信号处理器7,并存储于光学信息采集器100生产商可以另行配置的缓冲器15中,所述缓冲器15集成于图像信号处理器7,当然,所述缓冲器15也可以独立于所述图像信号处理器7设置,解码单元8从所述缓冲器15中取出图像数据并解码。本实施例中,仍然通过现有的mipi接口,将图像传感器3采集的图像数据传输至图像信号处理器7,再传输至解码单元8,因为通过现有的mipi接口传输图像数据比较简单。一些实施例中,可以完全绕过图像信号处理器7,即图像传感器3采集的图像数据直接传输至解码单元8进行解码。由于不通过图像信号处理器7对图像数据进行优化处理,则仅仅图像传感器3的存储区13中残存一帧图像数据,可以设置特定的流程,消除图像传感器3中残存的一帧图像数据。
69.一种可选的实施例中,可以在原有的解码流程结束之后,比如在解码成功,所述中央处理器5发送结束指令控制所述图像传感器3结束采集图像数据之后,所述中央处理器5再次发送指令至所述图像传感器3,控制所述图像传感器3继续采集一帧或多帧图像数据,优选的是采集一帧图像数据,并控制所述图像传感器3继续将这一帧图像数据输出,则所述
图像传感器3的存储区13中的图像数据被清空,使得下一次采集新的光学信息,图像传感器3输出的第一帧图像数据即为新的光学信息的图像数据。而图像传感器3最后输出的一帧图像数据,可以输入光学信息采集器100生产商可以配置的缓冲器15中,并且进一步被清除,最终消除图像传感器3中的残存图像数据。
70.具体来说,参考图9中的一种实施例的时序图500,示出了中央处理器5的触发信号501、所述补光灯4的补光时序502、所述图像传感器3连续采集图像数据的图像数据采集时序503和解码单元8的解码时序504,其中:触发信号501在高电平触发图像传感器3采集图像数据和补光灯4补光,在低电平触发图像传感器3停止采集图像数据和补光灯4停止补光,所述补光灯4在补光时序502的高电平补光、在低电平关闭补光;所述图像传感器3的图像数据采集时序503与补光时序502同步,所述图像传感器3在图像数据采集时序503的高电平曝光、在低电平将图像数据输出;图9中虚线箭头代表第一帧图像数据输出至解码单元8解码,所述解码单元8在时间点j接收第一帧图像数据,在时间点k成功解码第一帧图像数据,并将成功解码的信息反馈至所述中央处理器5,所述中央处理器5在时间点i发出触发信号控制所述图像传感器3停止采集图像数据并控制所述补光灯4停止补光。与前述实施例不同的是,中央处理器5将再次发出控制信号510,单独控制所述图像传感器3在高电平530继续采集一帧图像数据,并输出这一帧图像数据,则图像传感器3中没有残存的图像数据,下次一经触发采集新的光学信息,图像传感器3采集和输出的第一帧图像数据即为新的光学信息的图像数据,解码单元8可直接接受和解码第一帧图像数据。此时,补光灯4处于低电平520,没有进行补光,从而节省功耗。需要说明的是,当环境光充足时,整个过程中补光都不是必须的。
71.前述多个实施例中,通过数字流模式连续采集并解码图像数据,当解码单元8接受到的第一帧图像数据被解码成功,图像传感器3已经采集了多帧图像数据,比如时序图200中,图像传感器3总共采集了七帧图像数据,显然,采集第二至七帧图像数据造成了功耗的浪费。目前idata、honeywell和zebra等公司生产的光学信息采集器100,基本在前三帧图像数据之内即可成功解码,也即图像传感器3采集的前三帧图像数据中,至少有一帧可以被解码单元8就成功解码。由前述可知,当光学信息采集器100在第三帧图像数据成功解码时,图像传感器3已经采集了超过三帧图像数据,甚至已经采集了六、七帧图像数据,而采集第四至七帧图像数据同样需要图像传感器3工作,或者还需要补光灯4补光,由于第四至七帧图像数据不用于解码,那么采集第四至七帧图像数据造成了功耗的浪费。需要说明的是,一些实施例中,当环境光充足时,补光并不是必须的,比如日常生活中通过手机扫码,通常并不需要补光。
72.在一种优选的实施例中,所述光学信息采集器100可采用固定帧模式采集图像数据,不同于数字流模式的连续采集图像数据,在固定帧模式下,中央处理器5控制图像传感器3每次采集固定帧数的图像数据,所述解码单元8解码固定帧数的图像数据,当前一次采集的固定帧数的图像数据解码完成(有一帧图像数据解码成功或固定帧数的图像数据全部解码失败)或即将解码完成时,中央处理器5再判断是否需要又一次采集固定帧数的图像数据,依此类推,直至解码成功或解码超时。固定帧模式前后两次采集固定帧数的图像数据之间具有时间间隔,而不是连续的,留给中央处理器5做出判断的时间。
73.参见图10的一种实施例的时序图600,示出了中央处理器5的触发信号601、所述补
光灯4的补光时序602、所述图像传感器3连续采集图像数据的图像数据采集时序603和解码单元8的解码时序604,其中:触发信号601在高电平触发图像传感器3采集图像数据和补光灯4补光,在低电平触发图像传感器3停止采集图像数据和补光灯4停止补光,所述补光灯4在补光时序602的高电平补光、在低电平关闭补光;所述图像传感器3的图像数据采集时序603与补光时序602同步,所述图像传感器3在图像数据采集时序603的高电平曝光、在低电平将图像数据输出;图10中从左至右的四个虚线箭头分别代表第一至第四帧图像数据分别输出至解码单元8解码,其中第一至第三帧图像数据均没有解码成功,第四帧图像数据成功解码。由图像数据采集时序603可以看到,前三帧固定帧数的图像数据采集时间与后三帧固定帧数的图像数据采集时间具有明显的时间间隔,供中央处理器5判断前三帧固定帧数的图像数据是否解码完成,从而判断是否需要控制图像传感器3继续采集后三帧固定帧数的图像数据。
74.其中,图像数据采集时序603示出了图像传感器3以固定帧数为三帧的固定帧模式采集图像数据,中央处理器5控制图像传感器3先采集固定帧数的三帧图像数据,并将这三帧图像数据传输至解码单元8,当这三帧图像数据没有解码成功时,控制图像传感器3又一次采集三帧图像数据,并再次传输至解码单元8进行解码,依此类推,直至解码成功(或解码超时)。从时序图600可以看出,当图像传感器3采集的第四帧图像数据成功解码时,如果此时图像传感器3并没有采集完固定帧数的三帧图像数据,图像传感器3将继续执行固定帧模式,采集完固定帧数的图像数据,也即继续采集第五和第六帧图像数据,并将固定帧数的第五和第六帧图像数据全部输出,然后停止图像数据采集,图像传感器3中将没有残存的图像数据。容易理解的是,与之相反,也可以在解码成功之后,控制图像传感器3停止图像数据采集,即使图像传感器3还没有采集完固定帧数的图像数据,这可以一定程度上节省功耗,但是会造成图像传感器3中残存图像数据;可以在下一次采集新的光学信息时,丢弃图像传感器3中残存的图像数据。
75.前述实施例中,由于对前三帧图像数据完成解码(解码成功或没有解码成功)之后,再控制图像传感器3采集三帧图像数据,前后三帧图像数据采集之间存在时间间隔,如果前三帧固定帧数的图像数据没有解码成功,则采集后三帧固定帧数的图像数据会存在明显的延迟。作为改进,可选地,可以在前三帧图像数据的第二帧图像数据没有成功解码或第三帧图像数据输入解码单元8进行解码时,即控制图像传感器3再采集三帧图像数据,达到解码速度与功耗的平衡;开始采集后三帧图像数据的时间,可以根据实际需求来确定,以使得前后三帧图像数据的采集之间没有明显延迟。
76.前述实施例中,固定帧模式的固定帧数为三帧,即图像传感器3每次采集三帧图像数据;一些实施例中,可以根据具体的光学信息采集器100的性能来确定固定帧数,比如若光学信息采集器100可以做到在前二帧图像数据之内或第一帧图像数据解码成功,则固定帧模式的固定帧数可以优先设为二帧或一帧,避免后续多采集的图像数据造成功耗浪费,每次在这一帧图像数据解码完成之后,且没有解码成功时,控制图像传感器3采集下一帧图像数据;当然固定帧数也可设置为二帧或四帧或五帧或更多帧数。总之,在结合前面的实施例可知,当前的光学信息采集器100,大多在前三帧图像数据即可解码成功,且固定帧数需要小于等于解码单元8解码一帧图像数据的超时时间,在现有的技术条件下,超时时间通常设置为100ms,也即但解码单元8解码一帧图像数据的时间达到100ms且没有解码成功,则停
止解码这一帧图像数据,转而解码下一帧图像数据,因此,固定帧模式下的固定帧数优选为不超过五帧(20ms*5=100ms),且进一步优选为三至五帧,使得第一次固定帧模式采集的固定帧数的图像数据即可解码成功,且不会采集过多的图像数据,相对于现有的数字流模式具有功耗优势。可想而知,当具体的光学信息采集器100在数字流模式下,需要五帧以上的图像数据才可以解码成功,则其固定帧数可以设置为五帧或多于五帧。
77.可以采用结合固定帧模式与数字流模式的优点的混合模式,适应复杂的应用场景,达到功耗与解码速度的平衡。对于一些难以识别的光学信息,如高密度二维码、dpm(direct part mark)或复杂的文字符合等,可以先采用固定帧模式采集和解码图像数据,当没有成功解码,接着采用数字流模式连续采集图像数据进行解码;可想而知,这种混合模式同样也可以用于简单光学信息的识读。
78.容易想到的是,混合模式可以有多种排列组合方式。
79.比如所述摄像头1可以配置为先采用预设次数的固定帧模式采集图像数据,接着采用数字流模式采集图像数据;比如先采用一次固定帧模式采集固定帧数的图像数据,再采用数字流模式连续采集图像数据,参考图11中的时序图700所示,示出了中央处理器5的触发信号701、所述补光灯4的补光时序702、所述图像传感器3连续采集图像数据的图像数据采集时序703和解码单元8的解码时序704,光学信息采集器100先采用固定帧数为三帧的固定帧模式采集三帧图像数据,当没有解码成功,则采用数字流模式连续采集和解码图像数据,解码单元8在数字流模式下采集的第一帧图像数据成功解码图像数据。
80.其它实施例中,可以先采用多次固定帧模式,当没有解码成功,接着采用数字流模式,比如可以先采用两次固定帧模式,接着采用数字流模式,即先采集固定帧数的三帧图像数据进行解码,当没有解码成功,继续采集固定帧数的三帧图像数据进行解码,且当还没有解码成功,再采用数字流模式进行解码;可想而知,可以先采用三次或三次以上的固定帧模式进行解码,当没有解码成功,接着采用数字流模式进行解码。
81.由于前面已经描述了,当采用数字流模式进行解码,解码成功时图像传感器3中会残存图像数据,为解决这个问题,混合模式可以是先采用固定帧模式,接着采用数字流模式,最后以固定帧模式结尾。
82.具体来说,参考图12中一种实施例的时序图800,示出了中央处理器5的触发信号801、所述补光灯4的补光时序802、所述图像传感器3连续采集图像数据的图像数据采集时序803和解码单元8的解码时序804,光学信息采集器100先采用固定帧数为三帧的固定帧模式采集三帧图像数据,当没有解码成功,则采用数字流模式连续采集和解码图像数据,解码单元8在数字流模式下采集的第一帧图像数据成功解码图像数据,且当解码单元8在第四帧图像数据解码成功时,控制所述图像传感器3停止图像数据采集和补光灯4停止补光。与前述实施例不同的是,中央处理器5将再次发出控制信号810,单独控制所述图像传感器3在高电平830继续采集一帧图像数据,并输出这一帧图像数据,则图像传感器3中没有残存的图像数据,而且,由于绕过图像信号处理器7,图像信号处理器7中也没有残存的图像数据,下次一经触发采集新的光学信息,图像传感器3采集和输出的第一帧图像数据即为新的光学信息的图像数据,解码单元8可直接接受和解码第一帧图像数据。此时,补光灯4处于低电平820,没有进行补光,从而节省功耗。需要说明的是,当环境光充足时,整个过程中补光都不是必须的。
83.可想而知,混合模式也可以先采用数字流模式进行图像数据采集和解码,当解码成功之后,接着采用固定帧模式,控制图像传感器3继续采集固定帧数的图像数据,并控制图像传感器3将固定帧数的图像数据全部输出,则图像传感器3中没有残存的图像数据;前述实施例中已经描述了一种特殊情形,即在采用数字流模式解码成功之后,图像传感器3继续采集一帧图像数据。
84.可想而知,当所述光学信息采集器100采用混合模式采集图像数据,所述光学信息采集器100可以通过图像信号处理器7对图像数据进行优化处理,而为了消除图像信号处理器7中的残存图像数据,则可以进一步采用前述的丢弃特定帧数n的残存图像数据的方法。具体丢弃的特定帧数n的数量,可以根据残存的图像数据来定,比如当图像传感器3和图像信号处理器7中均存储了残存的图像数据,则每次重新采集图像数据时,需要丢弃两帧图像数据;而当图像传感器3中没有残存的图像数据,而图像信号处理器7中残存一帧图像数据,则每次重新采集图像数据时,只需丢弃图像信号处理器7中残存的一帧图像数据。或者,所述光学信息采集器100可以不通过图像信号处理器7对图像数据进行处理,则当图像传感器3中存在一帧残存的图像数据,每次采集新的图像数据时,只需丢弃这一帧残存的图像数据;而当混合模式下,采用固定帧模式结尾时,图像传感器3中也没有残存图像数据,则每次重新采集图像数据时,无需丢弃残存的图像数据。
85.本技术的光学信息采集器及其方法具有以下有益效果:1.当图像传感器3经由触发采集图像数据,中央处理器5发出指令丢弃特定帧数的n帧图像数据,其中特定帧数的n帧图像数据为上一次经由触发采集并残存的图像数据,避免残存的图像数据被解码输出,造成解码错误。
86.2.图像传感器3以固定帧模式每次采集和输出固定帧数的图像数据,相对于现有的通过数字流模式连续采集和输出图像数据而言,可以节省功耗,避免通过数字流模式连续采集图像数据,在解码成功时,后续已经连续采集的多帧图像数据不用于解码,造成功耗的浪费。
87.3.图像传感器3通过数字流模式采集图像数据,并且不通过图像信号处理器7对图像数据优化处理,避免图像信号处理器7中残存图像数据;且在解码成功或解码超时,则控制所述图像传感器3停止以数字流模式连续采集图像数据,并控制图像传感器3继续采集和输出固定帧数的图像数据,从而也避免了图像传感器3中残存图像数据,避免下一次采集光学信息时出现解码错误,提高效率。
88.以上详细说明仅为本技术之较佳实施例的说明,非因此局限本技术之专利范围,所以,凡运用本创作说明书及图示内容所为之等效技术变化,均包含于本创作之专利范围内。
再多了解一些

本文用于创业者技术爱好者查询,仅供学习研究,如用于商业用途,请联系技术所有人。

发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表

相关文献