一种残膜回收机防缠绕挑膜装置的制 一种秧草收获机用电力驱动行走机构

锂二次电池的制造方法以及锂二次电池的充电方法与流程

2022-11-13 13:55:16 来源:中国专利 TAG:


1.本发明涉及锂二次电池的制造方法以及锂二次电池的充电方法。
2.本技术基于2020年4月9日在日本技术的特愿2020-070384号主张优先权,在此援引其内容。


背景技术:

3.能够充电的锂二次电池不仅已经在手机用途、笔记本电脑用途等的小型电源中进行实用化,而且在汽车用途、电力储存用途等的中型或大型电源中也正在推进实用化。
4.对于构成锂二次电池的负极进行了使用理论容量比作为现有负极材料的石墨更大的材料使电池性能提高的研究。作为这样的材料,与石墨同样地能够对例如锂离子进行吸留和释放的金属材料备受关注。
5.作为由金属材料形成的负极的例子,例如专利文献1记载了由作为多孔质铝合金的包含硅或锡中的至少一种的二次电池用负极活性物质构成的负极。
6.现有技术文献
7.专利文献
8.专利文献1:日本特开2011-228058号公报


技术实现要素:

9.发明所要解决的问题
10.随着锂二次电池的应用领域的扩展,锂二次电池除了作为单电池来使用以外,还以进一步高容量化或高电压化为目的而作为组电池来使用。组电池是串联或并联地组合单电池而成的电池。有时将单电池记为“电池单元”。在设想作为组电池来使用的情况下,需要抑制电池容量偏差。
11.本发明是鉴于上述情况而完成的,其目的在于:提供容量偏差小的锂二次电池的制造方法以及锂二次电池的充电方法。
12.用于解决问题的手段
13.本发明包括以下的[1]~[6]。
[0014]
[1]一种锂二次电池的制造方法,其中,上述锂二次电池具备能够对锂离子进行吸留和释放的铝负极、能够对锂离子进行吸留和释放的正极以及电解质,上述铝负极由含铝金属构成,其包括下述工序:对锂二次电池进行组装的工序;对组装后的锂二次电池进行充电的工序;在充电后至少保存4小时的工序;以及在保存的工序之后对锂二次电池的容量进行检测的工序。
[0015]
[2]根据[1]所述的锂二次电池的制造方法,其中,上述进行充电的工序为充电组装后的锂二次电池的充满电容量的10%以上的工序。
[0016]
[3]根据[1]或[2]所述的锂二次电池的制造方法,其中,上述含铝金属为非铝金属相分散地存在于铝金属相的金属。
[0017]
[4]根据[1]~[3]中任一项所述的锂二次电池的制造方法,其中,上述含铝金属由下述浸渍条件的浸渍试验测定的平均腐蚀速度为0.2mm/年以下。
[0018]
[浸渍条件]
[0019]
浸渍液:使用乙酸作为ph调节剂调节至ph3的3.5%nacl水溶液
[0020]
浸渍温度:30℃
[0021]
浸渍时间:72小时。
[0022]
[5]根据[1]~[4]中任一项所述的锂二次电池的制造方法,其中,上述含铝金属是维氏硬度为10hv~70hv。
[0023]
[6]一种锂二次电池的充电方法,其中,上述锂二次电池具备能够对锂离子进行吸留和释放的铝负极、能够对锂离子进行吸留和释放的正极以及电解质,上述铝负极由含铝金属构成,其在对锂二次电池进行了组装之后对锂二次电池进行充电,在充电后至少保存4小时,在保存后对锂二次电池的容量进行检测。
[0024]
发明效果
[0025]
根据本发明,能够提供容量偏差小的锂二次电池的制造方法以及锂二次电池的充电方法。
附图说明
[0026]
图1a是表示锂离子二次电池的一个例子的构成示意图。
[0027]
图1b是表示锂离子二次电池的一个例子的构成示意图。
具体实施方式
[0028]
本说明书中,“容量偏差小”是指由下述方法测定的放电容量维持率的值为90%~99%的范围内。
[0029]
首先,将硬币型锂二次电池在室温下静置10小时,由此使电解液充分地含浸于隔膜和正极合剂层。
[0030]
接着,在室温下进行了5小时的以1ma恒流充电至4.2v之后以4.2v恒压充电的恒流恒压充电,然后进行以1ma放电至3.0v的恒流放电,由此进行初始充放电。对放电容量进行测定,以所得到的值为“首次放电容量”(mah/g)。
[0031]
在初始充放电后,与初始充放电的条件同样地反复进行以1ma充电、以1ma放电。
[0032]
之后,对第三十次循环的放电容量(mah/g)进行测定。
[0033]
由首次放电容量和第三十次循环的放电容量,由下述式算出放电容量维持率。
[0034]
放电容量维持率(%)=第三十次循环的放电容量(mah/g)/首次放电容量(mah/g)
×
100
[0035]
<锂二次电池的制造方法>
[0036]
对本实施方式的锂二次电池的制造方法进行说明。
[0037]
以下,参照附图对锂二次电池的制造方法进行说明。此外,就以下的全部附图来说,为了便于对附图进行观察而使各构成要素的尺寸、比率等适当不同。
[0038]
由本实施方式制造的锂二次电池具备能够对锂离子进行吸留和释放的铝负极、能够对锂离子进行吸留和释放的正极以及电解质。
[0039]
作为锂二次电池,可列举出使用了电解液作为电解质的非水电解液型二次电池。另外,作为锂二次电池,可列举出使用了固体电解质作为电解质的全固态电池。
[0040]
本实施方式的锂二次电池的制造方法包括下述工序:对锂二次电池进行组装的工序;进行充电的工序;以及进行保存的工序。对各工序进行说明。
[0041]
[对锂二次电池进行组装的工序]
[0042]
图1a和图1b是表示由本实施方式制造的锂二次电池的一个例子的示意图。作为对锂二次电池进行组装的工序,以制造圆筒型的锂二次电池10的情况为例进行说明。
[0043]
首先,如图1a所示,将呈带状的一对隔膜1、一端具有正极引线21的带状的正极2和一端具有负极引线31的带状的铝负极以隔膜1、正极2、隔膜1、铝负极3的顺序层叠、卷绕,由此制成电极群4。
[0044]
正极引线21和负极引线31的材质可以适当地从镍、铜、铁、不锈钢或铝中选择。从电位方面的观点考虑,正极引线21和负极引线31优选由铝形成。
[0045]
接着,如图1b所示,将电极群4和未图示的绝缘体容纳于电池外装体5,然后密封罐底,使电解液6含浸于电极群4,在正极2与铝负极3之间配置电解质。进而,通过以顶部绝缘体7和封口体8密封电池外装体5的上部,能够制造锂二次电池10。
[0046]
作为电极群4的形状,例如可以列举出将电极群4相对于卷绕的轴在垂直方向上切断时的截面形状为圆、椭圆、长方形、呈圆角的长方形那样的柱状的形状。
[0047]
另外,作为具有这样的电极群4的锂二次电池的形状,可以采用国际电工委员会(iec)制定的对于电池的标准iec60086或jis c 8500中所规定的形状。例如,可以列举出圆筒型、方型等形状。
[0048]
此外,锂二次电池不限于上述卷绕型的构成,也可以为将正极、隔膜、金属负极、隔膜的层叠结构反复重叠而成的层叠型的构成。作为层叠型的锂二次电池,可以例示所谓的硬币型电池、纽扣型电池、纸型(或片型)电池。
[0049]
[对锂二次电池进行充电的工序]
[0050]
在以上述方法对锂二次电池进行了组装之后,使锂二次电池的铝负极吸留锂离子,进行充电。优选吸留以正极容量为基准计的充满电容量的10%以上的锂离子,更优选吸留50%以上,进一步优选吸留60%以上,特别优选吸留70%以上。
[0051]
以正极容量为基准计的充满电容量通过实验对以锂金属作为负极时的充放电容量进行确认。
[0052]
具体来说,在室温下进行了5小时的以1ma恒流充电至4.3v之后以4.3v恒压充电的恒流恒压充电,然后进行以1.0ma放电至3.0v的恒流放电,由此对充放电容量进行确认。
[0053]
对锂二次电池进行充电的工序可以吸留充满电容量的理论值的100%的锂离子,锂离子的吸留量优选为90%以下,更优选为80%以下。
[0054]
锂离子的吸留量的上述上限值和下限值可以任意组合。作为组合的例子,锂离子的吸留量可列举出充满电容量的理论值的50%~100%、60%~90%、70%~80%。
[0055]
[保存锂二次电池的工序]
[0056]
在对锂二次电池进行充电的工序之后,保存充电状态的锂二次电池至少4小时以上。
[0057]
保存时间的下限值可列举出6小时以上、15小时以上、48小时以上。
[0058]
保存时间的上限值可列举出500小时以下、400小时以下、300小时以下。
[0059]
保存时间的上限值和下限值可以任意组合。作为组合的例子,保存时间可列举出4小时~500小时、6小时~400小时、48小时~300小时。
[0060]
从削减设备投资的观点考虑,保存温度优选设定为室温(约23℃)。
[0061]
另外,从使保存工序短时间结束的观点考虑,保存温度优选设定为45℃~60℃。
[0062]
作为保存时间和保存温度的组合,可列举出以下组合。
[0063]
·
以室温(约23℃)进行100小时~300小时。
[0064]
·
以45℃~60℃进行6小时~84小时。
[0065]
可认为由在充电工序中铝负极吸留锂离子形成的铝与锂的合金层通过上述保存工序而稳定。在此,“铝与锂的合金层稳定”是指铝与锂的合金的晶体结构稳定化、抑制形成新的合金层。
[0066]
在铝与锂的合金层稳定的情况下,放电容量容易稳定。因此,通过包括保存工序,能够制造容量偏差小的锂二次电池。具体来说,通过包括保存工序,能够使放电容量维持率为90%~99%的范围内。
[0067]
另外,通过上述的保存工序,能够使充放电容量、循环特性等电池特性稳定化。
[0068]
以往,在制造使用了石墨作为负极材料的锂二次电池时,在对锂二次电池进行组装之后进行老化。
[0069]
就以往的老化来说,其目的在于:使电极表面稳定地生成sei(固体电解质界面,solid electrolyte interface)。作为现有的老化,有室温放置老化、高温放置老化。
[0070]
另一方面,在使用铝作为负极材料的情况下,充放电试验的结果无法认为首次的充电曲线的形状与第二次循环以后的充电曲线的形状有明显的差异。由此结果可认为:在使用铝作为负极材料的情况下,电极表面未生成sei覆膜。因此,在使用铝作为负极材料的情况下,通常不需要用于使电极表面生成sei覆膜的老化。
[0071]
由本发明者们的研究发现了:在使用铝作为负极材料的情况下,通过包括规定的保存工序,能够使铝与锂的合金层稳定。
[0072]
[对锂二次电池的容量进行检测的工序]
[0073]
在保存工序之后,对锂二次电池的容量进行检测。
[0074]
作为对锂二次电池的容量进行检测的工序,首先,算出相对于保存后的首次放电容量的第三十次循环的放电容量的维持率的值。
[0075]
·
首次放电容量的测定
[0076]
在室温下进行5小时的以1ma恒流充电(li吸留至铝负极)至4.2v之后以4.2v恒压充电的恒流恒压充电。
[0077]
之后,进行以1ma放电(由铝电极释放li)至3.0v的恒流放电,对首次放电容量进行测定。
[0078]
·
第三十次循环的放电容量
[0079]
在首次充放电后,反复进行以1ma充电、以1ma放电。将其反复进行三十次,对第三十次循环的放电容量进行测定。放电容量维持率由下述公式算出。
[0080]
放电容量维持率(%)=第三十次循环的放电容量(mah/g)/第一次循环的放电容量(mah/g)
×
100
[0081]
就检测工序来说,将由上述方法求出的放电容量维持率的值小于100%的情况判定为合格,将100%以上的情况判定为不合格。
[0082]
放电容量维持率的值为100%以上的情况是指放电容量在首次充放电至第三十次循环之间增加。将放电容量增加的情况设定为不合格的理由是因为,在设想了制造组电池的情况下,难以使同一容量的电池单元组合。
[0083]
进而,在放电容量维持率为90%以上且小于100%的范围内的情况下,判定为放电容量的偏差小。
[0084]
对容量进行检测的工序可以是全数检测,也可以是抽样检测。
[0085]
以下,对构成由本实施方式的制造方法制造的锂二次电池的材料进行说明。
[0086]
《铝负极》
[0087]
铝负极优选由含铝金属构成。
[0088]
铝负极优选是下述进行说明的铝负极1~3中的任一种。
[0089]
[铝负极1]
[0090]
铝负极1由含铝金属构成。含铝金属作为负极活性物质起作用。
[0091]
就铝负极1的含铝金属来说,非铝金属相分散地存在于铝金属相。
[0092]
非铝金属相是指不包含铝的金属相。
[0093]
非铝金属相优选由包含选自si、ge、sn、ag、sb、bi、in和mg中的一种以上的非铝金属化合物构成。
[0094]
非铝金属相更优选由包含选自si、ge、sn、ag、sb、bi和in中的一种以上的非铝金属化合物构成。
[0095]
非铝金属相优选由非铝金属化合物颗粒构成。
[0096]
就构成非铝金属相的非铝金属化合物来说,锂的吸留量非常大。因此,就非铝金属化合物来说,嵌入锂时的体积膨胀和脱嵌锂时的体积收缩大。由于膨胀和收缩而发生的应变发展成非铝金属化合物颗粒的断裂,发生非铝金属化合物颗粒变小的微细化。作为负极活性物质起作用的非铝金属化合物颗粒在充电或放电时微细化,成为缩短循环寿命的原因。
[0097]
铝负极1是非铝金属相分散地存在于铝金属相的金属。换言之,非铝金属化合物颗粒被能够与锂形成合金的铝覆盖。在非铝金属化合物颗粒被铝覆盖的情况下,非铝金属化合物颗粒由于变得不易断裂而不易微细化。由此,就算是反复进行了锂二次电池的充电和放电的情况下,也容易维持初始的放电容量。即,能够使锂二次电池的放电容量维持率良好。
[0098]
就铝负极1来说,非铝金属相的含有率相对于铝金属相和非铝金属相的总量优选为0.01质量%~8质量%。非铝金属相的含有率的下限值优选为0.02质量%,更优选为0.05质量%,特别优选为0.1质量%。
[0099]
非铝金属相的含有率的上限值优选为7质量%,更优选为6质量%,特别优选为5质量%。
[0100]
上述上限值和下限值可以任意组合。作为组合的例子,非铝金属相的含有率可列举出0.02质量%~7质量%、0.05质量%~6质量%、0.1质量%~5质量%。
[0101]
在非铝金属相的含有率为上述下限值以上的情况下,能够充分地确保可有助于吸
留锂的除了铝以外的金属或金属化合物。另外,在非铝金属相的含有率为上述上限值以下的情况下,铝金属相中的非铝金属相的分散状态容易变得良好。此外,在非铝金属相的含有率为上述上限值以下的情况下,轧制易于变得容易。
[0102]
另外,非铝金属相也可以包含除了si、ge、sn、ag、sb、bi、in和mg以外的任选金属。作为任选金属的例子,可列举出mn、zn、ni等。
[0103]
铝负极1优选为al-si的二元系合金、al-si-mn的三元系合金。在为三元系合金的情况下,优选各金属均匀固溶。
[0104]
此外,在非铝金属相为si的情况下,可以进一步包含sr来促进非金属铝相微细化。作为添加sr来促进si微细化的方法,可以使用轻金属第37卷第2号1987年第146-152页所述的方法。
[0105]
铝负极1优选的是:就由下述图像获取条件得到的二值化图像来说,相当于非铝金属相的面积的比例相对于相当于上述铝金属相的面积与相当于上述非铝金属相的面积之总计为10%以下。
[0106]
·
图像获取条件
[0107]
将铝负极1轧制成厚度为0.5mm的箔。与轧制方向垂直地切断箔,以1.0质量%的氢氧化钠水溶液对切断面进行蚀刻。铝金属相与非铝金属相对于氢氧化钠的溶解度是不同的。因此,通过进行蚀刻,在露出于切断面的相当于非铝相金属相的部分和相当于铝金属相的部分,由于溶解性的差异而形成凹凸的高低差。具体来说,相当于铝金属相的部分成为凸部,相当于非铝金属相的部分成为凹部。在切断面形成凹凸的高低差的情况下,后述的显微镜观察之时对比度变得清晰。
[0108]
接着,获取切断面的截面图像,对截面图像进行图像处理来得到将相当于铝金属相的凸部和相当于非铝金属相的凹部分别变换成黑色或白色的二值化图像。凹部面积相当于非铝金属相的面积。凸部面积相当于铝金属相的面积。
[0109]
截面图像例如可以使用金相显微镜来获取。就本实施方式来说,获取倍率为200倍~500倍的金相显微镜图像。另外,就显微镜观察来说,在还包括大小为1μm以下的对象物来进行观察的情况下,例如使用扫描型电子显微镜(sem)来进行观察。此时,获取倍率为10000倍的sem图像。
[0110]
作为金相显微镜,例如可以使用nikon epiphot 300。
[0111]
将所得到的上述倍率的sem图像或金相显微镜图像导入计算机,使用图像分析软件进行二值化处理。二值化处理是以图像中的最大亮度和最小亮度的中间值进行二值化的处理。通过二值化处理,例如可以得到使相当于铝金属相的部分为白、相当于非铝金属相的部分为黑的二值化图像。
[0112]
图像分析软件可以适当选择能够进行上述二值化处理的软件。具体来说,可以使用image j、photoshop、image pro plus等。
[0113]
就二值化图像来说,以相当于铝金属相的面积为s1,以相当于非铝金属相的面积为s2。
[0114]
s2与s1和s2的总计之比例(s2/[s1 s2])
×
100(%)优选为10%以下,更优选为6%以下,特别优选为3%以下。
[0115]
在s2的比例为上述上限值以下的情况下,由于非铝金属化合物被铝充分地覆盖,
因此非铝金属化合物变得更不易断裂。因而,就算是反复进行了锂二次电池的充电和放电的情况下也容易维持初始的放电容量。
[0116]
(分散状态)
[0117]
就铝负极1来说,非铝金属相分散地存在于铝金属相。在此,“非铝金属相分散地存在于铝金属相”是指非铝金属化合物相存在于铝金属母相之中的状态。
[0118]
例如,在以对厚度为0.5mm的箔状的铝负极1的截面进行了观察时所观察到的被相当于非铝金属化合物相的凹部的外周包围的形状作为一个颗粒的截面的情况下,所观察到的颗粒的个数优选一并满足下述的条件(1)和条件(2)。
[0119]
条件(1):粒径为0.1μm以上且小于100μm的非铝金属化合物颗粒的个数密度是1000个/mm2以下。
[0120]
条件(2):粒径为100μm以上的非铝金属化合物颗粒的个数密度是25个/mm2以下。
[0121]
非铝金属化合物颗粒的粒径例如由sem图像照片、金相显微镜以从固定方向引出来的平行线夹着非铝金属化合物颗粒的截面形状的投影图像的平行线之间的距离(定向直径)作为非铝金属化合物颗粒的粒径来进行测定。
[0122]
另外,“个数密度”是指在sem照片和金相显微镜照片中存在于每单位面积的非铝金属化合物颗粒的个数的密度。
[0123]
(铝负极1的制造方法)
[0124]
铝负极1优选通过包括合金的铸造工序和轧制工序的制造方法来制造。
[0125]
·
合金的铸造工序
[0126]
在进行铸造的情况下,首先向铝或高纯度铝添加规定量的构成非铝金属相的金属,得到混合物1。高纯度铝通过后述的方法得到。接着,以680℃~800℃熔融混合物1,得到铝与金属的合金熔液1。
[0127]
构成铝相的铝可以使用纯度为99.9质量%以上的铝、纯度为99.99质量%以上的高纯度铝等。
[0128]
构成非铝金属相的金属为选自si、ge、sn、ag、sb、bi、in和mg中的一种以上。构成非铝金属相的金属例如可以使用纯度为99.999质量%以上的高纯度硅。
[0129]
合金熔液1优选进行去除气体、非金属夹杂物而使之洁净的处理。
[0130]
作为使之洁净的处理,例如可以列举添加熔剂、吹入不活泼气体、氯气的处理、铝熔液的真空处理。
[0131]
真空处理例如以700℃~800℃在真空度为0.1pa~100pa的条件下进行1小时~10小时。
[0132]
经真空处理等进行了洁净的合金熔液1通常通过铸型来铸造,成为铸锭。
[0133]
铸型使用加热到50℃~200℃的铁制的铸型、石墨制的铸型。铝负极1可以通过向铸型流入680℃~800℃的合金熔液1的方法来铸造。另外,还可以通过半连续铸造来得到铸锭。
[0134]
·
轧制工序
[0135]
所得到的合金的铸锭可以直接进行切削加工而用于铝负极1。另外,优选对铸锭实施轧制加工、挤压加工或锻造加工等而制成板状。另外,更优选通过轧制加工而制成板状。
[0136]
铸锭的轧制工序例如为进行热轧和冷轧而将铸锭加工成板状的工序。
[0137]
就热轧来说,例如以温度为350℃~550℃、每一次轧制的加工率为2%~30%的条件对铸锭反复进行至使铝铸锭成为目标厚度。在此,“加工率”是指进行了轧制时的厚度的变化的比例。例如,在将厚度为1mm的板制成厚度为0.7mm的情况下,加工率为30%。
[0138]
热轧之后,根据需要可以在冷轧之前进行中间退火处理。中间退火处理例如通过下述方式进行:对热轧后的板材进行加热而使之升温,之后放冷。
[0139]
中间退火处理中的升温工序只要是升温至例如350℃~550℃的温度就行。另外,升温工序也可以将例如350℃~550℃的温度保持1小时~5小时左右。
[0140]
中间退火处理中的放冷工序还可以在升温后立即放冷。放冷工序优选放冷至20℃左右。
[0141]
放冷工序只要根据所期望的非铝金属相的大小适当调节就行。在通过急速地放冷实施放冷工序的情况下,有非铝金属相变小的倾向。另一方面,在以缓慢的冷却速度实施放冷工序的情况下,构成非铝金属相的金属的晶体结构容易生长。
[0142]
冷轧优选以低于铝的再结晶温度的温度实施。另外,优选以使每一次轧制的轧制率为1%~20%的条件反复轧制至铝铸锭成为目标厚度。冷轧的温度只要是将被轧制加工的金属的温度调节至10℃~80℃就行。
[0143]
可以在冷轧后进一步进行热处理。冷轧后的热处理通常在大气中进行,但也可以在氮气氛或真空气氛等中进行。除了能够通过热处理使加工硬化后的板材软质化以外,还有时通过控制晶体组织对各种物性、具体来说为硬度、导电率和抗拉强度进行调节。
[0144]
作为热处理条件,例如可列举出以300℃~400℃的温度热处理5小时~10小时的条件。
[0145]
铝负极1的厚度优选为5μm以上,更优选为6μm以上,进一步优选为7μm以上。另外,优选为200μm以下,更优选为190μm以下,进一步优选为180μm以下。
[0146]
铝负极1的厚度的上述上限值和下限值可以任意组合。就本实施方式来说,铝负极1的厚度优选为5μm~200μm。
[0147]
铝负极1的厚度只要使用测厚仪或游标卡尺来测定就行。
[0148]
·
铝的高纯度化方法
[0149]
在使用高纯度铝作为铝负极的材料或合金的材料的情况下,例如可以例示出偏析法和三层电解法作为使铝高纯度化的精炼方法。
[0150]
偏析法是利用了铝熔液凝固时的偏析现象的纯化法,多种方法正被实用化。作为偏析法的一个方式,存在下述方法:向容器之中注入熔液铝,一边使容器转动一边对上部的熔液铝进行加热、搅拌,并且使精炼铝自底部凝固。通过偏析法,能够得到纯度为99.99质量%以上的高纯度铝。
[0151]
三层电解法是使铝高纯度化的电解法。作为三层电解法的一个方式,存在下述方法:首先,向al-cu合金层投入纯度较低的铝等(例如纯度为99.9质量%以下的jis-h2102的特一种程度的等级)。之后,以熔融状态作为阳极,在其上配置例如包含氟化铝和氟化钡等的电解浴,使高纯度的铝析出于阴极。
[0152]
通过三层电解法能够得到纯度为99.999质量%以上的高纯度铝。
[0153]
使铝高纯度化的方法不限于偏析法、三层电解法,也可以是区熔精炼法、超高真空熔解精炼法等已知的其他方法。
[0154]
[铝负极2]
[0155]
铝负极2为含铝金属。铝负极2满足由下述浸渍条件的浸渍试验测定的平均腐蚀速度为0.2mm/年以下。
[0156]
(浸渍条件)
[0157]
将含铝金属制成了尺寸为纵40mm、横40mm、厚0.5mm的试验用金属片。
[0158]
使试验用金属片浸渍于使用乙酸作为ph调节剂并调节至ph3的3.5%nacl水溶液,72小时后取出试验用金属片。将浸渍液的液温设定为30℃。
[0159]
就腐蚀度来说,将相对于1mm2试验用金属片表面积的每天的腐蚀失重以mg数来表示。即,腐蚀度由下述式算出。质量的测定使用精密天平。
[0160]
腐蚀度=(试验用金属片的浸渍前的质量(mg)-试验用金属片的浸渍后的质量(mg))/(试验用金属片的表面积(mm2)
×
试验天数(天))
[0161]
根据下述方法,由所得到的腐蚀度算出腐蚀速度。
[0162]
腐蚀速度(mm/年)=[腐蚀度
×
365]/试验片的密度(g/cm3)
[0163]
此外,在浸渍于调节至ph3的3.5%nacl水溶液之前,可以通过乙醇等对试验用金属片进行清洗。
[0164]
铝负极2优选由下述组成式(1)表示的含铝金属形成。
[0165]
al
xm1ym2z
ꢀꢀꢀꢀ
(1)
[0166]
(式(1)中,m1为选自mg、ni、mn、zn、cd、pb中的一种以上。m2为不可避免的杂质。0质量%≤y≤8质量%,[x/(x z)]≥99.9质量%。)
[0167]
·
m1[0168]
式(1)中,m1优选为选自mg、ni、mn、zn中的一种以上。
[0169]
·y[0170]
式(1)中,y优选为0.1质量%≤y≤8.0质量%,更优选为0.5质量%≤y≤7.0质量%,特别优选为0.7质量%≤y≤6.0质量%。
[0171]
在y的范围为上述下限值以上的情况下,能够将平均腐蚀速度控制在上述范围内。另外,在y的范围为上述上限值以下的情况下,能够在铸造时的轧制工序之际不发生断裂地进行轧制。
[0172]
·
m2[0173]
式(1)中,m2为在高纯度铝的精炼工序中不可避免地混入的制造残渣等不可避免的杂质,具体来说是除了铝和m1以外的金属成分。作为不可避免的杂质,可以列举出铁、铜。
[0174]
式(1)中,z为0.1质量%以下,优选为0.05质量%以下,进一步优选为0.01质量%以下。
[0175]
式(1)中,[x/(x z)]优选为99.95%以上,更优选为99.99%以上,特别优选为99.995%以上。铝负极2包含[x/(x z)]为上述下限值以上的纯度高的铝。使铝高纯度化的精炼方法将会在后面叙述。
[0176]
有时将由式(1)表示的含铝金属之中y=0的那些记为高纯度铝。有时将由式(1)表示的含铝金属之中y超过0的那些记为高纯度铝合金。
[0177]
作为由组成式(1)表示的铝负极2,优选下述(1)~(5)中任一项的高纯度铝或高纯度铝合金。
[0178]
(1)高纯度铝-镁合金1
[0179]
其是纯度为99.999%的铝与镁的合金。含铝金属总量中的镁的含有率为0.1质量%~4.0质量%。平均腐蚀速度为0.04mm/年~0.06mm/年。
[0180]
(2)高纯度铝-镁合金2
[0181]
其是纯度为99.9%的铝与镁的合金。含铝金属总量中的镁的含有率为0.1质量%~1.0质量%。平均腐蚀速度为0.1mm/年~0.14mm/年。
[0182]
(3)高纯度铝-镍合金
[0183]
其是纯度为99.999%的铝与镍的合金。含铝金属总量中的镍的含有率为0.1质量%~1.0质量%。平均腐蚀速度为0.1mm/年~0.14mm/年。
[0184]
(4)高纯度铝-锰-镁合金
[0185]
其是纯度为99.99%的铝与锰和镁的合金。含铝金属总量中的锰与镁的总含有率为1.0质量%~2.0质量%。平均腐蚀速度为0.03mm/年~0.05mm/年。
[0186]
(5)高纯度铝
[0187]
其是纯度为99.999%的铝。平均腐蚀速度为0.05mm/年。
[0188]
(铝负极2的制造方法)
[0189]
铝负极2的制造方法分成铝负极2为高纯度铝的铝负极2的制造方法1和作为高纯度铝合金的铝负极2的制造方法2来进行说明。
[0190]
制造方法1和制造方法2首先使铝高纯度化。作为使铝高纯度化的方法,可列举出在上述(铝负极1的制造方法)中进行了说明的铝的高纯度化方法。
[0191]
就算是通过铝的高纯度化方法进行了高纯度化的情况下,有时也会混合制造残渣等杂质。就制造方法1和制造方法2来说,例如铝中所含的铁和铜的总含有率优选为100ppm以下,更优选为80ppm以下,进一步优选为50ppm以下。
[0192]
·
制造方法1
[0193]
制造方法1优选包括高纯度铝的铸造工序和轧制工序。
[0194]
··
铸造工序
[0195]
对通过上述方法进行了高纯度化的铝进行铸造,能够得到适合轧制的形状的铝铸锭。
[0196]
在进行铸造的情况下,例如以约680℃~800℃熔融高纯度铝,得到铝熔液。
[0197]
铝熔液优选进行去除气体、非金属夹杂物而使之洁净的处理。作为使之洁净的处理,可列举出与在铝负极1中进行了说明的使之洁净的处理相同的方法。
[0198]
洁净后的铝熔液通过使用铸型进行铸造,成为铸锭。
[0199]
作为铸型,使用加热至50℃~200℃的铁制铸型、石墨制铸型。铝负极2可以通过向铸型流入680℃~800℃的铝熔液的方法来铸造。另外,也可以通过半连续铸造得到铸锭。
[0200]
··
轧制工序
[0201]
所得到的铝的铸锭可以直接进行切削加工而用于铝负极2。就本实施方式来说,优选对铝的铸锭实施轧制加工、挤压加工或锻造加工等而制成板材。另外,就本实施方式来说,更优选进行轧制加工。
[0202]
轧制工序可以通过与在铝负极1的制造方法中进行了说明的轧制工序相同的方法来进行实施。
[0203]
·
制造方法2
[0204]
制造方法2优选包括高纯度铝合金的铸造工序和轧制工序。
[0205]
··
铸造工序
[0206]
在进行铸造的情况下,首先向高纯度铝添加规定量的金属元素,得到混合物2。接着,以680℃~800℃熔融混合物2,得到铝与金属的合金熔液2。
[0207]
所添加的金属元素优选选自mg、ni、mn、zn、cd、pb中的一种以上。包括所添加的这些元素在内的金属优选纯度为99质量%以上。
[0208]
除了使用合金熔液2以外,通过与铝负极1的制造方法中的铸造工序相同的方法得到高纯度铝合金铸锭。
[0209]
··
轧制工序
[0210]
通过与上述铝负极2的制造方法1相同的方法来进行轧制工序。
[0211]
铝负极2的厚度优选5μm以上,更优选6μm以上,进一步优选为7μm以上。另外,优选为200μm以下,更优选为190μm以下,进一步优选为180μm以下。
[0212]
铝负极2的厚度的上述上限值和下限值可以任意组合。就本实施方式来说,铝负极2的厚度优选为5μm~200μm。
[0213]
[铝负极3]
[0214]
铝负极3为含铝金属。
[0215]
铝负极3的维氏硬度优选为10hv~70hv,更优选为20hv~70hv,进一步优选为30hv~70hv,特别优选为35hv~55hv。
[0216]
在铝负极3吸留锂的情况下,有时在构成铝负极的金属的晶体结构中发生应变。
[0217]
在维氏硬度为上述上限值以下的情况下,推测能够在铝负极3吸留了锂之际缓和晶体结构的应变而能够维持晶体结构。因此,使用了铝负极3的锂二次电池就算是反复进行了充电和放电的情况下也能够维持放电容量。
[0218]
维氏硬度使用由下述方法测得的值。
[0219]
[测定方法]
[0220]
作为铝负极3的硬度的指标,使用显微维氏硬度计来测定维氏硬度(hv0.05)。
[0221]
维氏硬度是根据jis z2244:2009“维氏硬度试验-试验方法”测定的值。就维氏硬度的测定来说,对铝负极3将正四棱锥的金刚石压头压入试验片的表面,解除了其试验力,然后由残留于表面的凹坑的对角线长度算出。
[0222]
上述标准中规定了根据试验力来改变硬度符号。就本实施方式来说,例如是试验力为0.05kgf(=0.4903n)时的显微维氏硬度hv0.05。
[0223]
铝负极1也可以具备铝负极2的性质。
[0224]
具体来说,铝负极1优选由上述浸渍条件的浸渍试验测定的平均腐蚀速度满足0.2mm/年以下。
[0225]
铝负极1也可以具备铝负极3的性质。
[0226]
具体来说,铝负极1优选维氏硬度满足10hv~70hv。
[0227]
铝负极1也可以具备铝负极2和铝负极3的性质。
[0228]
具体来说,铝负极1优选由上述浸渍条件的浸渍试验测定的平均腐蚀速度满足0.2mm/年以下、维氏硬度满足10hv~70hv。
[0229]
铝负极2也可以具备铝负极3的性质。
[0230]
具体来说,铝负极2优选维氏硬度满足10hv~70hv。
[0231]
[铝负极的成分分析]
[0232]
铝负极的成分分析可以使用发射光谱分析装置来进行。由此,可以对含铝金属中的金属元素的量进行定量。
[0233]
作为发射光谱分析装置,例如可以使用型号:arl-4460、特莫费希尔科学公司制。此外,金属元素可以通过辉光放电质量分析装置进行更精密的定量。
[0234]
(负极集电体)
[0235]
在铝负极使用负极集电体的情况下,负极集电体的材料可以列举出以cu、ni、不锈钢等金属材料为形成材料的带状的部件。其中,从不易与锂形成合金、容易加工这样的观点考虑,优选以cu为形成材料并加工成薄膜状的材料。
[0236]
作为使负极合剂担载于这样的负极集电体的方法,可以列举出:基于加压成型的方法、使用溶剂等进行糊化并涂布在负极集电体上、干燥后压制压接的方法。
[0237]
《正极》
[0238]
正极具有正极活性物质。
[0239]
正极活性物质可以使用含锂化合物或其他金属化合物。作为含锂化合物,例如可以列举出具有层状结构的锂钴复合氧化物、具有层状结构的锂镍复合氧化物、具有尖晶石结构的锂锰复合氧化物和具有橄榄石型结构的磷酸铁锂。
[0240]
另外,作为其他金属化合物,例如可以列举出氧化钛、氧化钒或二氧化锰等氧化物或者硫化钛或硫化钼等硫化物。
[0241]
(导电材料)
[0242]
作为导电材料,可以使用碳材料。碳材料可以列举出石墨粉末、炭黑(例如乙炔黑)、纤维状碳材料等。炭黑为微粒而表面积大,因此通过向正极合剂中少量添加就能够提高正极内部的导电性,使充放电效率和功率特性提高。
[0243]
正极合剂中的导电材料的比例相对于100质量份正极活性物质优选为5质量份~20质量份。在使用石墨化碳纤维、碳纳米管等纤维状碳材料作为导电材料的情况下,也可以降低该比例。
[0244]
(粘结剂)
[0245]
作为粘结剂,可以使用热塑性树脂。作为该热塑性树脂,可以列举出:聚偏氟乙烯(以下有时称为pvdf)、聚四氟乙烯(以下有时称为ptfe)、四氟乙烯-六氟丙烯-偏氟乙烯系共聚物、六氟丙烯-偏氟乙烯系共聚物、四氟乙烯-全氟乙烯基醚系共聚物等含氟树脂;聚乙烯、聚丙烯等聚烯烃树脂。
[0246]
这些热塑性树脂可以混合两种以上来使用。通过使用含氟树脂和聚烯烃树脂作为粘结剂并使含氟树脂与正极合剂整体的比例为1质量%~10质量%、聚烯烃树脂与正极合剂整体的比例为0.1质量%~2质量%,能够得到与正极集电体的密合力以及正极合剂内部的结合力均高的正极合剂。
[0247]
(正极集电体)
[0248]
作为正极集电体,可以使用以al、ni、不锈钢等金属材料为形成材料的带状的部件。其中,从容易加工且廉价这样的观点考虑,优选以al为形成材料并加工成薄膜状的正极
集电体。
[0249]
作为使正极合剂担载于正极集电体的方法,可以列举出将正极合剂在正极集电体上加压成型的方法。另外,可以使用有机溶剂使正极合剂糊化,将所得到的正极合剂的糊涂布在正极集电体的至少一面侧并使之干燥,压制固着,由此使正极合剂担载于正极集电体。
[0250]
在使正极合剂糊化的情况下,可以使用的有机溶剂可以列举出:n,n-二甲基氨基丙胺、二乙烯三胺等胺系溶剂;四氢呋喃等醚系溶剂;甲乙酮等酮系溶剂;乙酸甲酯等酯系溶剂;二甲基乙酰胺、n-甲基-2-吡咯烷酮等酰胺系溶剂。
[0251]
作为将正极合剂的糊向正极集电体涂布的方法,例如可以列举出:缝模涂覆法、丝网涂覆法、帘式涂覆法、刮刀涂覆法、凹版涂覆法和静电喷涂法。
[0252]
可以通过以上所列举的方法来制造正极。
[0253]
(电解质)
[0254]
锂二次电池所具有的电解质可以为液系电解质,也可以为固体电解质。作为液系电解质,可列举出含有电解质和有机溶剂的电解液。
[0255]
·
电解液
[0256]
作为电解液中所含的电解质,可列举出:liclo4、lipf6、liasf6、lisbf6、libf4、licf3so3、lin(so2cf3)2、lin(so2c2f5)2、lin(so2cf3)(cocf3)、li(c4f9so3)、lic(so2cf3)3、li2b
10
cl
10
、libob(在此,bob为双(乙二酸)硼酸根)、lifsi(在此,fsi为双(氟磺酰)亚胺)、低级脂肪族羧酸锂盐、lialcl4等锂盐,也可以使用它们中的两种以上的混合物。其中,电解质优选使用包含选自含氟的lipf6、liasf6、lisbf6、libf4、licf3so3、lin(so2cf3)2和lic(so2cf3)3中的至少一种的电解质。
[0257]
另外,作为电解液中所含的有机溶剂,例如可以使用下述物质:碳酸亚丙酯、碳酸亚乙酯、碳酸二甲酯、碳酸二乙酯、碳酸乙甲酯、4-三氟甲基-1,3-二氧戊环-2-酮、1,2-二(甲氧基羰氧基)乙烷等碳酸酯类;1,2-二甲氧基乙烷、1,3-二甲氧基丙烷、五氟丙基甲醚、2,2,3,3-四氟丙基二氟甲醚、四氢呋喃、2-甲基四氢呋喃等醚类;甲酸甲酯、乙酸甲酯、丙酸丙酯和γ-丁内酯等酯类;乙腈、丁腈等腈类;n,n-二甲基甲酰胺、n,n-二甲基乙酰胺等酰胺类;3-甲基-2-噁唑烷酮等氨基甲酸酯类;环丁砜、二甲基亚砜、1,3-丙烷磺内酯等含硫化合物;或者向这些有机溶剂进一步导入氟基而得到的物质(有机溶剂所具有的氢原子之中的一个以上被氟原子取代而得到的物质)。
[0258]
作为有机溶剂,优选将它们之中的两种以上混合来使用。其中,优选包含碳酸酯类的混合溶剂,更优选环状碳酸酯与非环状碳酸酯的混合溶剂和环状碳酸酯与醚类的混合溶剂。作为环状碳酸酯与非环状碳酸酯的混合溶剂,优选包含碳酸亚乙酯、碳酸二甲酯和碳酸乙甲酯的混合溶剂。使用了这样的混合溶剂的电解液具有下述众多特长:工作温度范围宽,就算是进行高电流速率下的充放电也不易劣化,就算是长时间使用也不易劣化,并且就算是使用了天然石墨、人造石墨等石墨材料作为负极活性物质的情况下也为难分解性。
[0259]
另外,作为电解液,为了提高所得到的锂二次电池的安全性而优选使用包含lipf6等含氟的锂盐和具有氟取代基的有机溶剂的电解液。包含五氟丙基甲醚、2,2,3,3-四氟丙基二氟甲醚等具有氟取代基的醚类和碳酸二甲酯的混合溶剂就算是进行高电流速率下的充放电,容量维持率也高,因此更优选。
[0260]
电解液还可以包含三(三甲基硅基)磷酸酯和三(三甲基硅基)硼酸酯等添加物。
[0261]
·
固体电解质
[0262]
作为固体电解质,例如可以使用聚环氧乙烷系高分子化合物、包含聚有机硅氧烷链或聚氧亚烷基链中的至少一种以上的高分子化合物等有机系高分子电解质。另外,也可以使用使非水电解液保持于高分子化合物而成的所谓凝胶类型的电解质。此外,可以列举出包含li2s-sis2、li2s-ges2、li2s-p2s5、li2s-b2s3、li2s-sis
2-li3po4、li2s-sis
2-li2so4、li2s-ges
2-p2s5等硫化物的无机系固体电解质,也可以使用它们中的两种以上的混合物。通过使用这些固体电解质,有时能够进一步提高锂二次电池的安全性。
[0263]
另外,在使用固体电解质的情况下还有时固体电解质发挥隔膜的作用,在该情况下也有可能不需要隔膜。
[0264]
(隔膜)
[0265]
在锂二次电池具有隔膜的情况下,隔膜例如可以使用由聚乙烯、聚丙烯之类的聚烯烃树脂、含氟树脂、含氮芳香族聚合物等材质形成的具有多孔质膜、无纺布、有纺布等形态的材料。另外,这些材质可以使用两种以上来形成隔膜,也可以将这些材料层叠来形成隔膜。
[0266]
隔膜为了在使用电池时(充放电时)使电解质良好地透过而使基于由jis p 8117规定的葛尔莱法的透气阻力度优选为50秒/100cc~300秒/100cc、更优选为50秒/100cc~200秒/100cc。
[0267]
另外,就隔膜的孔隙率来说,优选为30体积%~80体积%,更优选为40体积%~70体积%。隔膜可以是将孔隙率不同的隔膜层叠而成的隔膜。
[0268]
<锂二次电池的充电方法>
[0269]
本实施方式为锂二次电池的充电方法。
[0270]
就本实施方式的锂二次电池的充电方法来说,在对锂二次电池进行了组装之后,充电锂二次电池的充满电容量的10%以上,并且在充电后至少保存4小时。进而,在保存后对锂二次电池的容量进行检测。
[0271]
就锂二次电池的充电方法来说,和对锂二次电池进行组装的方法、对锂二次电池进行充电的方法、保存锂二次电池的方法和对锂二次电池的容量进行检测的方法相关的说明与上述本实施方式的和锂二次电池的制造方法相关的说明是相同的。
[0272]
就本实施方式来说,和充电的锂二次电池相关的说明与和由上述本实施方式的制造方法制造的锂二次电池相关的说明是相同的。
[0273]
作为一个侧面,本发明还包括以下方案。
[0274]
(1-1)
[0275]
一种锂二次电池的制造方法,其中,上述锂二次电池具备能够对锂离子进行吸留和释放的铝负极、能够对锂离子进行吸留和释放的正极以及电解质,上述铝负极由含铝金属构成,其包括下述工序:对锂二次电池进行组装的工序;将组装后的锂二次电池充电充满电容量的50%~90%的工序;在充电后以40℃~50℃保存4小时~80小时的工序;以及在保存的工序之后对锂二次电池的容量进行检测的工序。
[0276]
(2-1)
[0277]
一种锂二次电池的充电方法,其中,上述锂二次电池具备能够对锂离子进行吸留和释放的铝负极、能够对锂离子进行吸留和释放的正极以及电解质,上述铝负极由含铝金
属构成,其在对锂二次电池进行了组装之后将锂二次电池充电充满电容量的50%~90%,在充电后以40℃~50℃保存4小时~80小时,在保存后对锂二次电池的容量进行检测。
[0278]
实施例
[0279]
接着,通过实施例对本发明进行更详细说明。
[0280]
<金属负极的成分分析>
[0281]
使用发射光谱分析装置(型号:arl-4460,特莫费希尔科学公司制)对含铝金属中的金属元素的量进行了定量。此外,金属元素可以通过辉光放电质量分析装置进行更精密的定量。
[0282]
<金属相的观察和二值化处理>
[0283]
·
样品制作
[0284]
将由后述方法得到的厚度为18mm的板状的含铝金属轧制成了厚度为0.5mm的箔。之后,与轧制方向垂直地切断。以砂纸对切断面进行研磨,实施了抛光研磨和20秒的电解研磨。之后,以1.0质量%的氢氧化钠水溶液对构成露出于切断面的金属相的硅进行蚀刻而去除。
[0285]
接着,使用金相显微镜(nikon epiphot 300)以倍率为200倍对所得到的截面进行了观察。
[0286]
使用图像分析软件(image-pro plus)对所得到的图像进行二值化,使铝相为白、金属相为黑地进行了简单二值化。
[0287]
<平均腐蚀速度的测定>
[0288]
[浸渍条件]
[0289]
将由后述方法得到的含铝金属制成了尺寸为纵40mm、横40mm、厚0.5mm的试验用金属片。以乙醇对试验用金属片的表面进行了清洗。使试验用金属片浸渍于使用乙酸作为ph调节剂并调节至ph3的3.5%nacl水溶液,72小时后取出了试验用金属片。将浸渍温度设定为30℃。
[0290]
就腐蚀度来说,将相对于1mm2试验用金属片表面积的每天的腐蚀失重以mg数来表示。即,腐蚀度由下述式算出。质量的测定使用了精密天平等。
[0291]
腐蚀度=(试验用金属片的浸渍前的质量(mg)-试验用金属片的浸渍后的质量(mg))/(试验用金属片的表面积
×
试验天数)
[0292]
根据下述方法,由所得到的腐蚀度算出了腐蚀速度。
[0293]
腐蚀速度(mm/年)=[腐蚀度
×
365]/试验片的密度(g/cm3)
[0294]
(维氏硬度)
[0295]
就由后述方法得到的含铝金属来说,使用显微维氏硬度计来测定了维氏硬度(hv0.05)作为硬度的指标。
[0296]
维氏硬度是根据jis z2244:2009“维氏硬度试验-试验方法”测定的值。测定使用了岛津制作所的显微维氏硬度计。
[0297]
就维氏硬度的测定来说,将正四棱锥的金刚石压头压入试验片(金属箔)的表面,解除了将压头压入的力(试验力),然后由残留于表面的凹坑的对角线长度算出。
[0298]
就本实施例来说,采用了试验力为0.05kgf(=0.4903n)时的显微维氏硬度hv0.05。
[0299]
<实施例1>
[0300]
[负极的制作]
[0301]
用于实施例1的硅-铝合金是由下述方法制得的。
[0302]
将高纯度铝(纯度:99.99质量%以上)和高纯度化学制硅(纯度:99.999质量%以上)加热至760℃并保持,由此得到了硅含量为1.0质量%的铝-硅合金熔液。
[0303]
以温度为740℃在真空度为50pa的条件下保持合金熔液2小时来进行了洁净化。
[0304]
通过以150℃进行了干燥的铸铁铸型(22mm
×
150mm
×
200mm)对合金熔液进行铸造,得到了铸锭。
[0305]
在以下条件下进行了轧制。对铸锭的两面进行了2mm面切削加工,然后由厚度为18mm以加工率为99.6%进行了冷轧。所得到的轧制材料的厚度为100μm。
[0306]
将铝纯度为99.999%、硅含量为1.0质量%的高纯度铝-硅合金箔(厚度为100μm)切出φ14mm的圆盘状,制造了铝负极11。
[0307]
其结果是,铝负极11的对应于铝金属相的面积的比例为4%。
[0308]
另外,铝负极11的粒径为0.1μm以上且小于100μm的非铝金属化合物颗粒的个数密度为318个/mm2。
[0309]
进而,铝负极11的粒径为100μm以上的非铝金属化合物颗粒的个数密度为9个/mm2。
[0310]
非铝金属化合物颗粒的粒径由倍率为10000倍的sem图像照片以从固定方向引出来的平行线夹着非铝金属化合物颗粒的截面形状的投影图像的平行线之间的距离(定向直径)作为非铝金属化合物颗粒的粒径来进行了测定。
[0311]
另外,“个数密度”是指在倍率为10000倍的sem图像照片中存在于每单位面积的非铝金属化合物颗粒的个数的密度。
[0312]
铝负极11的相当于非铝金属相的面积比例为4%,平均腐蚀速度为0.067mm/年,维氏硬度为59.6hv。
[0313]
[正极的制作]
[0314]
将作为正极活性物质的钴酸锂(产品名cellseed。日本化学工业株式会社制。平均粒径(d50)为10μm)90质量份、作为粘结剂的聚偏氟乙烯(株式会社吴羽制)5质量份与作为导电材料的乙炔黑(产品名denka black。电化株式会社制)5质量份混合,进一步混合n-甲基-2-吡咯烷酮70质量份,由此制成了正极的电极合剂。
[0315]
将所得到的电极合剂以刮板法涂覆在作为集电体的厚度为15μm的铝箔上。在以60℃使涂覆后的电极合剂干燥了2小时之后进一步以150℃使之真空干燥10小时而使n-甲基-2-吡咯烷酮挥发。干燥后的正极活性物质的涂覆量为21.5mg/cm2。
[0316]
对所得到的电极合剂层与集电体的层叠体进行了轧制,然后切出φ14mm的圆盘状,制造了作为以钴酸锂为形成材料的正极合剂层与集电体的层叠体的正极。
[0317]
[电解液的制作]
[0318]
以成为1摩尔/升的比例向使碳酸乙烯酯(ec)与碳酸二乙酯(dec)以ec:dec=30:70(体积比)混合而成的混合溶剂溶解了lipf6,制作了电解液。
[0319]
《锂二次电池的制造》
[0320]
[对锂二次电池进行组装的工序]
[0321]
在上述负极与正极之间配置聚乙烯制多孔质隔膜并容纳于电池壳体(规格2032),注入上述电解液,使电池壳体密闭,由此制作了直径为20mm、厚度为3.2mm的硬币型锂二次电池。
[0322]
[进行充电的工序]
[0323]
将硬币型锂二次电池在室温下静置10小时,由此使电解液充分地含浸于隔膜。
[0324]
以正极容量为基准的充满电容量是通过实验对以锂金属为负极时的充放电容量进行了确认。
[0325]
具体来说,在室温下进行了5小时的以1.0ma恒流充电至4.3v之后以4.3v恒压充电的恒流恒压充电,然后进行以1.0ma放电至3.0v的恒流放电,由此对充放电容量进行了确认。
[0326]
之后,充电至充满电容量的75%。
[0327]
[进行保存的工序]
[0328]
在充电至充满电容量的75%后,在室温(20℃)下保存了10天。
[0329]
[进行检测的工序]
[0330]
算出了相对于保存后的首次放电容量的第三十次循环的放电容量的维持率的值。就检测工序来说,将放电容量维持率的值小于100%的情况判定为合格,将100%以上的情况判定为不合格。
[0331]
·
初始充放电
[0332]
在室温下进行了5小时的以1ma恒流充电(li吸留至al)至4.2v之后以4.2v恒压充电的恒流恒压充电,然后进行以1ma放电(由al释放li)至3.0v的恒流放电,由此进行了初始充放电。
[0333]
[充放电评价:第三十次循环的放电容量]
[0334]
在首次充放电后,与初始充放电的条件同样地反复进行了以1ma充电、以1ma放电。
[0335]
通过三十次循环试验实施了寿命评价。
[0336]
[放电容量维持率的算出]
[0337]
放电容量维持率(%)=第三十次循环的放电容量(mah/g)/首次放电容量(mah/g)
×
100
ꢀꢀꢀꢀꢀ
(式1)
[0338]
就实施例1来说,由上述(式1)算出的放电容量维持率(%)为90.0%。因此,判定为“合格”。
[0339]
《实施例2》
[0340]
除了将进行保存的工序变更为以45℃进行8小时以外,通过与实施例1相同的方法制造了锂二次电池。
[0341]
就实施例2来说,放电容量维持率(%)为93.8%。因此,判定为“合格”。
[0342]
《实施例3》
[0343]
除了将进行保存的工序变更为以45℃进行24小时以外,通过与实施例1相同的方法制造了锂二次电池。
[0344]
就实施例3来说,放电容量维持率(%)为91.1%。因此,判定为“合格”。
[0345]
《实施例4》
[0346]
除了将进行保存的工序变更为以45℃进行72小时以外,通过与实施例1相同的方
法制造了锂二次电池。
[0347]
就实施例4来说,放电容量维持率(%)为98.0%。因此,判定为“合格”。
[0348]
《比较例1》
[0349]
除了不实施[进行充电的工序]和[进行保存的工序]以外,通过与实施例1相同的方法制造锂二次电池,由上述方法求出了放电容量维持率(%)。比较例1的放电容量维持率(%)为103%。因此,判定为“不合格”。
[0350]
如上所述,由本实施方式制得的锂二次电池显示了90%以上的高放电容量维持率。进而,实施例1~4均是放电容量维持率为90%~99%的范围内,放电容量维持率的偏差小。
[0351]
与此相对,比较例1的放电容量维持率超过100%,即,在至第三十次的循环试验中确认到了放电容量的增加。
[0352]
<实施例5>
[0353]
[负极的制作]
[0354]
将由与实施例1相同的方法制得的铝纯度为99.999%、硅含量为1.0质量%的高纯度铝-硅合金箔(厚度为50μm)切出,制造了纵52mm、横52mm的铝负极50。将负极引线与铝负极50连接。
[0355]
[正极的制作]
[0356]
将由与实施例1相同的方法制备的电极合剂涂覆成片状,在以60℃使涂覆后的电极合剂干燥了2小时之后进一步以150℃使之真空干燥10小时而使n-甲基-2-吡咯烷酮挥发。干燥后的正极活性物质的涂覆量为21.5mg/cm2。片的厚度为50μm。
[0357]
将所得到的片切出,制造了纵50mm、横50mm的正极50。将正极引线与正极50连接。
[0358]
[电解液的制作]
[0359]
以成为1摩尔/升的比例向使碳酸乙烯酯(ec)与碳酸二乙酯(dec)以ec:dec=30:70(体积比)混合而成的混合溶剂溶解了lipf6,制作了电解液。
[0360]
[锂二次电池的制作]
[0361]
隔着聚乙烯制多孔质隔膜配置正极50和铝负极50,容纳于层压膜外装体。之后,注入上述电解液,使外装体的层压膜密闭,由此制作了膜层压型锂二次电池。
[0362]
[进行充电的工序]
[0363]
将膜层压型锂二次电池在室温下静置10小时,由此使电解液充分地含浸于隔膜。
[0364]
以正极容量为基准的充满电容量是通过实验对以锂金属为负极时的充放电容量进行了确认。
[0365]
具体来说,在室温下进行了5小时的以16ma恒流充电至4.3v之后以4.3v恒压充电的恒流恒压充电,然后进行以16ma放电至3.0v的恒流放电,由此对充放电容量进行了确认。
[0366]
之后,充电至充满电容量的10%。
[0367]
[进行保存的工序]
[0368]
在充电至充满电容量的10%后,在室温(25℃)下保存了10小时。
[0369]
[放电容量维持率的算出]
[0370]
放电容量维持率(%)=第三十次循环的放电容量(mah/g)/第二次循环的放电容量(mah/g)
×
100
ꢀꢀꢀꢀꢀ
(式2)
[0371]
就实施例5来说,由上述(式2)算出的放电容量维持率(%)为96.0%。因此,判定为“合格”。
[0372]
《实施例6》
[0373]
除了将进行保存的工序变更为以45℃进行10小时以外,通过与实施例5相同的方法制造了锂二次电池。
[0374]
就实施例6来说,放电容量维持率(%)为94.0%。因此,判定为“合格”。
[0375]
《实施例7》
[0376]
除了将进行保存的工序变更为以60℃进行10小时以外,通过与实施例5相同的方法制造了锂二次电池。
[0377]
就实施例7来说,放电容量维持率(%)为90.0%。因此,判定为“合格”。
[0378]
符号说明
[0379]
1隔膜、2正极、3铝负极、4电极群、5电池罐、6电解液、7顶部绝缘体、8封口体、10锂二次电池、21正极引线、31负极引线
再多了解一些

本文用于创业者技术爱好者查询,仅供学习研究,如用于商业用途,请联系技术所有人。

发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表

相关文献