一种残膜回收机防缠绕挑膜装置的制 一种秧草收获机用电力驱动行走机构

一种生态环境监测系统稳定性监控方法与流程

2022-11-23 15:15:21 来源:中国专利 TAG:


1.本发明涉及采集通信故障诊断技术领域,尤其涉及一种生态环境监测系统稳定性监控方法。


背景技术:

2.数据采集通信是监测系统的重要组成部分。在环境监测系统中,不可避免的会遇到采集时延、数据丢包和设备离线等导致数据异常的情况,而这种情况发生后,用户往往无法精准的定位问题所在阶段,进而无法在短时间内有效的解决发生的问题,影响监测系统的整体运行。


技术实现要素:

3.本发明要解决的技术问题是:为了解决监测系统数据异常情况下,用户经常出现问题定位不清晰的问题,本发明提供了一种生态环境监测系统稳定性监控方法来解决上述问题。
4.本发明解决其技术问题所采用的技术方案是:一种生态环境监测系统稳定性监控方法,包括以下步骤:
5.s1、确定分析模式,若分析模式为通信分析则获取一历史时长t1内的若干通信数据,进入步骤s2;若分析模式为采集分析则获取一历史时长t2内的若干采集数据,进入步骤s3;
6.s2、所述通信数据包括子通信时段的理论耗时t
11
、一次采集成功次数m1、多次采集成功次数m2和采集离线次数m3,根据以下公式计算理论通信次数ms和实际采集次数m0:
[0007][0008]
m0=m1 m2 m3;
[0009]
对比理论通信次数ms和实际采集次数m0,若理论通信次数ms和实际采集次数m0相同则分析结束,否则进入步骤s4;
[0010]
s3、根据所述采集数据的性质确定对应的算法分析模板,基于算法分析模板对所述采集数据进行数据分析并生成分析结果,根据分析结果确定问题时段和问题设备;
[0011]
s4、获取所述历史时长t1内所有子通信时段的首尾时间节点时刻,所述首尾时间节点时刻包括开始时刻t0和结束时刻t1,根据以下公式计算所有子通信时段的实际耗时t
12

[0012]
t
12
=t
1-t0;
[0013]
将实际耗时t
12
与理论耗时t
11
对比,若实际耗时t
12
大于理论耗时t
11
则进入步骤s5;
[0014]
s5、获取此实际耗时t
12
对应子通信时段的环节节点时刻,根据所述环节节点时刻计算子通信时段的各个子环节耗时,再将子环节耗时与子环节理论耗时比对,将子环节耗时大于子环节理论耗时的子环节记为问题环节并记录反馈。
[0015]
作为优选,步骤s5具体包括以下步骤:
[0016]
s501、判断通信模式,若通信模式为轮询模式则进入步骤s502,若通信模式为主动上报模式则进入步骤s503;
[0017]
s502、获取实际耗时t
12
对应子通信时段的环节节点时刻,轮询模式下的环节节点时刻包括轮询请求时刻t
31
、轮询请求接收时刻t
32
、数据发送时刻t
33
、数据接收时刻t
34
和入库完成时刻t
35
,轮询模式下的所述子环节耗时包括下行时长v1、请求处理时长v2、上行时长v3和入库时长v4,根据以下公式计算子环节耗时:
[0018]v1
=t
32-t
31

[0019]v2
=t
33-t
32

[0020]v3
=t
34-t
33

[0021]v4
=t
35-t
34

[0022]
将各个子环节耗时与对应的子环节理论耗时对比,将子环节耗时大于子环节理论耗时的子环节记为问题环节并记录反馈;
[0023]
s503、获取实际耗时t
12
对应子通信时段的环节节点时刻,主动上报模式下的环节节点时刻包括数据发送时刻t
41
、数据接收时刻t
42
、回应包接收时刻t
43
和入库完成时刻t
44
,轮询模式下的所述子环节耗时包括上行时长v5、下行时长v6和入库时长v7,根据以下公式计算子环节耗时:
[0024]v5
=t
42-t
41

[0025]v6
=t
43-t
42

[0026]v7
=t
44-t
43

[0027]
将各个子环节耗时与对应的子环节理论耗时对比,将子环节耗时大于子环节理论耗时的子环节记为问题环节并记录反馈。
[0028]
作为优选,步骤s3具体包括以下步骤:
[0029]
s301、获取若干个连续的所述采集数据,并根据所述采集数据的性质确定对应的算法分析模板;
[0030]
s302、基于算法分析模板对所述采集数据进行数据分析,生成分析结果;
[0031]
s303、若分析结果正常则结束此次跟踪,若分析结果不正常则等待接收问题时段和问题设备。
[0032]
作为优选,在步骤s301中,所述算法分析模板包括毛刺分析模板和环比分析模板;
[0033]
所述毛刺分析模板通过增长率s
mc
进行数据分析,所述增长率s
mc
通过以下公式来确定:
[0034][0035]
式中,pi为第i个采集数据,n为采集数据的个数,s
mc_i
为第i个采集数据的增长率s
mc

[0036]
在步骤s302中,若s
mc_i
满足预设的合理增长率范围(-α, α)则分析结果为正常,若s
mc_i
不满足预设的合理增长率范围(-α, α)则分析结果为不正常;
[0037]
在步骤s303中,将所有分析结果不正常的增长率s
mc_i
对应的采集数据pi所处的时间段记为问题时段并将获取所述采集数据的设备即为问题设备,反馈所述问题时段和问题
设备;
[0038]
所述骤增分析模板通过波动率q
zz
进行数据分析,所述波动率q
zz
通过一下公式来确定:
[0039][0040]
式中,qi为第i个采集数据,q
zz_i
为第i个采集数据的波动率;
[0041]
在步骤s302中,若波动率q
zz_i
满足预设的合理波动率范围(-β, β)则分析结果为正常,若波动率q
zz_i
不满足预设的合理波动率范围(-β, β)则分析结果为不正常;
[0042]
在步骤s303中,将所有分析结果不正常的波动率q
zz_i
对应的采集数据qi所处的时间段记为问题时段并将获取所述采集数据的设备即为问题设备,反馈所述问题时段和问题设备;
[0043]
所述环比分析模板通过偏差值d进行数据分析,所述偏差值d通过以下公式来确定:
[0044]di
=|c
i-n|(1≤i≤n;i∈z);
[0045]
式中:
[0046]ci
为第i个时段的采集数据,di为第i个时段的采集数据对应的偏差值,n为基准数据;
[0047]
在步骤s302中,若di不大于预设的最大偏差值d
max
则分析结果为正常,若di大于预设的最大偏差值d
max
则分析结果为不正常;
[0048]
在步骤s303中,将所有分析结果不正常的偏差值di对应的时段记为问题时段并将获取所述采集数据的设备即为问题设备,反馈所述问题时段和问题设备。
[0049]
作为优选,步骤s303后还包括步骤s304、生成并派发检修日志,所述检修日志包括问题设备和问题时段。
[0050]
本发明的有益效果是,这种生态环境监测系统稳定性监控方法,通过对关键时间的计算对通信过程进行层层剖解,能够快速精确的确定问题发生的环节,极大得提高了问题的定位效率。
附图说明
[0051]
下面结合附图和实施例对本发明进一步说明。
[0052]
图1是本发明一种生态环境监测系统稳定性监控方法的最优实施例的流程图。
具体实施方式
[0053]
下面详细描述本发明的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,仅用于解释本发明,而不能理解为对本发明的限制。
[0054]
在本发明的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”“内”、“外”、“轴向”、“径向”、“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以
特定的方位构造和操作,因此不能理解为对本发明的限制。
[0055]
此外,术语“第一”、“第二”等仅用于描述目的,而不能理解为指示或暗示相对重要性。在本发明的描述中,需要说明的是,除非另有明确的规定和限定,术语“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本发明中的具体含义。此外,在本发明的描述中,除非另有说明,“多个”的含义是两个或两个以上。
[0056]
流程图中或在此以其他方式描述的任何过程或方法描述可以被理解为,表示包括一个或更多个用于实现特定逻辑功能或过程的步骤的可执行指令的代码的模块、片段或部分,并且本发明的优选实施方式的范围包括另外的实现,其中可以不按所示出或讨论的顺序,包括根据所涉及的功能按基本同时的方式或按相反的顺序,来执行功能,这应被本发明的实施例所属技术领域的技术人员所理解。
[0057]
这种云服务器的实体结构,包括cpu、rom、ram、键盘、鼠标、显示器、网络接口和usb接口,cpu电连接rom、ram、键盘、鼠标、显示器、网络接口和usb接口,rom存储云数据库中的各种数据、内容备选库中的各种数据、用于控制云服务器的计算机程序、各种设置、初始值等,ram被用作加载各种计算机程序的工作区域或暂时存储标识号的存储区域。
[0058]
如图1所示,本发明提供了一种生态环境监测系统稳定性监控方法,包括以下步骤:
[0059]
s1、确定分析模式,若分析模式为通信分析则获取一历史时长t1内的若干通信数据,进入步骤s2;若分析模式为采集分析则获取一历史时长t2内的若干采集数据,进入步骤s3;
[0060]
s2、所述通信数据包括子通信时段的理论耗时t
11
、一次采集成功次数m1、多次采集成功次数m2和采集离线次数m3,根据以下公式计算理论通信次数ms和实际采集次数m0:
[0061][0062]
m0=m1 m2 m3;
[0063]
对比理论通信次数ms和实际采集次数m0,若理论通信次数ms和实际采集次数m0相同则分析结束,否则进入步骤s4;
[0064]
s3、根据所述采集数据的性质确定对应的算法分析模板,基于算法分析模板对所述采集数据进行数据分析并生成分析结果,根据分析结果确定问题时段和问题设备,具体包括以下步骤:
[0065]
s301、获取若干个连续的所述采集数据,并根据所述采集数据的性质确定对应的算法分析模板;本实施例中,所述算法分析模板包括毛刺分析模板和环比分析模板;
[0066]
所述毛刺分析模板通过增长率s
mc
进行数据分析,所述增长率s
mc
通过以下公式来确定:
[0067][0068]
式中,p为采集数据,pi为第i个采集数据,n为采集数据的个数,s
mc_i
为第i个采集数据的增长率s
mc

[0069]
所述骤增分析模板通过波动率q
zz
进行数据分析,所述波动率q
zz
通过一下公式来确定:
[0070][0071]
式中,qi为第i个采集数据,q
i-1
为第i-1个采集数据,q
zz_i
为第i个采集数据的波动率;
[0072]
在步骤s302中,若波动率q
zz_i
满足预设的合理波动率范围(-β, β)则分析结果为正常,若波动率q
zz_i
不满足预设的合理波动率范围(-β, β)则分析结果为不正常;
[0073]
在步骤s303中,将所有分析结果不正常的波动率q
zz_i
对应的采集数据qi所处的时间段记为问题时段并将获取所述采集数据的设备即为问题设备,反馈所述问题时段和问题设备;
[0074]
在本实施例中,骤增分析用于容易突然增加并在增加后稳定不变的类型的数据;假设之前的若干采集数据均稳定在采集数据q
i-1
附近,若波动率q
zz_i
满足预设的合理波动率范围(-β, β)则表示采集数据qi一直稳定在采集数据q
i-1
附近,此时可以直接将对应的采集数据qi作为实时数据展示;若波动率q
zz_i
不满足预设的合理波动率范围(-β, β)则表示采集数据qi不再稳定在采集数据q
i-1
附近,出现了骤变,此时以上一次的被稳定值q
i-n
作为实时数据展示;
[0075]
当采集数据qi未稳定在采集数据q
i-1
附近时,若下一个采集数据q
i 1
的波动率q
zz_i 1
满足合理波动率范围(-β, β)则将采集数据q
i 1
作为实时数据显示;若下一个采集数据q
i 1
的波动率q
zz_i 1
仍然不满足合理波动率范围(-β, β)则仍然将采集数据q
i-1
作为实时数据展示;
[0076]
所述环比分析模板通过偏差值d进行数据分析,所述偏差值d通过以下公式来确定:
[0077]di
=|c
i-n|(1≤i≤n;i∈z);
[0078]
式中:
[0079]ci
为第i个时段的采集数据,di为第i个时段的采集数据对应的偏差值,n为基准数据;
[0080]
s302、基于算法分析模板对所述采集数据进行数据分析,生成分析结果;
[0081]
在毛刺分析模板中,若s
mc_i
满足预设的合理增长率范围(-α, α)则分析结果为正常,若s
mc_i
不满足预设的合理增长率范围(-α, α)则分析结果为不正常;
[0082]
在环比分析模板中,若di不大于预设的最大偏差值d
max
则分析结果为正常,若di大于预设的最大偏差值d
max
则分析结果为不正常;
[0083]
s303、若分析结果正常则结束此次跟踪,若分析结果不正常则等待接收问题时段和问题设备;
[0084]
在毛刺分析模板中,将所有分析结果不正常的增长率s
mc_i
对应的采集数据pi所处的时间段记为问题时段并将获取所述采集数据的设备即为问题设备,反馈所述问题时段和问题设备;
[0085]
在环比分析模板中,将所有分析结果不正常的偏差值di对应的时段记为问题时段并将获取所述采集数据的设备即为问题设备,反馈所述问题时段和问题设备;
[0086]
s304、生成并派发检修日志,所述检修日志包括问题设备和问题时段;
[0087]
s4、获取所述历史时长t1内所有子通信时段的首尾时间节点时刻,所述首尾时间节点时刻包括开始时刻t0和结束时刻t1,根据以下公式计算所有子通信时段的实际耗时t
12

[0088]
t
12
=t
1-t0;
[0089]
将实际耗时t
12
与理论耗时t
11
对比,若实际耗时t
12
大于理论耗时t
11
则进入步骤s5;
[0090]
s5、获取此实际耗时t
12
对应子通信时段的环节节点时刻,根据所述环节节点时刻计算子通信时段的各个子环节耗时,再将子环节耗时与子环节理论耗时比对,将子环节耗时大于子环节理论耗时的子环节记为问题环节并记录反馈,具体包括以下步骤:
[0091]
s501、判断通信模式,若通信模式为轮询模式则进入步骤s502,若通信模式为主动上报模式则进入步骤s503;
[0092]
s502、获取实际耗时t
12
对应子通信时段的环节节点时刻,轮询模式下的环节节点时刻包括轮询请求时刻t
31
、轮询请求接收时刻t
32
、数据发送时刻t
33
、数据接收时刻t
34
和入库完成时刻t
35
,轮询模式下的所述子环节耗时包括下行时长v1、请求处理时长v2、上行时长v3和入库时长v4,根据以下公式计算子环节耗时:
[0093]v1
=t
32-t
31

[0094]v2
=t
33-t
32

[0095]v3
=t
34-t
33

[0096]v4
=t
35-t
34

[0097]
将各个子环节耗时与对应的子环节理论耗时对比,将子环节耗时大于子环节理论耗时的子环节记为问题环节并记录反馈;
[0098]
s503、获取实际耗时t
12
对应子通信时段的环节节点时刻,主动上报模式下的环节节点时刻包括数据发送时刻t
41
、数据接收时刻t
42
、回应包接收时刻t
43
和入库完成时刻t
44
,轮询模式下的所述子环节耗时包括上行时长v5、下行时长v6和入库时长v7,根据以下公式计算子环节耗时:
[0099]v5
=t
42-t
41

[0100]v6
=t
43-t
42

[0101]v7
=t
44-t
43

[0102]
将各个子环节耗时与对应的子环节理论耗时对比,将子环节耗时大于子环节理论耗时的子环节记为问题环节并记录反馈。
[0103]
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对所述术语的示意性表述不一定指的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
[0104]
以上述依据本发明的理想实施例为启示,通过上述的说明内容,相关工作人员完全可以在不偏离本项发明技术思想的范围内,进行多样的变更以及修改。本项发明的技术性范围并不局限于说明书上的内容,必须要根据权利要求范围来确定其技术性范围。
再多了解一些

本文用于创业者技术爱好者查询,仅供学习研究,如用于商业用途,请联系技术所有人。

发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表

相关文献