一种残膜回收机防缠绕挑膜装置的制 一种秧草收获机用电力驱动行走机构

基于人工智能的风力发电机组故障智能分析方法及系统与流程

2023-01-15 05:48:29 来源:中国专利 TAG:


1.本发明属于设备运行故障分析技术领域,特别涉及风力发电机组运行故障分析技术,具体而言是基于人工智能的风力发电机组故障智能分析方法及系统。


背景技术:

2.随着现代经济的快速发展,人们对于电力的需求也增长迅速。目前发电方式主要集中在火力发电,而火力发电使用的原料已近枯竭,其他发电方式在对环境污染程度、产量、可利用资源方面均受到限制。风力发电作为另一种替代发电方式凭借无污染、可再生、蕴量巨大等优点,成为当前较为流行的发电方式,而风力发电机组作为实现风力发电的组成设备,其重要性不言而喻。
3.伴随着风力发电机组的逐年投运,机组也逐步进入事故高发阶段,高频发生的运行故障对发电效果影响较大,而通过对风力发电机组进行故障分析能够有效减少发电事故的发生,具有一定的必要性。
4.鉴于风力发电机组运行故障的发生一般都是由运行指标异常导致的,使得当前风力发电机组的运行故障常用分析方式都是基于运行指标的分析识别出隐患发电部件,再通过对隐患发电部件的异常运行分析预测出运行故障原因,但目前在识别隐患发电部件过程中都是将监测的实际运行指标与额定运行指标进行对比,没有考虑到风力发电机组的额定运行指标是在一定的风能环境品质下才能达到的,而实际的风能环境品质与额定运行指标对应的风能环境品质可能存在差异,在这种情况下如果直接将实际运行指标与额定运行指标进行对比,就会造成脱离实际情况,进而影响隐患发电部件的识别可靠度,从而无形之中增加了后续隐患发电部件无效分析的发生率,不利于运行故障原因的快速预测。
5.再者,目标在对隐患发电部件进行异常运行分析时只侧重于分析运行状态是否存在异常,忽略了运行温度异常也会造成运行故障,导致隐患发电部件的异常运行分析维度过于片面,存在分析范围局限,容易出现无法预测出运行故障原因的现象,从而难以实现运行故障分析目的。


技术实现要素:

6.为此,本技术实施例的一个目的在于提供基于人工智能的风力发电机组故障智能分析方法及系统,可以有效解决背景技术提到的问题。
7.本发明的目的可以通过以下技术方案来实现:第一方面,本发明提出基于人工智能的风力发电机组故障智能分析方法,包括以下步骤:(1)将待进行运行故障分析的风力发电机组记为指定风力发电机组,并统计指定风力发电机组存在的运行指标数量,同时从参考信息库中调取各运行指标对应的关联发电部件。
8.(2)在指定风力发电机组外部分别设置风速风向仪和环境监测终端,并在指定风力发电机组机舱内布设微型红外热像仪和监控终端。
9.(3)在指定风力发电机组运行过程中通过风速风向仪和环境监测终端按照设定的
采集时间间隔采集指定风力发电机组所处位置的风力参数和外界环境参数,以此分析指定风力发电机组所处位置在各采集时刻的风能环境品质系数。
10.(4)基于指定风力发电机组所处位置在各采集时刻的风能环境品质系数预估指定风力发电机组在各采集时刻对应各运行指标的正常值。
11.(5)在各采集时刻监测指定风力发电机组对应各运行指标的实际值,并将其与该采集时刻对应各运行指标的正常值进行对比,以此判断指定风力发电机组是否存在运行故障,若判断存在运行故障,则识别故障运行时刻和故障运行指标。
12.(6)根据故障运行指标获取故障运行指标对应的关联发电部件,将其记为隐患发电部件,与此同时获取隐患发电部件的运行温度和运行状态图像。
13.(7)对隐患发电部件对应的运行温度和运行状态图像进行解析,预测故障运行指标的故障原因,并将其进行后台显示。
14.在本发明第一方面的一种能够实现的方式中,所述风力参数包括风速和风向,外界环境参数包括外界温度、外界湿度和外界粉尘浓度。
15.在本发明第一方面的一种能够实现的方式中,所述分析指定风力发电机组所处位置在各采集时刻的风能环境品质系数具体包括以下步骤:(31)将指定风力发电机组对应风轮叶片的放置状态进行图像拍摄,进而从图像中提取风轮叶片的放置方向。
16.(32)根据指定风力发电机组所处位置在各采集时刻的风向与风轮叶片的放置方向获取各采集时刻的风向与风轮叶片放置方向之间的夹角,将其记为风力角。
17.(33)将指定风力发电机组所处位置在各采集时刻的风速和风力角代入公式,计算出指定风力发电机组所处位置在各采集时刻的风能优势度,其中t表示为采集时刻编号,,m表示为采集时刻数量,、分别表示为指定风力发电机组所处位置在第t采集时刻的风速、风力角,表示为指定风力发电机组对应的额定风速。
18.(34)将指定风力发电机组所处位置在各采集时刻的外界环境参数与参考信息库中指定风力发电机组处于正常运行状态下的外界环境参数进行对比,计算指定风力发电机组所处位置在各采集时刻的外界环境恶劣度,其计算公式为
,其中、、分别表示为指定风力发电机组所处位置在第t采集时刻的外界温度、外界湿度、外界粉尘浓度,、、分别表示为指定风力发电机组处于正常运行状态下的外界温度、外界湿度、外界粉尘浓度,u表示为预设常数,且u》1。
19.(35)将和代入公式,计算出指定风力发电机组所处位置在各采集时刻的风能环境品质系数。
20.在本发明第一方面的一种能够实现的方式中,所述预估指定风力发电机组在各采集时刻对应各运行指标的正常值的具体确定方法如下:(41)从参考信息库中提取指定风力发电机组在额定发电状态下的需求风能环境品质系数,并将其与指定风力发电机组在各采集时刻的风能环境品质系数进行对比,计算指定风力发电机组在各采集时刻的风能环境品质偏差度,其计算公式为,表示为指定风力发电机组在第t采集时刻的风能环境品质偏差度,表示为指定风力发电机组在额定发电状态下的需求风能环境品质系数,e表示为自然常数。
21.(42)根据指定风力发电机组在各采集时刻的风能环境品质偏差度获取指定风力发电机组在各采集时刻的风能环境品质偏差等级。
22.(43)将指定风力发电机组在各采集时刻的风能环境品质偏差等级与参考信息库中各运行指标在各风能环境品质偏差等级下的正常值进行匹配,从中匹配出指定风力发电机组在各采集时刻对应各运行指标的正常值,记为,其中i表示为运行指标编号,,n表示为指定风力发电机组对应的运行指标数量。
23.在本发明第一方面的一种能够实现的方式中,所述判断指定风力发电机组是否存在运行故障,若判断存在运行故障,则识别故障运行时刻和故障运行指标对应的执行步骤如下:(51)从参考信息库中提取指定风力发电机组对应各运行指标的额定值,进而将各采集时刻指定风力发电机组对应各运行指标的实际值与指定风力发电机组在各采集时刻对
应各运行指标的正常值进行对比,通过偏离度计算公式,计算出各采集时刻指定风力发电机组对应各运行指标的偏离度,表示为第t采集时刻指定风力发电机组对应第i运行指标的实际值。
24.(52)将各采集时刻指定风力发电机组对应各运行指标的偏离度与设定的各运行指标的允许偏离度进行对比,若某采集时刻指定风力发电机组对应某运行指标的偏离度大于该运行指标的允许偏离度,则判断指定风力发电机组存在运行故障,并该采集时刻记为故障运行时刻,将该运行指标记为故障运行指标。
25.在本发明第一方面的一种能够实现的方式中,所述获取隐患发电部件的运行温度和运行状态图像的具体获取方法如下:(61)利用指定风力发电机组机舱内设置的监控终端在故障运行时刻采集指定风力发电机组的运行状态图像,并从中提取隐患发电部件对应的运行位置和外形轮廓,由此按照隐患发电部件对应的外形轮廓将指定风力发电机组的运行状态图像进行分割,得到隐患发电部件对应的运行状态图像。
26.(62)利用指定风力发电机组机舱内设置的微型红外热像仪在故障运行时刻采集指定风力发电机组机舱的热图像,并基于隐患发电部件对应的运行位置将热图像定位在隐患发电部件所在区域,从而从热图像中提取隐患发电部件所在区域的颜色。
27.(63)将隐患发电部件所在区域的颜色与热图表征库中各种颜色对应的温度进行匹配,进而将匹配成功的温度作为隐患发电部件对应的运行温度。
28.在本发明第一方面的一种能够实现的方式中,所述预测故障运行指标的故障原因具体参照如下步骤:(71)将隐患发电部件对应的运行状态图像与参考信息库中隐患发电部件对应的正常运行状态图像进行对比,识别是否存在异常,若存在异常,则预测故障运行指标的故障原因为隐患发电部件的运行状态存在异常。
29.(72)将隐患发电部件对应的运行温度与参考信息库中隐患发电部件对应的适宜运行温度区间进行对比,若隐患发电部件对应的运行温度不处于适宜运行温度区间内,则预测故障运行指标的故障原因为隐患发电部件的运行温度存在异常。
30.在本发明第一方面的一种能够实现的方式中,所述(6)还包括当隐患发电部件的数量不止一个时对各隐患发电部件的分析顺序进行智能排布,其具体排布方法如下:第一步、基于隐患发电部件的名称从参考信息库中提取各隐患发电部件在发电过程中的重要度,记为,k表示为隐患发电部件的编号,,z表示为隐患发电部件的数量。
31.第二步、基于隐患发电部件的名称从各运行指标对应的关联发电部件中识别隐患发电组件被关联的运行指标数量,记为。
32.第三步、将和代入公式,计算出各隐患发电部件对应的分析优先度,、分别表示为设定的重要度、被关联运行指标数量对应的权重因子。
33.第四步、将各隐患发电部件按照分析优先度由大到小的顺序进行排序,得到各隐患发电部件的分析顺序。
34.第二方面,本发明提供基于人工智能的风力发电机组故障智能分析系统,包括以下模块:运行指标关联发电部件统计获取模块,用于将待进行运行故障分析的风力发电机组记为指定风力发电机组,并统计指定风力发电机组存在的运行指标数量,同时从参考信息库中调取各运行指标对应的关联发电部件。
35.指定风力发电机组监测设备设置模块,用于在指定风力发电机组外部分别设置风速风向仪和环境监测终端,并在指定风力发电机组机舱内布设微型红外热像仪和监控终端。
36.风能环境监测分析模块,用于在指定风力发电机组运行过程中通过风速风向仪和环境监测终端按照设定的采集时间间隔采集指定风力发电机组所处位置的风力参数和外界环境参数,以此分析指定风力发电机组所处位置在各采集时刻的风能环境品质系数。
37.指定风力发电机组正常运行指标预估模块,用于基于指定风力发电机组所处位置在各采集时刻的风能环境品质系数预估指定风力发电机组在各采集时刻对应各运行指标的正常值。
38.参考信息库,用于存储各运行指标对应的关联发电部件,存储指定风力发电机组处于正常运行状态下的外界环境参数,存储指定风力发电机组在额定发电状态下的需求风能环境品质系数,存储指定风力发电机组对应各运行指标的额定值及各运行指标在各风能环境品质偏差等级下的正常值,并存储指定风力发电机组中各发电部件对应的正常运行状态图像、适宜运行温度区间及其对应的重要度。
39.热图表征库,用于存储各种颜色对应的温度。
40.指定风力发电机组运行故障判断模块,用于在各采集时刻监测指定风力发电机组对应各运行指标的实际值,并将其与该采集时刻对应各运行指标的正常值进行对比,以此判断指定风力发电机组是否存在运行故障,若判断存在运行故障,则识别故障运行时刻和故障运行指标。
41.隐患发电部件运行信息获取模块,用于根据故障运行指标获取故障运行指标对应的关联发电部件,将其记为隐患发电部件,与此同时获取隐患发电部件的运行温度和运行状态图像。
42.故障运行指标故障原因预测显示终端,用于对隐患发电部件对应的运行温度和运行状态图像进行解析,预测故障运行指标的故障原因,并将故障运行指标的故障原因进行后台显示。
43.结合上述的所有技术方案,本发明所具备的优点及积极效果为:1.本发明基于指
定风力发电机组所处位置的风力参数和外界环境参数分析出风能环境品质系数,并由此得到指定风力发电机组在当前风能环境品质系数下各运行指标的正常值,进而根据实际运行指标与相应运行指标的正常值对比结果实现了隐患发电部件的精准可靠识别,大大提高了识别结果与实际风能环境品质的贴合度,有效避免了隐患发电部件无效分析的发生,能够最大限度提高运行故障原因的预测效率。
44.2.本发明在进行隐患发电部件异常运行分析时充分考虑到运行状态异常和运行温度异常均有可能造成运行故障,由此从以上两个方面进行综合分析,使得隐患发电部件异常运行的分析维度更加全面,实现了分析范围的扩展,在一定程度上减少了无法预测出运行故障原因的发生率,从而能够有效实现运行故障分析目的。
45.3.本发明在当隐患发电部件的数量不止一个时对各隐患发电部件的分析顺序进行智能排布,从而依据排布顺序进行隐患发电部件异常运行分析,在一定程度上减少了运行故障原因的分析时间,进一步加强了运行故障原因的预测效率,具有一定的实用性价值。
附图说明
46.利用附图对本发明作进一步说明,但附图中的实施例不构成对本发明的任何限制,对于本领域的普通技术人员,在不付出创造性劳动的前提下,还可以根据以下附图获得其它的附图。
47.图1为本发明的方法实施步骤流程图。
48.图2为本发明的系统模块连接示意图。
具体实施方式
49.下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
50.实施例1:参照图1所示,本发明提出基于人工智能的风力发电机组故障智能分析方法,包括以下步骤:(1)将待进行运行故障分析的风力发电机组记为指定风力发电机组,并统计指定风力发电机组存在的运行指标数量,同时从参考信息库中调取各运行指标对应的关联发电部件。
51.作为本发明的一个示例,指定风力发电机组存在的运行指标包括输出功率、运行噪声和运行风速等,其中输出功率对应的关联发电部件为发电机,运行噪声对应的关联发电部件为齿轮、轴承、电机、风轮等,运行风速对应的关联发电部件为风轮。
52.(2)在指定风力发电机组外部分别设置风速风向仪和环境监测终端,并在指定风力发电机组机舱内布设微型红外热像仪和监控终端,其中环境监测终端包括温度传感器、湿度传感器和粉尘浓度传感器,监控终端为监控摄像头。
53.(3)在指定风力发电机组运行过程中通过风速风向仪和环境监测终端按照设定的采集时间间隔采集指定风力发电机组所处位置的风力参数和外界环境参数,其中风力参数包括风速和风向,外界环境参数包括外界温度、外界湿度和外界粉尘浓度,以此分析指定风力发电机组所处位置在各采集时刻的风能环境品质系数,具体包括以下步骤:(31)将指定
风力发电机组对应风轮叶片的放置状态进行图像拍摄,进而从图像中提取风轮叶片的放置方向。
54.(32)根据指定风力发电机组所处位置在各采集时刻的风向与风轮叶片的放置方向获取各采集时刻的风向与风轮叶片放置方向之间的夹角,将其记为风力角。
55.(33)将指定风力发电机组所处位置在各采集时刻的风速和风力角代入公式,计算出指定风力发电机组所处位置在各采集时刻的风能优势度,其中t表示为采集时刻编号,,m表示为采集时刻数量,、分别表示为指定风力发电机组所处位置在第t采集时刻的风速、风力角,表示为指定风力发电机组对应的额定风速。
56.需要说明的是,上述风能优势度计算公式中指定风力发电机组所处位置在某采集时刻的风速越接近额定风速,风力角越接近90度,风能优势度越大。
57.(34)将指定风力发电机组所处位置在各采集时刻的外界环境参数与参考信息库中指定风力发电机组处于正常运行状态下的外界环境参数进行对比,计算指定风力发电机组所处位置在各采集时刻的外界环境恶劣度,其计算公式为,其中、、分别表示为指定风力发电机组所处位置在第t采集时刻的外界温度、外界湿度、外界粉尘浓度,、、分别表示为指定风力发电机组处于正常运行状态下的外界温度、外界湿度、外界粉尘浓度,u表示为预设常数,且u》1。
58.在上述外界环境恶劣度计算公式中,指定风力发电机组所处位置在某采集时刻的外界温度、外界湿度与指定风力发电机组处于正常运行状态下的外界温度、外界湿度之间差距越大,且粉尘浓度越高,指定风力发电机组所处位置在该采集时刻的外界环境恶劣度越大。
59.(35)将和代入公式,计算出指定风力发电机组所处位置在各采集时刻的风能环境品质系数,其中风能优势度对风能环境品质系数的影响为正影响,外界环境恶劣度对风能环境品质系数的影响为负影响。
60.(4)基于指定风力发电机组所处位置在各采集时刻的风能环境品质系数预估指定风力发电机组在各采集时刻对应各运行指标的正常值,具体确定方法如下:(41)从参考信息库中提取指定风力发电机组在额定发电状态下的需求风能环境品质系数,并将其与指定风力发电机组在各采集时刻的风能环境品质系数进行对比,计算指定风力发电机组在各采集时刻的风能环境品质偏差度,其计算公式为,表示为指定风力发电机组在第t采集时刻的风能环境品质偏差度,表示为指定风力发电机组在额定发电状态下的需求风能环境品质系数,e表示为自然常数。
61.(42)根据指定风力发电机组在各采集时刻的风能环境品质偏差度获取指定风力发电机组在各采集时刻的风能环境品质偏差等级,其获取方式为将指定风力发电机组在各采集时刻的风能环境品质偏差度与设定的各风能环境品质偏差等级对应的风能环境品质偏差度范围进行匹配,从中匹配出指定风力发电机组在各采集时刻的风能环境品质偏差等级。
62.(43)将指定风力发电机组在各采集时刻的风能环境品质偏差等级与参考信息库中各运行指标在各风能环境品质偏差等级下的正常值进行匹配,从中匹配出指定风力发电机组在各采集时刻对应各运行指标的正常值,记为,其中i表示为运行指标编号,,n表示为指定风力发电机组对应的运行指标数量。
63.(5)在各采集时刻监测指定风力发电机组对应各运行指标的实际值,并将其与该采集时刻对应各运行指标的正常值进行对比,以此判断指定风力发电机组是否存在运行故障,若判断存在运行故障,则识别故障运行时刻和故障运行指标,其具体执行步骤如下:(51)从参考信息库中提取指定风力发电机组对应各运行指标的额定值,进而将各采集时刻指定风力发电机组对应各运行指标的实际值与指定风力发电机组在各采集时刻对应各运行指标的正常值进行对比,通过偏离度计算公式,计算出各采集时刻指定风力发电机组对应各运行指标的偏离度,表示为第t采集时刻指定风力发电机组对应第i运行指标的实际值。
64.(52)将各采集时刻指定风力发电机组对应各运行指标的偏离度与设定的各运行
指标的允许偏离度进行对比,若某采集时刻指定风力发电机组对应某运行指标的偏离度大于该运行指标的允许偏离度,则判断指定风力发电机组存在运行故障,并该采集时刻记为故障运行时刻,将该运行指标记为故障运行指标。
65.(6)根据故障运行指标从各运行指标对应的关联发电部件中提取故障运行指标对应的关联发电部件,将其记为隐患发电部件,与此同时获取隐患发电部件的运行温度和运行状态图像。
66.上述中本发明基于指定风力发电机组所处位置的风力参数和外界环境参数分析出风能环境品质系数,并由此得到指定风力发电机组在当前风能环境品质系数下各运行指标的正常值,进而根据实际运行指标与相应运行指标的正常值对比结果实现了隐患发电部件的精准可靠识别,大大提高了识别结果与实际风能环境品质的贴合度,有效避免了隐患发电部件无效分析的发生,能够最大限度提高运行故障原因的预测效率。
67.作为本发明的优选实施方案,获取隐患发电部件的运行温度和运行状态图像的具体获取方法如下:(61)利用指定风力发电机组机舱内设置的监控终端在故障运行时刻采集指定风力发电机组的运行状态图像,并从中提取隐患发电部件对应的运行位置和外形轮廓,由此按照隐患发电部件对应的外形轮廓将指定风力发电机组的运行状态图像进行分割,得到隐患发电部件对应的运行状态图像。
68.(62)利用指定风力发电机组机舱设置的微型红外热像仪在故障运行时刻采集指定风力发电机组机舱的热图像,并基于隐患发电部件对应的运行位置将热图像定位在隐患发电部件所在区域,从而从热图像中提取隐患发电部件所在区域的颜色。
69.(63)将隐患发电部件所在区域的颜色与热图表征库中各种颜色对应的温度进行匹配,进而将匹配成功的温度作为隐患发电部件对应的运行温度。
70.作为本发明的又一优选实施例,当隐患发电部件的数量不止一个时对各隐患发电部件的分析顺序进行智能排布,其具体排布方法如下:第一步、基于隐患发电部件的名称从参考信息库中提取各隐患发电部件在发电过程中的重要度,记为,k表示为隐患发电部件的编号,,z表示为隐患发电部件的数量。
71.第二步、基于隐患发电部件的名称从各运行指标对应的关联发电部件中识别隐患发电组件被关联的运行指标数量,记为。
72.第三步、将和代入公式,计算出各隐患发电部件对应的分析优先度,、分别表示为设定的重要度、被关联运行指标数量对应的权重因子,其中隐患发电部件在发电过程中的重要度和被关联的运行指标数量对分析优先度的影响均为正影响。
73.第四步、将各隐患发电部件按照分析优先度由大到小的顺序进行排序,得到各隐患发电部件的分析顺序。
74.本发明在当隐患发电部件的数量不止一个时对各隐患发电部件的分析顺序进行
智能排布,从而依据排布顺序进行隐患发电部件异常运行分析,在一定程度上减少了运行故障原因的分析时间,进一步加强了运行故障原因的预测效率,具有一定的实用性价值。
75.(7)对隐患发电部件对应的运行温度和运行状态图像进行解析,预测故障运行指标的故障原因,并将其进行后台显示。
76.上述中预测故障运行指标的故障原因具体参照如下步骤:(71)将隐患发电部件对应的运行状态图像与参考信息库中隐患发电部件对应的正常运行状态图像进行对比,识别是否存在异常,若存在异常,则预测故障运行指标的故障原因为隐患发电部件的运行状态存在异常。
77.(72)将隐患发电部件对应的运行温度与参考信息库中隐患发电部件对应的适宜运行温度区间进行对比,若隐患发电部件对应的运行温度不处于适宜运行温度区间内,则预测故障运行指标的故障原因为隐患发电部件的运行温度存在异常。
78.本发明在进行隐患发电部件异常运行分析时充分考虑到运行状态异常和运行温度异常均有可能造成运行故障,由此从以上两个方面进行综合分析,使得隐患发电部件异常运行的分析维度更加全面,实现了分析范围的扩展,在一定程度上减少了无法预测出运行故障原因的发生率,从而能够有效实现运行故障分析目的。
79.实施例2:参照图2所示,本发明提供基于人工智能的风力发电机组故障智能分析系统,包括以下模块:运行指标关联发电部件统计获取模块,与参考信息库连接,用于将待进行运行故障分析的风力发电机组记为指定风力发电机组,并统计指定风力发电机组存在的运行指标数量,同时从参考信息库中调取各运行指标对应的关联发电部件。
80.指定风力发电机组监测设备设置模块,用于在指定风力发电机组外部分别设置风速风向仪和环境监测终端,并在指定风力发电机组机舱内布设微型红外热像仪和监控终端。
81.风能环境监测分析模块,分别与指定风力发电机组监测设备设置模块和参考信息库连接,用于在指定风力发电机组运行过程中通过风速风向仪和环境监测终端按照设定的采集时间间隔采集指定风力发电机组所处位置的风力参数和外界环境参数,以此分析指定风力发电机组所处位置在各采集时刻的风能环境品质系数。
82.指定风力发电机组正常运行指标预估模块,分别与风能环境监测分析模块和参考信息库连接,用于基于指定风力发电机组所处位置在各采集时刻的风能环境品质系数预估指定风力发电机组在各采集时刻对应各运行指标的正常值。
83.参考信息库,用于存储各运行指标对应的关联发电部件,存储指定风力发电机组处于正常运行状态下的外界环境参数,存储指定风力发电机组在额定发电状态下的需求风能环境品质系数,存储指定风力发电机组对应各运行指标的额定值及各运行指标在各风能环境品质偏差等级下的正常值,并存储指定风力发电机组中各发电部件对应的正常运行状态图像、适宜运行温度区间及其对应的重要度。
84.热图表征库,与隐患发电部件运行信息获取模块连接,用于存储各种颜色对应的温度。
85.指定风力发电机组运行故障判断模块,与指定风力发电机组正常运行指标预估模块连接,用于在各采集时刻监测指定风力发电机组对应各运行指标的实际值,并将其与该采集时刻对应各运行指标的正常值进行对比,以此判断指定风力发电机组是否存在运行故
障,若判断存在运行故障,则识别故障运行时刻和故障运行指标。
86.隐患发电部件运行信息获取模块,分别与运行指标关联发电部件统计获取模块、指定风力发电机组监测设备设置模块和指定风力发电机组运行故障判断模块连接,用于根据故障运行指标获取故障运行指标对应的关联发电部件,将其记为隐患发电部件,与此同时获取隐患发电部件的运行温度和运行状态图像。
87.故障运行指标故障原因预测显示终端,分别与隐患发电部件运行信息获取模块和参考信息库连接,用于对隐患发电部件对应的运行温度和运行状态图像进行解析,预测故障运行指标的故障原因,并将故障运行指标的故障原因进行后台显示。
88.以上内容仅仅是对本发明结构所作的举例和说明,所属本技术领域的技术人员对所描述的具体实施例做各种各样的修改或补充或采用类似的方式替代,只要不偏离发明的结构或者超越本权利要求书所定义的范围,均应属于本发明的保护范围。
再多了解一些

本文用于创业者技术爱好者查询,仅供学习研究,如用于商业用途,请联系技术所有人。

发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表

相关文献