一种残膜回收机防缠绕挑膜装置的制 一种秧草收获机用电力驱动行走机构

一种采用高性能陶瓷材料的射频前端组件的制作方法

2022-07-13 12:12:13 来源:中国专利 TAG:


1.本发明属于通讯技术领域,涉及一种射频前端组件,尤其涉及一种采用高性能陶瓷材料的射频前端组件。


背景技术:

2.十九世纪末,人类开启了无线通讯的大门,从此,无线通讯技术深刻改变了人类社会并极大推动了人类现代文明的发展。随着无线通讯技术的普及和不断发展,现代社会空间中已经充满了各类不同频段的无线电波信号,对各类民用和军用无线通讯设备的性能要求越来越高。可以实现微弱信号拾取并保证在各种干扰状态下仍可以稳定通讯已经成为衡量现代通讯设备性能的首要条件。
3.当前,为便于加工制作及可能的调试工作,射频前端组件普遍采用将金属辐射单元和电路网络(功分网络)放在同一面的方式,该方式不仅生产和组装方便,同时可以在生产检测时对电路网络进行调试修改以便弥补生产制造上存在的缺陷。该方式虽然具备一定的便捷性,但是存在电路网络全开放的缺点,此外,由于金属辐射单元和电路网络在同一面,会影响系统的信号处理能力进而影响通讯质量。射频前端组件选取普通pcb板或者低损耗的pcb板材,造成信号传输质量明显较差,不利于多单元尤其是密集单元系统和高频段通讯系统的设计和生产,会导致系统能耗过大和通讯质量较差的后果。
4.鉴于二十一世纪相对越来越恶劣的无线通讯环境,研发高效节能及灵活快速安装的射频前端组件已经是十分迫切的需要。


技术实现要素:

5.本发明的目的是针对现有射频前端组件因设计不合理及材料运用局限性所造成的性能不佳效率低下、生产成本较高的问题,提供一种新型射频前端组件,将其用在无线通讯设备中作为无线射频前端组件,主要作用为接收和发射无线信号,该组件为无源组件,可以将接收到的无线信号以极低的损耗传输给后端的信号处理系统,同时也可以将信号系统的发射信号高效地转换为无线电信号传输出去。本发明射频前端组件结合介质陶瓷材料,其可靠性和高温工作特效远远优于传统pcb板材加工而成的前端射频组件,同时该组件结构简化了传统设计,集成度和安装灵活性显著提高,同时在介质陶瓷基板上同时设置功分网络和屏蔽罩,在实现大幅度降低传输损耗的同时极大的降低了外界信号对系统的干扰,使组件的工作效率提高,对提高系统灵敏度和节省整个系统的能耗有显著的作用,本发明射频前端组件可广泛应用与各种无线传输设备,节能减排作用明显,应用前景十分广阔。
6.本发明为解决上述技术问题的不足,采用如下技术方案:
7.一种射频前端组件,包括射频组件,所述的射频组件包括至少一个带凹槽的安装框架5,在每个安装框架5内设有至少一个核心功分网络基板2;在所述的核心功分网络基板2正面设有至少一个辐射单元1,在核心功分网络基板2背面设有电路3由电路负责传输电信号、并控制射频前端组件的无线信号辐射能力,在核心功分网络基板2上设有至少一个通孔
4;所述的辐射单元1的引脚6穿过核心功分网络基板2的通孔和核心功分网络基板2背面的电路3相连接;在所述的核心功分网络基板2的通孔内设有信号引出端7,信号引出端7穿过安装框架5将信号传输给后段的信号处理单元。
8.所述的辐射单元1为金属辐射单元或由高导电率的石墨或炭纤维材料制作而成的辐射单元。
9.所述的金属辐射单元由金属材料加工而成,在金属辐射单元表面设有金属电镀层。所述的金属材料选自铝或铜等;所述的金属层是镀银、锡或金等形成的。
10.所述的引脚6插入核心功分网络基板2的通孔且前端伸出通孔,引脚6的前端与电路3焊接连接;未插入通孔部分的引脚6的外径大于核心功分网络基板2的通孔直径,使引脚6呈“下细上粗”,引脚前端和电路焊接后实现了双向稳定结构,大大提高了在振动和撞击环境下的可靠性和稳定性,特别适用于高性能要求的射频传输设备,如基站和军用及卫星通讯设备等。
11.所述的核心功分网络基板2是由微波介质陶瓷材料烧制而成的具有功分网络和屏蔽罩的介质陶瓷基板,或微波介质陶瓷材料和有机物复合而成的核心功分网络基板。
12.通常的,单块核心功分网络基板2的尺寸为(7.0~450)mm
×
(10~250)mm
×
(0.5~5.0)mm。
13.微波介质陶瓷材料的介电常数er:4.0~10.5,q
×
f:50000~120000。
14.所述的微波介质陶瓷材料由下述质量分数的原料组成:0.1~3.0%al2o3、1.3~7.5%tio2、62~75%zno、0.1~1.3%la2o3、0.01~0.2%k2o、0.1~0.2%na2o、0.01~0.3%fe2o3、18~30%sio2、0.01~1.0%nb2o5、0.2~1.5%zro2、0.001~0.2%iro2、0.03~0.2%sm2o3、0.002~0.4%mno2、0.1~0.3%nd2o3、0.1~0.8%ta2o5、0.01~0.2%cuo、0.1~0.3%pr2o3;各原料的质量分数之和为100%。
15.优选的,所述的微波介质材料由下述质量分数的原料组成:1.0~3.0%al2o3、3.5~7.5%tio2、62~75%zno、0.1~0.7%la2o3、0.01~0.2%k2o、0.1~0.2%na2o、0.01~0.3%fe2o3、18~25%sio2、0.1~1.0%nb2o5、0.5~1.5%zro2、0.1~0.2%iro2、0.1~0.2%sm2o3、0.2~0.4%mno2、0.1~0.3%nd2o3、0.1~0.8%ta2o5、0.01~0.2%cuo、0.1~0.3%pr2o3。
16.在所述的核心功分网络基板2正面环绕用于安装引脚6和信号引出端7的通孔设有非金属环层,非金属环层的宽度为1~10mm;在所述的核心功分网络基板2正面除非金属环层外设有金属层;所述的核心功分网络基板2的四个侧面经金属化处理形成金属层或或对应核心功分网络基板2的四个侧面在安装框架5的相应位置设有金属层,金属层与核心功分网络基板2正面的金属层导通形成完整的表面屏蔽罩以提高屏蔽性能。对应核心功分网络基板2的四个侧面在安装框架5的相应位置设有金属层节省了成本,同样能够实现屏蔽功能,但是屏蔽效果不如经金属化处理形成金属层所实现的屏蔽效果,从实现屏蔽效果的角度考虑,优先选择在核心功分网络基板2的四个侧面经金属化处理形成金属层,与核心功分网络基板2正面的金属层导通形成屏蔽层。
17.所述的电路3为在核心功分网络基板2背面采用印刷或刻蚀加工而成的金属电极电路;所述的金属电极电路的材料选自银、金、铜、铝或锡。
18.一块核心功分网络基板2至少设有一路电路,或视需要设有多路电路或设置适应
不同频率段的电路。
19.所述的通孔4的数量根据辐射单元1的引脚6的数量、安装的信号引出端6的数量决定。所述的通孔4的孔径根据需要插入通孔部分的引脚6直径、信号引出端7直径调整。
20.所述的信号引出端6为pin针、连接插座或射频接口。信号引出端6焊接在核心功分网络基板2上,信号引出端安装灵活、可靠。信号通过信号引出端6传输给后段的信号处理单元如滤波器组件和各类射频组件进行相应的处理。
21.所述的pin针为表面镀金或镀银的金属pin针。
22.所述的安装框架5为金属安装框架、表面设有金属层的pcb板材安装框架或内部设有金属薄片的塑料安装框架或表面电镀金属层的塑料安装框架。
23.所述的金属安装框架的金属材料选自铝、铜等,在金属安装框架表面设有金属层;所述的金属层通过镀银、锡或金等形成的。
24.所述的安装框架5设与核心功分网络基板2相吻合的凹槽用于将核心功分网络基板2安装在安装框架5的凹槽内;安装后,所述的核心功分网络基板2背面和凹槽底板保持0.1~50mm的空隙,所述的核心功分网络基板2的屏蔽罩与安装框架5连接实现全金属屏蔽功能,并由安装框架5实现接地导通功能。
25.具体的,所述的核心功分网络基板2的屏蔽罩与安装框架5的至少一个内侧面通过焊接或者其他方式连接实现全金属屏蔽功能。
26.所述的安装框架5的数量为1~2056个。每个安装框架5安装至少一块核心功分网络基板2,核心功分网络基板2为一个独立的单元。可视不同应用场景进行设计加工,实现1~2056个,具体如1、2、3、4、8、10、16、32、256、1024、2056个等相同或不同的单元的自由组合,也可实现不同频率段、不同数量单元的自由组合,实现了极为灵活的组合模式可满足各种不同频段及复杂情况下的无线信号投放需求,极大的扩展了应用领域和灵活性。
27.相邻安装框架5之间设有隔离片8,以降低干扰,隔离片和安装框架相连接。若在无需密集组合的应用场景下,可单独采用核心功分网络基板自带的物理结构和信号处理单元相连接,进一步简化结构和成本。安装框架可准确分割和确定各个核心功分网络基板的间距,可以实现稳定的辐射要求。
28.作为本发明所述的射频前段组件的进一步优选方案,所述的射频组件安装有保护罩;所述的保护罩由低损耗有机高分子材料加工而成。
29.保护罩的安装方式为本领域技术人员所知的常规方法。一般的,所述的保护罩通过螺栓和射频前端组件的安装框架5固定连接,保护罩四周设有密封条或者经胶水处理,通过保护罩将射频前端组件外界隔绝,避免雨水湿气的侵入,保护射频前端组件在自然环境下全天候环境下的使用。在航天环境下也可不采用上述保护罩。
30.本发明的有益效果:
31.本发明射频前端组件具有体积小、结构简单、精简的优势,结合极低损耗的核心功分网络基板,减少了组件之间的线路传输损耗,使信号传输的损耗大幅度降低。与采用将金属辐射单元和功分网络设置在同一面的传统射频前端组件相比,本发明射频前端组件传输损耗降低0.5~4.0db,在同等发射功率下,覆盖面积提升30~60%或者维持原有覆盖面积,节省20~60%发射功率,对节能减排有积极的意义,也大幅度改善了设备使用者的长期能耗问题,社会和经济效益明显。
32.本发明在介质陶瓷基板上制作功分网络和屏蔽罩,在其上安装辐射单元,同时以自身的屏蔽罩为基础,通过安装框架进行自由组合,可以实现自1~2056个单元的自由组合。本发明射频前端组件可满足200mhz~90ghz频段范围内不同无线射频系统的应用要求,在极其精简和高度重视传输信号质量的设计理念和高性能的前提下,满足现代通信对低功耗和高传输速率的要求,实现各种不同无线传输场景中(如微基站,super wifi,室内外无线分布系统以及4g、5g及未来6g及卫星通讯等无线通讯应用领域)收发无线信号的功能。
33.目前普遍采用的pcb板材的普遍介电损耗在0.1~0.005之间,与pcb板材相比,本发明核心功分网络基板的介电损耗在0.00001~0.00007之间,介电损耗至少降低了100倍,介电损耗大大降低,可以大幅度改善电磁波的传输,对降低信号在前端系统中的损失有明显的帮助,对1ghz以上的高频和微弱信号的传输具有积极的帮助,能够提升前端射频组件的性能、工作稳定性和可靠性,实现了兼顾高性能和高稳定性的效果。本发明核心功分网络基板使射频前端组件在安装完成后拥有极高的尺寸精度稳定性,可耐受极为严苛的温度变化冲击(300~-220℃),不会发生影响组件性能的物理尺寸变化,尤其在航空航天及军事等严苛环境下有极好的适应性和应用前景。
34.在核心功分网络基板背面灵活安置各种类型的电路网络,实现在数个辐射单元之间的相幅配置,以满足波束方向图和扫描的要求。根据不同需要选择相应的尺寸,也可按需要在一块核心功分网络基板上设置不同频率段的功分网络以适应特殊要求的目的。
35.安装框架与核心功分网络基板相配合的物理结构,实现对传输信号的屏蔽功能,极大的改善了对外界信号的抗干扰能力,大幅度提高了通信系统的整体性能的稳定性和可靠性,尤其用于无线终端的前端(信号接收和发射)在接收微弱信号和提高发射信号质量方面均有显著作用,对于降低掉线率和稳定通讯及提高传输速率都具有积极的帮助。
附图说明
36.图1为实施例1单个单元组成的前端射频组件的组装示意图。
37.图2为实施例1组装完成的前端射频组件。
38.图3为实施例3四个单元组成的前端射频组件的结构示意图。
39.图中,1-辐射单元,2-核心功分网络基板,3-电路,4-通孔,5-安装框架,6-引脚,7-信号引出端,8-隔离片。
具体实施方式
40.下面通过具体实施方式对本发明的技术方案作进一步说明。
41.实施例1
42.图1和图2为单个单元组成的射频前端组件,包括三件金属辐射单元1、一块核心功分网络基板2和一个安装框架5;所述的核心功分网络基板2是由微波介质陶瓷材料烧制而成的具有功分网络和屏蔽罩的介质陶瓷基板,在核心功分网络基板2上设有通孔4用于安装金属辐射单元1的引脚6和信号引出端7,在核心功分网络基板2正面环绕用于安装引脚6和信号引出端7的通孔设有非金属环层,非金属环层的宽度为1~10mm;在所述的核心功分网络基板2正面除非金属环层外设有金属层;所述的核心功分网络基板2的四个侧面经金属化处理形成金属层并与核心功分网络基板2正面的金属层导通形成完整的表面屏蔽罩;在所
述的核心功分网络基板2背面设有电路3;所述的金属辐射单元1的引脚6呈“下细上粗”,引脚6插入核心功分网络基板2的通孔4内且前端伸出通孔,未插入通孔部分的引脚6的外径大于核心功分网络基板2的通孔直径,引脚6的前端与电路3焊接连接获得双向稳定结构;所述的安装框架5设与核心功分网络基板2相吻合的凹槽,将核心功分网络基板2安装在安装框架5的凹槽内,核心功分网络基板2背面和凹槽底板保持0.1~50mm的空隙,核心功分网络基板2的屏蔽罩与安装框架5的其中一个内侧面连接实现全金属屏蔽功能,并由安装框架5实现接地导通功能;在所述的核心功分网络基板2的通孔内设有信号引出端7,信号引出端7穿过安装框架5将信号传输给后段的信号处理单元。
43.所述的金属辐射单元1由铝加工而成,在金属辐射单元1表面镀银形成金属电镀层。
44.金属辐射单元的尺寸视工作频率和设计需要而定,本实施例每件金属辐射单元1的规格为24mm
×
24mm
×
12mm。
45.微波介质陶瓷材料(中国专利申请cn113248250a实施例4,介电常数er:6.5,q
×
f:95000)包括下述质量百分数的原料:1.2%al2o3、3.5%tio2、71.5%zno、0.3%la2o3、0.2%k2o、0.1%na2o、0.1%fe2o3、20.3%sio2、0.5%nb2o5、0.8%zro2、0.1%iro2、0.1%sm2o3、0.3%mno2、0.2%nd2o3、0.5%ta2o5、0.1%cuo、0.2%pr2o3。将原料混合均匀,在电炉内1100℃下煅烧一次;采用球磨机研磨,使细度达到d90≤1.5μm;加入原料总质量8%的5%pva水溶液,混合得到浆料,喷雾塔内处理浆料使浆料水分干燥并形成球形颗粒;采用液压自动成型机1.5mpa下压制成型得到生坯;生胚置于高温电炉内,在1350℃下烧结5小时,获得宽度250mm、长度150mm、厚度10mm的微波介质基板;微波介质基板经过物理加工获得42mm
×
138mm
×
0.7mm介质陶瓷基板。
46.所述的信号引出端7为表面镀金或镀银的金属pin针。
47.所述的安装框架5为金属安装框架,金属安装框架的材料为铝,在金属安装框架表面通过镀银形成金属层。
48.首先,在介质陶瓷电路板背面上采用印刷或刻蚀加工工艺制作电路3(即功分网络)、在四周侧面进行金属化处理形成金属层;然后,将每个金属辐射单元1的引脚6插入介质陶瓷基板的通孔4内且前端伸出通孔,引脚6的前端与电路3焊接连接获得双向稳定结构;进一步安装两件pin针作为信号引出端7;将上述完成制作的组件,安置在安装框架5内相应的凹槽中,金属螺钉通过介质陶瓷电路板中间的孔旋入安装框架的螺纹孔中完成安装固定(该步为本领域技术人员常规操作),最终采用焊锡点焊将介质陶瓷电路板的正面金属层和安装框架5进行焊接;pin针通过安装框架5相应的孔洞将信号传输到后续的信号处理单元。
49.本实施例单个射频前端组件具有结构简单紧凑,安装便捷快速灵活的特点,可大幅度降低生产制造的工时和成本,同时性能优异,可靠性和稳定性佳,具有广阔的应用和市场前景。
50.实施例2
51.在实施例1单个射频前端组件外置有机高分子制成的保护罩,以满足在自然环境下全天候工作环境的需要。
52.实施例3
53.如图3所示,在实施例1的基础上,调整射频前端组件中安装框架5和核心功分网络
基板2的数量,获得4个单元组成的射频前端组件。
54.本实施例射频前端组件由四个安装框架5组成,在相邻安装框架5之间设有隔离片8;在每个安装框架5内安装一块核心功分网络基板2,每块核心功分网络基板2安装3件金属辐射单元1和2件pin针作为信号引出端7形成四单元模式。
55.本实施例射频前端组件的总尺寸为175mm
×
150mm
×
24mm,为可实现在3.3~3.75ghz内,swr《1.4,隔离度》22db,增益:11.0~13.5db的高性能射频前端组件。
再多了解一些

本文用于企业家、创业者技术爱好者查询,结果仅供参考。

发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表

相关文献