一种残膜回收机防缠绕挑膜装置的制 一种秧草收获机用电力驱动行走机构

无线通信系统中的CSI-RS发送相关UE的副链路操作方法与流程

2022-06-01 21:15:00 来源:中国专利 TAG:

无线通信系统中的csi-rs发送相关ue的副链路操作方法
技术领域
1.以下描述涉及无线通信系统,并且更具体地,涉及信道状态信息参考信号(csi-rs)发送相关ue的副链路操作方法和设备。


背景技术:

2.无线通信系统已被广泛部署以提供诸如语音或数据这样的各种类型的通信服务。通常,无线通信系统是通过共享可用系统资源(带宽、发送功率等)来支持与多个用户的通信的多址系统。多址系统的示例包括码分多址(cdma)系统、频分多址(fdma)系统、时分多址(tdma)系统、正交频分多址(ofdma)系统、单载波频分多址(sc-fdma)系统和多载波频分多址(mc-fdma)系统。
3.无线通信系统采用诸如长期演进(lte)、高级lte(lte-a)和无线保真(wifi)这样的各种无线电接入技术(rat)。第5代(5g)也被包括在rat中。5g的三个关键需求领域是(1)增强型移动宽带(embb)、(2)大型机器类型通信(mmtc)和(3)超可靠低延迟通信(urllc)。一些使用情况可能需要用于优化的多个尺寸,而其它使用情况可能只专注于一个关键性能指标(kpi)。5g以灵活可靠的方式支持这各种使用情况。
4.embb远远超出了基本的移动互联网接入,并且涵盖了云或增强现实(ar)中丰富的交互式工作、媒体和娱乐应用。数据是5g的关键驱动力之一,并且在5g时代,可能第一次看不到专用语音服务。在5g中,预计仅仅使用通信系统所提供的数据连接性来将语音作为应用程序处理。流量增加的主要驱动力是需要高数据速率的应用的数目以及内容大小的增加。随着越来越多的装置连接到互联网,流服务(音频和视频)、交互式视频和移动互联网连接将持续地被广泛使用。这些应用中的许多需要始终在线的连接,以将实时信息和通知推送给用户。用于移动通信平台的云存储和应用程序正在迅速增加。这适用于工作和娱乐二者。云存储是驱动上行链路数据速率增长的一个特定用例。5g也将被用于云中的远程工作,该远程工作当用触觉接口完成时需要低得多的端到端等待时间,以保持良好的用户体验。娱乐(例如,云游戏和视频流)是增加对移动宽带能力需求的另一关键驱动力。在包括诸如火车、汽车和飞机这样的高移动性环境的任何地方,娱乐对于智能手机和平板都将至关重要。另一个用例是用于娱乐和信息搜索的增强现实(ar),ar需要非常少的等待时间和大量的即时数据量。
5.最令人期待的5g用例之一是在每个领域(即,mmtc)中主动连接嵌入式传感器的功能。预计在2020年之前,将有204亿个潜在的物联网(iot)装置。在工业iot中,5g是实现智慧城市、资产跟踪、智能公用事业、农业和安全基础设施时发挥关键作用的领域之一。
6.urllc包括将利用超可靠/可用的低等待时间链路进行行业改革的服务,例如关键基础设施和自动驾驶载具的远程控制。可靠性和等待时间的水平对于智能电网控制、工业自动化、机器人、无人机控制和协调等是至关重要的。
7.现在,将详细描述多个用例。
8.5g可以补充光纤到户(ftth)和基于电缆的宽带(或电缆数据服务接口规范
(docsis))作为提供每秒数百兆比特至每秒千兆比特的数据速率的流的手段。这种高速度是虚拟现实(vr)和ar以及分辨率为4k或更高(6k、8k或更高)的tv广播所需要的。vr和ar应用主要包括沉浸式体育赛事。特定应用程序可能需要特殊的网络配置。例如,对于vr游戏,游戏公司可能必须将核心服务器与网络运营商的边缘网络服务器集成在一起,以便使等待时间最小化。
9.预计汽车行业成为5g的非常重要的新驱动力,有许多用于载具的移动通信的用例。例如,针对乘客的娱乐同时需要高容量和高移动性的移动宽带,这是因为未来的用户将期望一直保持其高质量的连接,而不受其位置和速度的影响。汽车行业的其它用例是ar仪表板。这些仪表板在驾驶员正透过前窗看到的内容上显示叠加信息,识别黑暗中的对象,并且将对象的距离和移动告知驾驶员。将来,无线模块将能够实现载具本身之间的通信、载具与支持的基础设施之间的信息交换以及载具与其它连接装置(例如,行人携带的装置)之间的信息交换。安全系统可以引导驾驶员采取替代的行为过程,以使他们能够更安全地驾驶并使事故风险降低。下一阶段将是受远程控制的或自动驾驶的载具。这需要不同的自动驾驶载具之间以及载具与基础设施之间有非常可靠、非常快速的通信。将来,自动驾驶载具将执行所有驾驶活动,同时驾驶员将注意力集中在载具本身难以捉摸的交通异常上。自动驾驶载具的技术要求需要超低等待时间和超高可靠性,从而使交通安全性增至人不能实现的水平。
10.常常被称为智慧社会的智慧城市和智慧家庭将被嵌入致密的无线传感器网络。智能传感器的分布式网络将确认城市或家庭的成本和能效维护条件。可以为每户家庭进行类似的设置,其中,温度传感器、窗户和加热控制器、防盗警报器和家用电器全都以无线方式连接。这些传感器中的许多通常以低数据速率、低功率和低成本为特征,但是例如,在某些类型的监视装置中可能需要实时高清(hd)视频。
11.包括热或气体的能量的消耗和分布正变得高度分散,从而产生了对非常分散的传感器网络的自动控制的需求。智能电网使用数字信息和通信技术将这些传感器互连,以收集信息并对信息采取动作。该信息可以包括关于供应商和消费者的行为的信息,从而使智能电网能够以自动方式改善诸如电力这样的燃料的分配的效率、可靠性、经济可行性和生产的可持续性。智能电网可以被视为延迟少的另一传感器网络。
12.卫生领域拥有许多可以得益于移动通信的应用。通信系统使得能够进行在远距离处提供临床医疗服务的远程医疗。它有助于消除距离障碍,并能改善对在遥远的农村社区常常将无法持续获得的医疗服务的访问。它还可用于在重症监护和紧急情形下挽救生命。基于移动通信的无线传感器网络可以为诸如心率和血压这样的参数提供远程监视和传感器。
13.无线和移动通信对于工业应用而言变得越来越重要。电线的安装和维护成本高,并且用可重配置的无线链路替换电缆的可能性对于许多行业而言都是诱人的机会。然而,要实现这一点,需要无线连接以与电缆相近的延迟、可靠性和容量操作,并且简化其管理。低延迟和极低错误概率是5g需要应对的新要求。
14.最后,物流和货运跟踪是移动通信的重要用例,以使得能够使用基于位置的信息系统在它们所处的任何地方跟踪库存和包裹。物流和货运跟踪用例通常需要较低的数据速度,但是需要宽广的覆盖范围和可靠的位置信息。
15.无线通信系统是通过共享可用系统资源(带宽、发送功率等)来支持多个用户的通信的多址系统。多址系统的示例包括cdma系统、fdma系统、tdma系统、ofdma系统、sc-fdma系统和mc-fdma系统。
16.副链路(sl)是指其中在用户设备(ue)与ue之间建立直接链路并且ue直接交换语音或数据而没有基站(bs)干预的通信方案。sl被认为是减轻bs迅速增长的数据流量约束的解决方案。
17.载具对一切(v2x)是其中载具通过有线/无线通信与另一载具、行人和基础设施交换信息的通信技术。v2x可以被分为四种类型:载具对载具(v2v)、载具对基础设施(v2i)、载具对网络(v2n)和载具对行人(v2p)。可以经由pc5接口和/或uu接口提供v2x通信。
18.随着越来越多的通信装置要求更大的通信容量,需要相对于现有rat增强的移动宽带通信。因此,正在讨论考虑了对可靠性和等待时间敏感的服务或ue的通信系统。考虑了embb、mtc和urllc的下一代rat被称为新rat或nr。在nr中,也可以支持v2x通信。
19.图1是对比地例示了基于前nr-rat的v2x通信和基于nr的v2x通信的示图。
20.对于v2x通信,在前nr rat中主要讨论了基于诸如基础安全消息(bsm)、协作意识消息(cam)和分散环境通知消息(denm)这样的v2x消息提供安全服务的技术。v2x消息可以包括位置信息、动态信息和属性信息。例如,ue可以向另一ue发送周期性消息类型的cam和/或事件触发类型的denm。
21.例如,cam可以包括基本载具信息,包括诸如方向和速度这样的动态状态信息、诸如尺寸、外部照明状态、路径细节这样的载具静态数据等。例如,ue可以广播cam,cam的等待时间可以少于100ms。例如,当发生诸如载具破损或事故这样的意外事件时,ue可以生成denm并将denm发送到另一ue。例如,在ue的发送范围内的所有载具都可以接收cam和/或denm。在这种情况下,denm的优先级可以高于cam。
22.关于v2x通信,在nr中提出了各种v2x场景。例如,v2x场景包括载具排队、高级驾驶、扩展传感器和远程驾驶。
23.例如,可以基于载具排队动态地将载具分组并使其一起行驶。例如,为了基于载具排队执行排队操作,组中的载具可以从领先的载具接收周期性数据。例如,组中的载具可以基于周期性数据来扩宽或收窄它们的间隙。
24.例如,基于高级驾驶,载具可以是半自动或全自动的。例如,每个载具可以基于从附近载具和/或附近逻辑实体获得的数据来调节轨迹或操纵。例如,每个载具也可以与附近的载具共享驾驶意图。
25.例如,基于扩展的传感器,可以在载具、逻辑实体、行人的终端和/或v2x应用服务器之间交换通过本地传感器获得的原始或处理后的数据或实时视频数据。因此,相对于载具的传感器可感知的环境,载具可以感知高级环境。
26.例如,基于远程驾驶,远程驾驶员或v2x应用可以代表不能够驾驶或处于危险环境中的人员操作或控制远程载具。例如,当可以如公共交通中一样地预测路径时,基于云计算的驾驶可以用于操作或控制远程载具。例如,对基于云的后端服务平台的访问也可以被用于远程驾驶。
27.在基于nr的v2x通信中,讨论了针对包括载具排队、高级驾驶、扩展的传感器和远程驾驶的各种v2x场景指定服务需求的方案。


技术实现要素:

28.技术任务
29.实施方式的技术任务是提供将信道状态信息参考信号(csi-rs)映射到第二级sci并将其在副链路上发送的方法。
30.技术方案
31.一个实施方式是一种用户设备(ue)在无线通信系统中的操作方法,该操作方法包括以下步骤:在时隙中发送映射到第一数据区域的副链路控制信息;以及在所述时隙中发送映射到第二数据区域的信道状态信息参考信号(csi-rs),其中,所述第一数据区域的符号与所述第二数据区域的符号彼此分离。
32.一个实施方式是一种无线通信中的ue,该ue包括:至少一个处理器;以及至少一个计算机存储器,所述至少一个计算机存储器可操作地联接到所述至少一个处理器并存储指令,所述指令在被执行时致使所述至少一个处理器执行操作,所述操作包括以下步骤:在物理副链路控制信道(pscch)上发送第一副链路控制信道(sci);以及在物理副链路共享信道(pssch)上发送第二sci,其中,所述第二级sci的调制阶数在确定用于所述第二级sci的发送的符号的数目时使用。
33.一个实施方式是一种用于在无线通信系统中执行用于ue的操作的处理器,其中,所述操作包括以下步骤:在时隙中发送映射到第一数据区域的副链路控制信息;以及在所述时隙中发送映射到第二数据区域的信道状态信息参考信号(csi-rs),其中,所述第一数据区域的符号与所述第二数据区域的符号彼此分离。
34.一个实施方式是一种存储包括指令的至少一个计算机程序的非易失性计算机可读存储介质,所述指令在由至少一个处理器执行时致使所述至少一个处理器执行用于ue的操作,其中,所述操作包括以下步骤:在时隙中发送映射到第一数据区域的副链路控制信息;以及在所述时隙中发送映射到第二数据区域的信道状态信息参考信号(csi-rs),其中,所述第一数据区域的符号与所述第二数据区域的符号彼此分离。
35.所述副链路控制信息可以是第二级副链路控制信息(sci)。
36.所述第一数据区域和所述第二数据区域可以被时分复用(tdm)。
37.所述第二级sci可以包括与所述第二数据区域相关的信息。
38.与所述第二数据区域相关的信息可以包括时间/频率资源信息、是否执行csi-rs re功率提升、csi-rs天线端口的数目/索引以及csi-rs符号的位置/数目中的至少一者。
39.有利效果
40.根据实施方式,sl sci-rs可以保证整个传输频带,并且可以避免接收ue需要处理部分sl csi-rs的实现方式的复杂性。
附图说明
41.附图被包括进来以提供对本公开的进一步理解,并且被并入本技术的一部分中并构成本技术的一部分,附图例示了本公开的实施方式并且与说明书一起用来说明本公开的原理。在附图中:
42.图1是将基于预新无线电接入技术(预nr)的载具对一切(v2x)通信与基于nr的v2x通信进行比较的示图;
43.图2是例示了根据本公开的实施方式的长期演进(lte)系统的结构的示图;
44.图3是例示了根据本公开的实施方式的用户平面和控制平面无线电协议架构的示图;
45.图4是例示了根据本公开的实施方式的nr系统的结构的示图;
46.图5是例示了根据本公开的实施方式的下一代无线电接入网络(ng-ran)与第五代核心网络(5gc)之间的功能划分的示图;
47.图6是例示了适用本公开的实施方式的nr无线电帧的结构的示图;
48.图7是例示了根据本公开的实施方式的nr帧的时隙结构的示图;
49.图8是例示了根据本公开的实施方式的用于副链路(sl)通信的无线电协议架构的示图;
50.图9是例示了根据本公开的实施方式的用于sl通信的无线电协议架构的示图;
51.图10是例示了根据本公开的实施方式的在正常循环前缀(ncp)情况下的辅同步信号块(s-ssb)的结构的示图;
52.图11和图12例示了实施方式;并且
53.图13至图19例示了适用实施方式的各种装置。
具体实施方式
54.在本公开的各种实施方式中,“/”和“,”应该被解释为“和/或”。例如,“a/b”可以意指“a和/或b”。另外,“a、b”可以意指“a和/或b”。另外,“a/b/c”可以意指“a、b和/或c中的至少一个”。另外,“a、b、c”可以意指“a、b和/或c中的至少一个”。
55.在本公开的各种实施方式中,“或”应该被解释为“和/或”。例如,“a或b”可以包括“仅a”、“仅b”或“a和b二者”。换句话说,“或”应该被解释为“另外地或另选地”。
56.本文中描述的技术可以用于诸如码分多址(cdma)、频分多址(fdma)、时分多址(tdma)、正交频分多址(ofdma)、单载波频分多址(sc-fdma)等这样的各种无线接入系统。cdma可以被实现为诸如通用陆地无线电接入(utra)或者cdma2000这样的无线电技术。tdma可以被实现为诸如全球移动通信系统(gsm)/通用分组无线电服务(gprs)/用于gsm演进的增强数据率(edge)这样的无线电技术。ofdma可以被实现为诸如ieee 802.11(wi-fi)、ieee 802.16(wimax)、ieee 802.20、演进型utra(e-utra)等这样的无线电技术。ieee 802.16m是ieee 802.16e的演进,提供与基于irrr 802.16e的系统的向后兼容性。utra是通用移动电信系统(umts)的一部分。第三代合作伙伴计划(3gpp)长期演进(lte)是使用演进utra(e-utra)的演进umts(e-umts)的一部分。3gpp lte针对下行链路(dl)采用ofdma,并且针对上行链路(ul)采用sc-fdma。lte高级(lte-a)是3gpp lte的演进。
57.lte-a的后继者——第5代(5g)新无线电接入技术(nr)是特征在于高性能、低等待时间和高可用性的新型清洁状态的移动通信系统。5g nr可以使用所有可用的频谱资源,包括1ghz以下的低频带、1ghz和10ghz之间的中频带以及24ghz或以上的高频(毫米)频带。
58.尽管为了描述清楚起见主要在lte-a或5g nr的背景下给出以下描述,但是本公开的实施方式的技术思路不限于此。
59.图2例示了根据本公开的实施方式的lte系统的结构。这也可以被称为演进umts地面无线电接入网(e-utran)或lte/lte-a系统。
60.参照图2,e-utran包括向ue 10提供控制平面和用户平面的演进node b(enb)20。ue 10可以是固定或移动的,并且也可以被称为移动站(ms)、用户终端(ut)、订户站(ss)、移动终端(mt)或无线装置。enb 20是与ue 10通信的固定站,也可以被称为基站(bs)、基站收发器系统(bts)或接入点。
61.enb 20可以经由x2接口彼此连接。enb 20经由s1接口连接到演进分组核心(epc)39。更具体地,enb 20经由s1-mme接口连接到移动性管理实体(mme),并且经由s1-u接口连接到服务网关(s-gw)。
62.epc 30包括mme、s-gw和分组数据网络网关(p-gw)。mme具有关于ue的接入信息或能力信息,其主要用于ue的移动性管理。s-gw是以e-utran作为端点的网关,并且p-gw是以分组数据网络(pdn)作为端点的网关。
63.基于通信系统中已知的开放系统互连(osi)参考模型的最低三层,可以将ue与网络之间的无线电协议栈分为层1(l1)、层2(l2)和层3(l3)。这些层在ue和演进utran(e-utran)之间成对定义,以便用于经由uu接口的数据发送。l1处的物理(phy)层在物理信道上提供信息传送服务。l3处的无线电资源控制(rrc)层用于控制ue和网络之间的无线电资源。为此目的,rrc层在ue与enb之间交换rrc消息。
64.图3中的(a)例示了根据本公开的实施方式的用户平面无线电协议架构。
65.图3中的(b)例示了根据本公开的实施方式的控制平面无线电协议架构。用户平面是用于用户数据发送的协议栈,并且控制平面是用于控制信号发送的协议栈。
66.参照图3中的(a)和图3中的(b),phy层在物理信道上向其较高层提供信息传送服务。phy层通过传输信道连接到介质访问控制(mac)层,并且数据在传输信道上在mac层和phy层之间传送。根据经由无线电接口发送数据所利用的特征来划分传输信道。
67.数据是在不同phy层(即,发送器和接收器的phy层)之间的物理信道上发送的。可以按正交频分复用(ofdm)对物理信道进行调制,并且物理信道使用时间和频率作为无线电资源。
68.mac层在逻辑信道上向较高层——无线电链路控制(rlc)提供服务。mac层提供从多个逻辑信道映射到多个传输信道的功能。另外,mac层通过将多个逻辑信道映射到单个传输信道来提供逻辑信道复用功能。mac子层在逻辑信道上提供数据发送服务。
69.rlc层对rlc服务数据单元(sdu)执行级联、分段和重组。为了保证每个无线电承载(rb)的各种服务质量(qos)要求,rlc层提供三种操作模式——透明模式(tm)、未确认模式(um)和确认模式(am)。am rlc通过自动重传请求(arq)来提供纠错。
70.rrc层仅在控制平面中定义,并且与rb的配置、重新配置和释放相关地控制逻辑信道、传输信道和物理信道。rb是指由l1(phy层)和l2(mac层、rlc层和分组数据汇聚协议(pdcp)层)提供的用于ue和网络之间的数据发送的逻辑路径。
71.pdcp层的用户平面功能包括用户数据发送、报头压缩和加密。pdcp层的控制平面功能包括控制平面数据发送和加密/完整性保护。
72.rb建立相当于定义无线电协议层和信道特征以及配置特定参数和操作方法以便提供特定服务的处理。rb可以被分为两种类型——信令无线电承载(srb)和数据无线电承载(drb)。srb被用作在控制平面上发送rrc消息的路径,而drb被用作在用户平面上发送用户数据的路径。
73.一旦在ue的rrc层和e-utran的rrc层之间建立了rrc连接,ue就处于rrc_connected状态,否则ue处于rrc_idle状态。在nr中,另外定义了rrc_inactive状态。处于rrc_inactive状态的ue可以保持与核心网络的连接,同时释放来自enb的连接。
74.将数据从网络运送到ue的dl传输信道包括在其上发送系统信息的广播信道(bch)以及在其上发送用户业务或控制消息的dl共享信道(dl sch)。dl多播或广播服务的业务或控制消息可以在dl-sch或dl多播信道(dl mch)上发送。将数据从ue运送到网络的ul传输信道包括在其上发送初始控制消息的随机接入信道(rach)以及在其上发送用户业务或控制消息的ul共享信道(ul sch)。
75.在传输信道上并且映射到传输信道的逻辑信道包括广播控制信道(bcch)、寻呼控制信道(pcch)、公共控制信道(ccch)、多播控制信道(mcch)和多播业务信道(mtch)。
76.物理信道包括时域中的多个ofdm符号乘以频域中的多个子载波。一个子帧包括时域中的多个ofdm符号。rb是由多个ofdm符号乘以多个子载波限定的资源分配单元。另外,各个子帧可以将对应子帧中的特定ofdm符号(例如,第一ofdm符号)的特定子载波用于物理dl控制信道(pdcch),即,l1/l2控制信道。传输时间间隔(tti)是子帧传输的单位时间。
77.图4例示了根据本公开的实施方式的nr系统的结构。
78.参照图4,下一代无线电接入网络(ng-ran)可以包括向ue提供用户平面和控制平面协议终止的下一代node b(gnb)和/或enb。在图4中,举例来说,ng-ran被示出为仅包括gnb。gnb和enb经由xn接口彼此连接。gnb和enb经由ng接口连接到5g核心网络(5gc)。更具体地,gnb和enb经由ng-c接口连接到接入和移动性管理功能(amf),并且经由ng-u接口连接到用户平面功能(upf)。
79.图5例示了根据本公开的实施方式的ng-ran与5gc之间的功能划分。
80.参照图5,gnb可以提供包括小区间无线电资源管理(rrm)、无线电准入控制、测量配置和规定以及动态资源分配的功能。amf可以提供诸如非接入层(nas)安全性和空闲状态移动性处理这样的功能。upf可以提供包括移动性锚定和协议数据单元(pdu)处理的功能。会话管理功能(smf)可以提供包括ue互联网协议(ip)地址分配和pdu会话控制的功能。
81.图6例示了适用本公开的实施方式的nr中的无线电帧结构。
82.参照图6,无线电帧可以被用于nr中的ul发送和dl发送。无线电帧的长度为10ms,并且可以由两个5ms的半帧定义。hf可以包括五个1ms子帧。子帧可以被分成一个或更多个时隙,并且可以根据子载波间隔(scs)确定sf中的时隙数目。每个时隙根据循环前缀(cp)可以包括12或14个ofdm(a)符号。
83.在正常cp(ncp)情况下,每个时隙可以包括14个符号,而在扩展cp(ecp)情况下,每个时隙可以包括12个符号。本文中,符号可以是ofdm符号(或cp-ofdm符号)或sc-fdma符号(或dft-s-ofdm符号)。
84.下表1列出了在ncp情况下根据scs配置μ的每个时隙的符号数目n
slotsymb
、每帧的时隙数目n
frame,uslot
以及每个子帧的时隙数目n
subframe,uslot

85.[表1]
[0086]
scs(15
×2u
)n
slotsymbnframe,uslotnsubframe,uslot
15khz(u=0)1410130khz(u=1)14202
60khz(u=2)14404120khz(u=3)14808240khz(u=4)1416016
[0087]
下表2列出了在ecp情况下根据scs的每个时隙的符号数目、每帧的时隙数目和每个子帧的时隙数目。
[0088]
[表2]
[0089]
scs(15
×
2^u)n
slotsymbnframe,uslotnsubframe,uslot
60khz(u=2)12404
[0090]
在nr系统中,可以针对为一个ue聚合的多个小区,配置不同的ofdm(a)参数集(例如,scs、cp长度等)。因此,包括相同数目的符号的时间资源(例如,子帧、时隙或tti)(为了方便起见,被统称为时间单元(tu))的(绝对时间)持续时间可以被配置为对于聚合的小区而言是不同的。
[0091]
在nr中,可以支持各种参数集或scs,以支持各种5g服务。例如,利用15khz的scs,可以支持传统蜂窝频带中的广区域,而利用30khz/60khz的scs,可以支持密集的城市地区、更低的等待时间和宽的载波带宽。利用60khz或更高的scs,可以支持大于24.25ghz的带宽,以克服相位噪声。
[0092]
nr频带可以由两种类型的频率范围fr1和fr2定义。每个频率范围中的数值可以改变。例如,可以在表3中给出两种类型的频率范围。在nr系统中,fr1可以是“低于6ghz的范围”,并且fr2可以是被称为毫米波(mmw)的“高于6ghz的范围”。
[0093]
[表3]
[0094]
频率范围指定对应频率范围子载波间隔(scs)fr1450mhz

6000mhz15、30、60khzfr224250mhz

52600mhz60、120、240khz
[0095]
如以上提到的,在nr系统中,可以改变频率范围中的数值。例如,如表4中列出的,fr1的范围可以从410mhz到7125mhz。即,fr1可以包括6ghz(或5850、5900和5925mhz)或以上的频带。例如,6ghz(或5850、5900和5925mhz)或以上的频带可以包括免许可频带。免许可频带可以用于各种目的,例如,载具通信(例如,自主驾驶)。
[0096]
[表4]
[0097]
频率范围指定对应频率范围子载波间隔(scs)fr1410mhz

7125mhz15、30、60khzfr224250mhz

52600mhz60、120、240khz
[0098]
图7例示了根据本公开的实施方式的nr帧中的时隙结构。
[0099]
参照图7,时隙在时域中包括多个符号。例如,一个时隙在ncp情况下可以包括14个符号,并且在ecp情况下可以包括12个符号。另选地,一个时隙在ncp情况下可以包括7个符号,并且在ecp情况下可以包括6个符号。
[0100]
载波在频域中包括多个载波。rb可以由频域中的多个(例如,12个)连续子载波定义。带宽部分(bwp)可以由频域中的多个连续(物理)rb((p)rb)定义,并且对应于一个参数集(例如,scs、cp长度等)。载波可以包括多达n个(例如,5个)bwp。可以在被激活的bwp中进
行数据通信。每个元素可以被称为资源网格中的资源元素(re),一个复符号可以被映射到re。
[0101]
ue之间的无线电接口或ue和网络之间的无线电接口可以包括l1、l2和l3。在本公开的各种实施方式中,l1可以是指phy层。例如,l2可以是指mac层、rlc层、pdch层或sdap层中的至少一个。例如,l3可以是指rrc层。
[0102]
现在,将给出对副链路(sl)通信的描述。
[0103]
图8例示了根据本公开的实施方式的用于sl通信的无线电协议架构。具体地,图8中的(a)例示了lte中的用户平面协议栈,并且图8中的(b)例示了lte中的控制平面协议栈。
[0104]
图9例示了根据本公开的实施方式的用于sl通信的无线电协议架构。具体地,图9中的(a)例示了nr中的用户平面协议栈,并且图9中的(b)例示了nr中的控制平面协议栈。将给出对sl资源分配的描述。
[0105]
下面,将描述sl中的资源分配。
[0106]
图10例示了根据本公开的实施方式的根据ue中的发送模式执行v2x或sl通信的过程。在本公开的各种实施方式中,发送模式也可以被称为模式或资源分配模式。为了方便描述,lte中的发送模式可以被称为lte发送模式,并且nr中的发送模式可以被称为nr资源分配模式。
[0107]
例如,图10中的(a)例示了与lte发送模式1或lte发送模式3相关的ue操作。另选地,例如,图10中的(a)例示了与nr资源分配模式1相关的ue操作。例如,可以将lte发送模式1应用于常规sl通信,并且可以将lte发送模式3应用于v2x通信。
[0108]
例如,图10中的(b)例示了与lte发送模式2或lte发送模式4相关的ue操作。另选地,例如,图10中的(b)例示了与nr资源分配模式2相关的ue操作。
[0109]
参照图10中的(a),在lte发送模式1、lte发送模式3或nr资源分配模式1中,bs可以调度用于ue的sl发送的sl资源。例如,bs可以通过pdcch(更具体地,dl控制信息(dci))对ue 1执行资源调度,并且ue 1可以根据资源调度与ue 2执行v2x或sl通信。例如,ue1可以在pscch上向ue2发送副链路控制信息(sci),然后在pssch上将基于sci的数据发送到ue2。
[0110]
例如,在nr资源分配模式1中,通过来自bs的动态授权,可以为ue提供或分配用于一个传输块(tb)的一个或更多个sl发送的资源。例如,bs可以通过动态授权向ue提供用于发送pscch和/或pssch的资源。例如,发送ue可以将从接收ue接收到的sl混合自动重传请求(sl harq)反馈报告给bs。在这种情况下,可以基于pdcch中的指示来确定用于向bs报告sl harq反馈的定时和pucch资源,通过该指示,bs分配用于发送sl的资源。
[0111]
例如,dci可以指示在dci接收和通过dci调度的第一sl发送之间的时隙偏移。例如,调度sl发送资源的dci与被调度的第一sl发送的资源之间的最小间隙可以不小于ue的处理时间。
[0112]
例如,在nr资源分配模式1中,可以通过来自bs的所配置的授权,周期性向ue提供或分配用于多个sl发送的资源集。例如,将配置的授权可以包括所配置的授权类型1或所配置的授权类型2。例如,ue可以确定在由给定的配置的授权指示的每种情形下将发送的tb。
[0113]
例如,bs可以在同一载波或不同载波中向ue分配sl资源。
[0114]
例如,nr gnb可以控制基于lte的sl通信。例如,nr gnb可以向ue发送nr dci,以调度lte sl资源。在这种情况下,例如,可以定义新rnti以对nr dci进行加扰。例如,ue可以包
括nr sl模块和lte sl模块。
[0115]
例如,在包括nr sl模块和lte sl模块的ue从gnb接收到nr sl dci之后,nr sl模块可以将nr sl dci变换成lte dci类型5a,并且每x ms将lte dci类型5a发送到lte sl模块。例如,在lte sl模块从nr sl模块接收到lte dci格式5a之后,lte sl模块可以在z ms之后激活和/或释放第一lte子帧。例如,可以由dci的字段动态地指示x。例如,x的最小值可以根据ue能力而不同。例如,ue可以根据其ue能力报告单个值。例如,x可以为正。
[0116]
参照图10中的(b),在lte发送模式2、lte发送模式4或nr资源分配模式2中,ue可以从由bs/网络预先配置或配置的sl资源当中确定sl发送资源。例如,所预先配置或配置的sl资源可以是资源池。例如,ue可以自主地选择或调度sl发送资源。例如,ue可以自己选择所配置的资源池中的资源,并且在所选择的资源中执行sl通信。例如,ue可以自己通过侦听和资源(重新)选择过程来在选择窗口内选择资源。例如,可以以子信道为基础执行侦听。自主选择了资源池中的资源的ue 1可以在pscch上向ue 2发送sci,然后在pssch上将基于sci的数据发送到ue2。
[0117]
例如,ue可以帮助另一ue进行sl资源选择。例如,在nr资源分配模式2中,ue可以被配置有为了发送sl而配置的授权。例如,在nr资源分配模式2中,ue可以调度用于另一ue的sl发送。例如,在nr资源分配模式2中,ue可以保留用于盲重新发送的sl资源。
[0118]
例如,在nr资源分配模式2中,ue1可以通过sci向ue2指示sl发送的优先级。例如,ue2可以解码sci并且基于优先级执行侦听和/或资源(重新)选择。例如,资源(重新)选择过程可以包括由ue2在资源选择窗口中识别候选资源以及由ue2从所识别的候选资源当中选择用于(重新)发送的资源。例如,资源选择窗口可以是ue在其间选择用于sl发送的资源的时间间隔。例如,在ue2触发资源(重新)选择之后,资源选择窗口可以在t1≥0处开始,并且可以受ue2的其余分组延迟预算的限制。例如,当由第二ue从ue1接收到的sci指示特定资源并且在由ue2在资源选择窗口中识别候选资源的步骤中特定资源的l1 sl参考信号接收功率(rsrp)测量超过sl rsrp阈值时,ue2可以不将该特定资源确定为候选资源。例如,可以基于由ue2从ue1接收到的sci所指示的sl发送的优先级以及ue2所选择的资源中的sl发送的优先级来确定sl rsrp阈值。
[0119]
例如,可以基于sl解调参考信号(dmrs)来测量l1 sl rsrp。例如,可以在时域中针对每个资源池配置或预先配置一个或更多个pssch dmrs图案。例如,pdsch dmrs配置类型1和/或类型2可以与频域中的pssch dmrs图案相同或相似。例如,可以通过sci指示精确的dmrs图案。例如,在nr资源分配模式2中,发送ue可以从针对资源池配置或预先配置的dmrs图案当中选择特定dmrs图案。
[0120]
例如,在nr资源分配模式2中,发送ue可以基于侦听和资源(重新)选择过程无保留地执行tb的初始发送。例如,基于侦听和资源(重新)选择过程,发送ue可以使用与第一tb关联的sci来预留用于第二tb的初始发送的sl资源。
[0121]
例如,在nr资源分配模式2中,ue可以通过与相同tb的先前发送相关的信令来预留用于基于反馈的pssch重新发送的资源。例如,为了一次发送(包括当前发送)预留的sl资源的最大数目可以为2、3或4。例如,不管是否启用了harq反馈,sl资源的最大数目可以相同。例如,用于一个tb的harq(重新)发送的最大数目可以受到配置或预先配置的限制。例如,harq(重新)发送的最大数目可以高达32。例如,如果不存在配置或预先配置,则可以不指定
harq(重新)发送的最大数目。例如,该配置或预先配置可以用于发送ue。例如,在nr资源分配模式2中,可以支持对用于释放ue不使用的资源的harq反馈。
[0122]
例如,在nr资源分配模式2中,ue可以通过sci将该ue使用的一个或更多个子信道和/或时隙指示给另一ue。例如,ue可以通过sci将该ue针对psssch(重新)发送而预留的一个或更多个子信道和/或时隙指示给另一ue。例如,sl资源的最小分配单位可以是时隙。例如,可以针对ue配置或预先配置子信道的大小。
[0123]
以下,将描述sci。
[0124]
当在pdcch上从bs发送到ue的控制信息被称为dci时,在pscch上从一个ue发送到另一ue的控制信息可以被称为sci。例如,ue可以在对pscch进行解码之前知道pscch的起始符号和/或pscch中的符号数目。例如,sci可以包括sl调度信息。例如,ue可以将至少一个sci发送到另一ue,以调度pssch。例如,可以定义一种或更多种sci格式。
[0125]
例如,发送ue可以在pscch上将sci发送到接收ue。接收ue可以对一个sci进行解码,以从发送ue接收pssch。
[0126]
例如,发送ue可以在pscch和/或pssch上将两个连续sci(例如,2级sci)发送到接收ue。接收ue可以对两个连续sci(例如,2级sci)进行解码,以从发送ue接收pssch。例如,当考虑到(相对)大的sci有效载荷大小将sci配置字段划分成两组时,包括第一sci配置字段组的sci被称为第一sci。包括第二sci配置字段组的sci可以被称为第二sci。例如,发送ue可以在pscch上将第一sci发送到接收ue。例如,发送ue可以在pscch和/或pssch上将第二sci发送到接收ue。例如,第二sci可以在(独立的)pscch上或其中第二sci被捎带到数据的pssch上被发送到接收ue。例如,两个连续sci可以被应用于不同的发送(例如,单播、广播或组播)。
[0127]
例如,发送ue可以通过sci将以下信息中的全部或部分发送到接收ue。例如,发送ue可以通过第一sci和/或第二sci将以下信息中的全部或部分发送到接收ue。
[0128]-pssch相关和/或pscch相关资源分配信息,例如,时间/频率资源的位置/数目、资源预留信息(例如,周期)和/或
[0129]-sl信道状态信息(csi)报告请求指示符或sl(l1)rsrp(和/或sl(l1)参考信号接收质量(rsrq)和/或sl(l1)接收信号强度指示符(rssi))报告请求指示符和/或
[0130]-(pssch上的)sl csi发送指示符(或sl(l1)rsrp(和/或sl(l1)rsrq和/或sl(l1)rssi)信息发送指示符),和/或
[0131]-mcs信息,和/或
[0132]-发送功率信息,和/或
[0133]-l1目的地id信息和/或l1源id信息,和/或
[0134]-sl harq进程id信息,和/或
[0135]-新数据指示符(ndi)信息,和/或
[0136]-冗余版本(rv)信息,和/或
[0137]-qos信息(与发送流量/分组相关),例如,优先级信息,和/或
[0138]-sl csi-rs发送指示符或关于(待发送的)sl csi-rs天线端口的数目的信息,
[0139]-关于发送ue的位置信息或关于(被请求发送sl harq反馈的)目标接收ue的位置(或距离区域)信息,和/或
[0140]-与在pssch上发送的数据的解码和/或信道估计相关的rs(例如,dmrs等)信息,例如,与dmrs的(时间-频率)映射资源的图案相关的信息、秩信息和天线端口索引信息。
[0141]
例如,第一sci可以包括与信道侦听相关的信息。例如,接收ue可以使用pssch dmrs对第二sci进行解码。用于pdcch的极化码可以被应用于第二sci。例如,对于资源池中的单播、组播和广播,第一sci的有效载荷大小可以相等。在对第一sci进行解码之后,接收ue不需要对第二sci执行盲解码。例如,第一sci可以包括关于第二sci的调度信息。
[0142]
在本公开的各种实施方式中,由于发送ue可以在pscch上向接收ue发送sci、第一sci或第二sci中的至少一个,因此pscch可以被sci、第一sci或第二sc中的至少一个替换。另外地或另选地,例如,sci可以被pscch、第一sci或第二sci中的至少一个替换。另外地或另选地,例如,由于发送ue可以在pssch上向接收ue发送第二sci,因此pssch可以被第二sci替换。
[0143]
在nr sl中,可以根据在ue之间执行通信时发送的信息的诸如等待时间和覆盖范围这样的条件来使用用于pscch与pssch的复用的各种方法。图11示出了当前正在3gpp发行物16nr v2x中讨论的pscch和pssch的复用选项。如在选项1a/1b和选项3中,pscch/pssch可以在一个时隙中被tdm。如在选项2中,pscch/pssch可以被fdm。另选地,如在选项3中,pssch可以仅在一些符号上与pscch部分地fdm。下表5中给出了对图11的每个选项的详细描述。
[0144]
[表5]
[0145][0146]
另外,在图11的每个选项中,无线电资源可以包括至少一个子信道(沿着频率轴)和至少一个时间单元(沿着时间轴)。子信道可以由一个或更多个连续资源块(rb)构成,或者可以由特定数目的连续子载波构成。时间单元可以是子帧、传输时间间隔(tti)、时隙、ofdm/ofdma符号或sc-fdm/sc-fdma符号。
[0147]
在这方面,为了发送反馈信息,与ue关联的诸如ue的l1源id和l1目的地id这样的信息应该被包括在pscch中,这可能增加sci的有效载荷[3gpp tsg ran wg1会议#ah1901,主席笔记]。因此,为了确保更高效的pscch发送,可以考虑用于pscch有效载荷的适当分配和发送的两级sci结构[3gpp tsg ran wg1会议#98,主席笔记]。另外,由于在pscch上仅发
送第一sci,因此第二sci在pssch上复用并发送。如果csi-rs也通过pssch发送,则需要考虑csi-rs与第二sci之间的映射。
[0148]
因此,根据本公开的实施方式,当发送第二sci和csi-rs时,提出了映射第二sci与csi-rs的方法以及支持该方法的设备。
[0149]
根据实施方式的用户设备(ue)可以在时隙中发送映射到第一数据区域的副链路控制信息(图12中的s1201),并还在时隙中发送映射到第二数据区域的信道状态信息参考信号(csi-rs)(图12中的s1202)。第一数据区域的符号与第二数据区域的符号可以彼此分离。副链路控制信息是第二级副链路控制信道(sci)。因此,csi-rs(时隙)与第二级sci(时隙)不交叠。
[0150]
即,第二sci可以被配置为不被映射到csi-rs映射符号(例如,与csr-rs进行fdm的(数据)re)上。这里,当应用以上操作时,作为示例,其可以被解释为第二sci映射符号与csr-rs re映射符号之间的tdm的形式。即,第一数据区域和第二数据区域可以被时分复用(tdm)。另外,第一数据区域和第二数据区域可以属于上述多个bwp当中的一个bwp。在这种情况下,对于多个bwp当中的一个bwp的整个频带,csi-rs和第二级sci可以在不同时隙中发送。
[0151]
通过如上所述进行配置,sl sci-rs可以保证整个传输频带,并且可以避免接收ue需要处理部分sl csi-rs的实现方式的复杂性。另外,可以实现sl csi-rs的功率提升。
[0152]
第二级sci可以包括第二数据区域相关信息,并且第二数据区域相关信息可以包括时间/频率资源信息、是否执行csi-rs re功率提升、csi-rs天线端口的数目/索引以及csi-rs符号的位置/数目中的至少一者。换句话说,当应用上述规则时,csi-rs相关(资源)信息(例如,是否发送/存在csi-rs、csi-rs时间/频率(资源)模式、是否执行csi-rs re功率提升、csi-rs天线端口的数目/索引、csi-rs符号的位置/数目等)可以被认为是通过第二sci而非pssch发送的(例如,通过事先在pssch上设置的一些资源发送)。在这种情况下,作为示例,(上述)csi-rs相关(资源)信息(和/或关于是否应用所提出的规则的信息)可以(由网络/基站)不同地(或独立地)专门为资源池(和/或服务类型/优先级、是否执行csi-rs re功率提升、(服务)qos参数(例如,可靠性和等待时间)、mcs、ue(绝对或相对)速度、第二sci有效载荷大小、pscch相关时间资源长度、子信道大小和/或调度的频率资源区域大小)设置,或者可以基于预设参数(例如,(通过第一sci发送的)pssch频率资源大小和/或mcs)来隐式地确定。因此,作为示例,ue可以在不考虑csi-rs资源的情况下执行第二sci解码。
[0153]
当应用以上规则时,csi-rs映射资源与第二sci映射资源不交叠,这可以被解释为避免了第二sci映射资源的csi-rs映射资源的选择/配置(或避免了csi-rs映射资源的第二sci映射资源的选择/配置)。作为另一示例,当csi-rs映射资源与第二sci映射资源交叠时,csi-rs(或第二sci)可以被配置为被删余(或者csi-rs映射资源(或第二sci映射资源)被配置为根据避免了第二sci映射资源(或避免了csi-rs映射资源)的预定义规则被重新映射)。
[0154]
关于第二级sci映射,当第一级sci指示没有csi请求的第二级sci格式时,rx ue假定不存在csi-rs开销。另外,当第一级sci指示带有csi请求的第二级sci格式时,rx ue可以假定不存在针对第二级sci映射的csi-rs开销或者假定始终存在csi-rs开销。这是如下表6中的提议5所示出的。
[0155]
[表6]
[0156][0157]
可以通过pc5 rrc信令将tx ue使用/选择(和/或可选择)的sl csi-rs发送相关(候选)(时间/频率)资源模式信息发送到rx ue。这里,作为示例,tx ue向rx ue发信号通知的sl csi-rs(候选)(时间/频率)资源模式可以从事先专门为资源池配置的(候选)集合中选择。当应用以上规则时,作为示例,可以使得tx ue不选择(或排除)满足以下条件(1)至(3)中的至少一些的sl csi-rs(候选)(时间/频率)资源模式。
[0158]
(1)与(专门为资源池配置的)pscch(时间/频率)资源区域(和/或pscch符号)交叠的sl csi-rs(候选)(时间/频率)资源模式
[0159]
(2)与tx ue选择的pssch dmrs re(和/或符号)交叠的sl csi-rs(候选)(时间/频率)资源模式(和/或专门为资源池配置的候选pssch dmrs(时间/频率)资源模式集合)(和/或候选pssch dmrs符号集合)
[0160]
(3)与由pssch频率资源的数目/大小确定的pt-rs re(和/或符号)(和/或所有可用的pt-rs re(和/或符号)集合)和/或由tx ue选择的mcs交叠的sl csi-rs(候选)(时间/频率)资源模式
[0161]
可以由基站/网络针对以下每个参数(组合)(专门为资源池/服务)(预先)配置或者通过ue之间的pc5 rrc信令配置是否向sl时隙的(例如,用于tx/rx切换的)最后一个符号应用速率匹配。
[0162]
参数如以下的(a)至(e)。
[0163]
(a)(应用了速率匹配的)mcs表类型(例如,64qam表、256qam表和64qam低光谱效率表),和/或
[0164]
(b)(应用了(选定的)mcs表中的速率匹配)的mcs索引(和/或调制阶数)范围,和/或
[0165]
(c)(所发送数据的)服务类型/优先级(例如,每分组prose优先级(pppp),每分组prose可靠性(pppr))(和/或服务相关的qos参数(例如,可靠性和等待时间),和/或
[0166]
(d)播送类型(例如,单播、组播和广播),和/或
[0167]
(e)(资源池内的)拥塞水平(例如,cbr度量)
[0168]
通过以上参数中的一个或组合进行速率匹配应用的示例如下。
[0169]
当未应用速率匹配时(即,当向最后一个符号应用删余时),速率匹配操作可以有限地应用于由于未应用速率匹配而具有相当大的性能劣化影响的mcs表(例如,256qam表)。
[0170]
另选地,速率匹配操作可以有限地应用于64qam调制阶数或更高阶数。即,速率匹配操作可以仅从64qam调制阶数开始应用,并且速率匹配操作可以不应用于16qam调制阶数
或更低阶数。
[0171]
另选地,对于相对严格要求(例如,高可靠性和低等待时间)的服务,可以有限地应用速率匹配操作。
[0172]
另选地,速率匹配操作可以有限地应用于单播操作。
[0173]
另选地,速率匹配操作可以在相对高的拥塞水平下被有限地应用(例如,出于以高概率满足服务相关需求的目的)。
[0174]
适用于本公开的通信系统的示例
[0175]
本文中描述的本公开的各种描述、功能、过程、提议、方法和/或操作流程图可以而不限于应用于需要装置之间的无线通信/连接(例如,5g)的各种领域。
[0176]
下文中,将参照附图更详细地给出描述。在以下附图/描述中,除非另有描述,否则相同的附图标记可以表示相同或对应的硬件块、软件块或功能块。
[0177]
图13例示了应用于本公开的通信系统1。
[0178]
参照图13,应用于本公开的通信系统1包括无线装置、bs和网络。本文中,无线装置表示使用rat(例如,5g nr或lte)执行通信的装置,并且可以被称为通信/无线电/5g装置。无线装置可以而不限于包括机器人100a、载具100b-1和100b-2、扩展现实(xr)装置100c、手持装置100d、家用电器100e、物联网(iot)装置100f和人工智能(ai)装置/服务器400。例如,载具可以包括具有无线通信功能的载具、自主驾驶载具以及能够执行载具间通信的载具。本文中,载具可以包括无人驾驶飞行器(uav)(例如,无人机)。xr装置可以包括增强现实(ar)/虚拟现实(vr)/混合现实(mr)装置并且可以以头戴式装置(hmd)、安装在载具中的平视显示器(hud)、电视、智能电话、计算机、可穿戴装置、家用电器装置、数字标牌、载具、机器人等形式来实现。手持装置可以包括智能电话、智能板、可穿戴装置(例如,智能手表或智能眼镜)和计算机(例如,笔记本)。家用电器可以包括tv、冰箱和洗衣机。iot装置可以包括传感器和智能仪表。例如,bs和网络可以被实现为无线装置,并且特定的无线装置200a可以相对于其它无线装置作为bs/网络节点进行操作。
[0179]
无线装置100a至100f可以经由bs 200连接到网络300。ai技术可以应用于无线装置100a至100f,并且无线装置100a至100f可以经由网络300连接到ai服务器400。可以使用3g网络、4g(例如,lte)网络或5g(例如,nr)网络来配置网络300。尽管无线装置100a至100f可以通过bs 200/网络300彼此通信,但是无线装置100a至100f可以在不经过bs/网络的情况下彼此执行直接通信(例如,副链路通信)。例如,载具100b-1和100b-2可以执行直接通信(例如,v2v/v2x通信)。iot装置(例如,传感器)可以执行与其它iot装置(例如,传感器)或其它无线装置100a至100f的直接通信。
[0180]
可以在无线装置100a至100f/bs 200或bs 200/bs 200之间建立无线通信/连接150a、150b或150c。本文中,可以通过诸如ul/dl通信150a、副链路通信150b(或d2d通信)或bs间通信(例如,中继、集成接入回程(iab))这样的各种rat(例如,5g nr)来建立无线通信/连接。无线装置和bs/无线装置可以通过无线通信/连接150a和150b彼此之间进行无线电信号的发送/接收。例如,无线通信/连接150a和150b可以通过各种物理信道发送/接收信号。为此,可以基于本公开的各种提议,执行用于发送/接收无线电信号的各种配置信息配置过程、各种信号处理过程(例如,信道编码/解码、调制/解调以及资源映射/解映射)和资源分配过程中的至少一部分。
[0181]
适用于本公开的无线装置的示例
[0182]
图14例示了适用于本公开的无线装置。
[0183]
参照图14,第一无线装置100和第二无线装置200可以通过各种rat(例如,lte和nr)发送无线电信号。本文中,{第一无线装置100和第二无线装置200}可以对应于图13中的{无线装置100x和bs 200}和/或{无线装置100x和无线装置100x}。
[0184]
第一无线装置100可以包括一个或更多个处理器102和一个或更多个存储器104,并且另外还包括一个或更多个收发器106和/或一个或更多个天线108。处理器102可以控制存储器104和/或收发器106,并且可以被配置为实现本文中公开的描述、功能、过程、提议、方法和/或操作流程图。例如,处理器102可以处理存储器104内的信息以生成第一信息/信号,然后通过收发器106发送包括第一信息/信号的无线电信号。处理器102可以通过收发器106接收包括第二信息/信号的无线电信号,然后将通过处理第二信息/信号而获得的信息存储在存储器104中。存储器104可以连接到处理器102,并且可以存储与处理器102的操作相关的各种信息。例如,存储器104可以存储软件代码,软件代码包括用于执行受处理器102控制的处理中的一部分或全部或用于执行本文中公开的描述、功能、过程、提议、方法和/或操作流程图的命令。本文中,处理器102和存储器104可以是被设计为实现rat(例如,lte或nr)的通信调制解调器/电路/芯片的一部分。收发器106可以连接到处理器102,并且通过一个或更多个天线108发送和/或接收无线电信号。收发器106中的每一个可以包括发送器和/或接收器。收发器106可以与(一个或多个)射频(rf)单元互换地使用。在本公开中,无线装置可以表示通信调制解调器/电路/芯片。
[0185]
第二无线装置200可以包括一个或更多个处理器202和一个或更多个存储器204,并且另外还包括一个或更多个收发器206和/或一个或更多个天线208。处理器202可以控制存储器204和/或收发器206,并且可以被配置为实现本文中公开的描述、功能、过程、提议、方法和/或操作流程图。例如,处理器202可以处理存储器204内的信息以生成第三信息/信号,然后通过收发器206发送包括第三信息/信号的无线电信号。处理器202可以通过收发器106接收包括第四信息/信号的无线电信号,然后将通过处理第四信息/信号而获得的信息存储在存储器204中。存储器204可以连接到处理器202,并且可以存储与处理器202的操作相关的各种信息。例如,存储器204可以存储软件代码,软件代码包括用于执行受处理器202控制的处理中的一部分或全部或用于执行本文中公开的描述、功能、过程、提议、方法和/或操作流程图的命令。本文中,处理器202和存储器204可以是被设计为实现rat(例如,lte或nr)的通信调制解调器/电路/芯片的一部分。收发器206可以连接到处理器202,并且通过一个或更多个天线208发送和/或接收无线电信号。收发器206中的每一个可以包括发送器和/或接收器。收发器206可以与rf单元可互换地使用。在本公开中,无线装置可以表示通信调制解调器/电路/芯片。
[0186]
下文中,将更具体地描述无线装置100和200的硬件元件。一个或更多个协议层可以而不限于由一个或更多个处理器102和202来实现。例如,一个或更多个处理器102和202可以实现一个或更多个层(例如,诸如phy、mac、rlc、pdcp、rrc和sdap这样的功能层)。一个或更多个处理器102和202可以根据本文中公开的描述、功能、过程、提议、方法和/或操作流程图来生成一个或更多个协议数据单元(pdu)和/或一个或更多个服务数据单元(sdu)。一个或更多个处理器102和202可以根据本文中公开的描述、功能、过程、提议、方法和/或操作
流程来生成消息、控制信息、数据或信息。一个或更多个处理器102和202可以根据本文中公开的描述、功能、过程、提议、方法和/或操作流程图来生成包括pdu、sdu、消息、控制信息、数据或信息的信号(例如,基带信号),并且将所生成的信号提供到一个或更多个收发器106和206。一个或更多个处理器102和202可以根据本文中公开的描述、功能、过程、提议、方法和/或操作流程来从一个或更多个收发器106和206接收信号(例如,基带信号)并获取pdu、sdu、消息、控制信息、数据或信息。
[0187]
一个或更多个处理器102和202可以被称为控制器、微控制器、微处理器或微型计算机。一个或更多个处理器102和202可以通过硬件、固件、软件或其组合来实现。作为示例,一个或更多个专用集成电路(asic)、一个或更多个数字信号处理器(dsp)、一个或更多个数字信号处理器件(dspd)、一个或更多个可编程逻辑器件(pld)或一个或更多个现场可编程门阵列(fpga)可以被包括在一个或更多个处理器102和202中。可以使用固件或软件来实现本文中公开的描述、功能、过程、提议、方法和/或操作流程图,并且该固件或软件可以被配置为包括模块、过程或功能。被配置为执行本文中公开的描述、功能、过程、提议、方法和/或操作流程图的固件或软件可以被包括在一个或更多个处理器102和202中或者被存储在一个或更多个存储器104和204中,以便被一个或更多个处理器102和202驱动。可以使用代码、命令和/或命令集合形式的固件或软件来实现本文中公开的描述、功能、过程、提议、方法和/或操作流程。
[0188]
一个或更多个存储器104和204可以连接到一个或更多个处理器102和202,并且存储各种类型的数据、信号、消息、信息、程序、代码、指令和/或命令。一个或更多个存储器104和204可以由只读存储器(rom)、随机存取存储器(ram)、电可擦除可编程只读存储器(eprom)、闪速存储器、硬盘驱动器、寄存器、高速缓冲存储器、计算机可读存储介质和/或其组合构成。一个或更多个存储器104和204可以位于一个或更多个处理器102和202的内部和/或外部。一个或更多个存储器104和204可以通过诸如有线或无线连接这样的各自技术连接到一个或更多个处理器102和202。
[0189]
一个或更多个收发器106和206可以将在本文的方法和/或操作流程图中提到的用户数据、控制信息和/或无线电信号/信道发送到一个或更多个其它装置。一个或更多个收发器106和206可以从一个或更多个其它装置接收本文中公开的描述、功能、过程、提议、方法和/或操作流程图中提到的用户数据、控制信息和/或无线电信号/信道。例如,一个或更多个收发器106和206可以连接到一个或更多个处理器102和202,并且发送和接收无线电信号。例如,一个或更多个处理器102和202可以执行控制,使得一个或更多个收发器106和206可以将用户数据、控制信息或无线电信号发送到一个或更多个其它装置。一个或更多个处理器102和202可以执行控制,使得一个或更多个收发器106和206可以从一个或更多个其它装置接收用户数据、控制信息或无线电信号。一个或更多个收发器106和206可以连接到一个或更多个天线108和208,并且一个或更多个收发器106和206可以被配置为通过一个或更多个天线108和208发送和接收本文中公开的描述、功能、过程、提议、方法和/或操作流程图中提到的用户数据、控制信息和/或无线电信号/信道。在本文中,一个或更多个天线可以是多个物理天线或多个逻辑天线(例如,天线端口)。一个或更多个收发器106和206可以将接收到的无线电信号/信道等从rf频带信号变换成基带信号,以便使用一个或更多个处理器102和202处理接收到的用户数据、控制信息、无线电信号/信道等。一个或更多个收发器106
和206可以将使用一个或更多个处理器102和202处理的用户数据、控制信息、无线电信号/信道等从基带信号变换成rf频带信号。为此,一个或更多个收发器106和206可以包括(模拟)振荡器和/或滤波器。
[0190]
适用于本公开的载具或自主驾驶载具的示例
[0191]
图15例示了应用于本公开的载具或自主驾驶载具。可以通过移动机器人、汽车、火车、有人/无人驾驶飞行器(av)、轮船等来实现载具或自主驾驶载具。
[0192]
参照图15,载具或自主驾驶载具100可以包括天线单元108、通信单元110、控制单元120、驱动单元140a、电源单元140b、传感器单元140c和自主驾驶单元140d。天线单元108可以被配置为通信单元110的一部分。
[0193]
通信单元110可以向诸如其它载具、bs(例如,gnb和路边单元)和服务器这样的外部装置发送信号(例如,数据和控制信号)的发送并从所述外部装置接收所述信号。控制单元120可以通过控制载具或自主驾驶载具100的元件来执行各种操作。控制单元120可以包括ecu。驱动单元140a可以使得载具或自主驾驶载具100在道路上行驶。驱动单元140a可以包括引擎、发动机、动力总成、车轮、制动器、转向装置等。电源单元140b可以向载具或自主驾驶载具100供应电力并且包括有线/无线充电电路、电池等。传感器单元140c可以获取载具状态、周围环境信息、用户信息等。传感器单元140c可以包括惯性测量单元(imu)传感器、碰撞传感器、车轮传感器、速度传感器、坡度传感器、重量传感器、航向传感器、位置模块、载具前进/后退传感器、电池传感器、燃料传感器、轮胎传感器、转向传感器、温度传感器、湿度传感器、超声波传感器、照度传感器、踏板位置传感器等。自主驾驶单元140d可以实现用于保持载具在其上驾驶的车道的技术、诸如自适应巡航控制这样的用于自动调节速度的技术、用于沿着所确定的路径自主驾驶的技术、用于通过在设定了目的地时自动设置路径来驾驶的技术等。
[0194]
例如,通信单元110可以从外部服务器接收地图数据、交通信息数据等。自主驾驶单元140d可以从所获得的数据生成自主驾驶路径和驾驶计划。控制单元120可以控制驱动单元140a,使得载具或自主驾驶载具100可以根据驾驶计划(例如,速度/方向控制)沿着自主驾驶路径移动。在自主驾驶中,通信单元110可以不定期地/定期地从外部服务器获取最近的交通信息数据,并且可以从邻近载具获取周围的交通信息数据。在自主驾驶中,传感器单元140c可以获得载具状态和/或周围环境信息。自主驾驶单元140d可以基于新获得的数据/信息来更新自主驾驶路径和驾驶计划。通信单元110可以将关于载具位置、自主驾驶路径和/或驾驶计划的信息传送到外部服务器。外部服务器可以基于从载具或自主驾驶载具收集的信息,使用ai技术等来预测交通信息数据,并且将预测的交通信息数据提供给载具或自主驾驶载具。
[0195]
适用于本公开的载具和ar/vr的示例
[0196]
图16例示了应用于本公开的载具。载具可以被实现为运输工具、飞行器、轮船等。
[0197]
参照图16,载具100可以包括通信单元110、控制单元120、存储单元130、i/o单元140a和定位单元140b。
[0198]
通信单元110可以向诸如其它载具或bs这样的外部装置发送信号(例如,数据和控制信号)并从所述外部装置接收信号。控制单元120可以通过控制载具100的构成元件来执行各种操作。存储单元130可以存储用于支持载具100的各种功能的数据/参数/程序/代码/
命令。i/o单元140a可以基于存储单元130内的信息来输出ar/vr对象。i/o单元140a可以包括hud。定位单元140b可以获取关于载具100的位置的信息。位置信息可以包括关于载具100的绝对位置的信息、关于载具100在行驶车道内的位置的信息、加速度信息以及关于载具100相对于邻近载具的位置的信息。定位单元140b可以包括gps和各种传感器。
[0199]
作为示例,载具100的通信单元110可以从外部服务器接收地图信息和交通信息,并且将接收到的信息存储在存储单元130中。定位单元140b可以通过gps和各种传感器获得载具位置信息,并且将所获得的信息存储在存储单元130中。控制单元120可以基于地图信息、交通信息和载具位置信息来生成虚拟对象,并且i/o单元140a可以将所生成的虚拟对象显示在载具中的窗口中(1410和1420)。控制单元120可以基于载具位置信息来确定载具100是否在行驶车道内正常驾驶。如果载具100异常地离开行驶车道,则控制单元120可以通过i/o单元140a将警告显示在载具中的窗口上。另外,控制单元120可以通过通信单元110向邻近载具广播关于驾驶异常的警告消息。根据情形,控制单元120可以将载具位置信息和关于驾驶/载具异常的信息发送到相关组织。
[0200]
适用于本公开的xr装置的示例
[0201]
图17例示了应用于本公开的xr装置。可以通过hmd、安装在载具中的hud、电视、智能电话、计算机、可穿戴装置、家用电器、数字标牌、载具、机器人等来实现xr装置。
[0202]
参照图17,xr装置100a可以包括通信单元110、控制单元120、存储单元130、i/o单元140a、传感器单元140b和电源单元140c。
[0203]
通信单元110可以向诸如其它无线装置、手持装置或媒体服务器这样的外部装置发送信号(例如,媒体数据和控制信号)并从所述外部装置接收所述信号。媒体数据可以包括视频、图像和声音。控制单元120可以通过控制xr装置100a的构成元件来执行各种操作。例如,控制单元120可以被配置为控制和/或执行诸如视频/图像获取、(视频/图像)编码以及元数据生成和处理这样的过程。存储单元130可以存储驱动xr装置100a/生成xr对象所需的数据/参数/程序/代码/命令。i/o单元140a可以从外部获得控制信息和数据,并且输出所生成的xr对象。i/o单元140a可以包括相机、麦克风、用户输入单元、显示单元、扬声器和/或触觉模块。传感器单元140b可以获得xr装置状态、周围环境信息、用户信息等。传感器单元140b可以包括接近传感器、照度传感器、加速度传感器、磁传感器、陀螺仪传感器、惯性传感器、rgb传感器、ir传感器、指纹识别传感器、超声波传感器、光传感器、麦克风和/或雷达。电源单元140c可以向xr装置100a供应电力,并且包括有线/无线充电电路、电池等。
[0204]
例如,xr装置100a的存储单元130可以包括生成xr对象(例如,ar/vr/mr对象)所需的信息(例如,数据)。i/o单元140a可以从用户接收用于操纵xr装置100a的命令,并且控制单元120可以根据用户的驱动命令来驱动xr装置100a。例如,当用户期望通过xr装置100a观看电影或新闻时,控制单元120通过通信单元130将内容请求信息发送到另一装置(例如,手持装置100b)或媒体服务器。通信单元130可以将诸如电影或新闻这样的内容从另一装置(例如,手持装置100b)或媒体服务器下载/流传输到存储单元130。控制单元120可以针对内容控制和/或执行诸如视频/图像获取、(视频/图像)编码和元数据生成/处理这样的过程,并且基于通过i/o单元140a/传感器单元140b而获得的关于周围空间或真实对象的信息来生成/输出xr对象。
[0205]
xr装置100a可以通过通信单元110无线连接到手持装置100b,并且xr装置100a的
操作可以受手持装置100b的控制。例如,手持装置100b可以作为xr装置100a的控制器来操作。为此,xr装置100a可以获得关于手持装置100b的3d位置的信息,生成并输出与手持装置100b对应的xr对象。
[0206]
适用于本公开的机器人的示例
[0207]
图18例示了应用于本公开的机器人。根据使用目的或领域,可以将机器人分为工业机器人、医疗机器人、家用机器人、军事机器人等。
[0208]
参照图18,机器人100可以包括通信单元110、控制单元120、存储单元130、i/o单元140a、传感器单元140b和驱动单元140c。
[0209]
通信单元110可以向诸如其它无线装置、其它机器人或控制服务器这样的外部装置发送信号(例如,驱动信息和控制信号)并从所述外部装置接收所述信号。控制单元120可以通过控制机器人100的构成元件来执行各种操作。存储单元130可以存储用于支持机器人100的各种功能的数据/参数/程序/代码/命令。i/o单元140a可以从机器人100的外部获得信息,并且将该信息输出到机器人100的外部。i/o单元140a可以包括相机、麦克风、用户输入单元、显示单元、扬声器和/或触觉模块。传感器单元140b可以获得机器人100的内部信息、周围环境信息、用户信息等。传感器单元140b可以包括接近传感器、照度传感器、加速度传感器、磁传感器、陀螺仪传感器、惯性传感器、ir传感器、指纹识别传感器、超声波传感器、光传感器、麦克风、雷达等。驱动单元140c可以执行诸如移动机器人关节这样的各种物理操作。另外,驱动单元140c可以使得机器人100在道路上行驶或飞行。驱动单元140c可以包括致动器、发动机、车轮、制动器、螺旋桨等。
[0210]
应用本公开的ai装置的示例
[0211]
图19例示了应用于本公开的ai装置。可以通过诸如tv、投影仪、智能电话、pc、笔记本、数字广播终端、平板pc、可穿戴装置、机顶盒(stb)、无线电、洗衣机、冰箱、数字标牌、机器人、载具等这样的固定装置或移动装置来实现ai装置。
[0212]
参照图19,ai装置100可以包括通信单元110、控制单元120、存储单元130、i/o单元140a/140b、学习处理器单元140c和传感器单元140d。
[0213]
通信单元110可以使用有线/无线通信技术向/从诸如其它ai装置(例如,图13的100x、200或400)或ai服务器(例如,图13的400)发送/接收有线/无线电信号(例如,传感器信息、用户输入、学习模型或控制信号)。为此,通信单元110可以将存储单元130内的信息发送到外部装置,并且将从外部装置接收的信号发送到存储单元130。
[0214]
控制单元120可以基于使用数据分析算法或机器学习算法确定或生成的信息来确定ai装置100的至少一个可行操作。控制单元120可以执行通过控制ai装置100的构成元件而确定的操作。例如,控制单元120可以请求、搜索、接收或使用学习处理器单元140c或存储单元130的数据,并且控制ai装置100的构成元件,以执行至少一个可行操作当中的预测的操作或被确定优选的操作。控制单元120可以收集包括ai装置100的操作内容和用户的操作反馈的历史信息,并且将收集到的信息存储在存储单元130或学习处理器单元140c中,或者将收集到的信息发送到诸如ai服务器(图13的400)这样的外部装置。所收集的历史信息可以被用于更新学习模型。
[0215]
存储单元130可以存储用于支持ai装置100的各种功能的数据。例如,存储单元130可以存储从输入单元140a获得的数据、从通信单元110获得的数据、学习处理器单元140c的
输出数据以及从传感器单元140获得的数据。存储单元130可以存储操作/驱动控制单元120所需的控制信息和/或软件代码。
[0216]
输入单元140a可以从ai装置100的外部获取各种类型的数据。例如,输入单元140a可以获取用于模型学习的学习数据以及将被应用学习模型的输入数据。输入单元140a可以包括相机、麦克风和/或用户输入单元。输出单元140b可以生成与视觉、听觉或触觉感觉相关的输出。输出单元140b可以包括显示单元、扬声器和/或触觉模块。感测单元140可以使用各种传感器来获得ai装置100的内部信息、ai装置100的周围环境信息和用户信息中的至少一个。传感器单元140可以包括接近传感器、照度传感器、加速度传感器、磁传感器、陀螺仪传感器、惯性传感器、rgb传感器、ir传感器、指纹识别传感器、超声波传感器、光传感器、麦克风和/或雷达。
[0217]
学习处理器单元140c可以使用学习数据来学习包括人工神经网络的模型。学习处理器单元140c可以与ai服务器(图13的400)的学习处理器单元一起执行ai处理。学习处理器单元140c可以处理通过通信单元110从外部装置接收的信息和/或存储在存储单元130中的信息。另外,学习处理器单元140c的输出值可以通过通信单元110发送到外部装置,并且可以被存储在存储单元130中。
[0218]
工业适用性
[0219]
本公开的上述实施方式适用于各种移动通信系统。
再多了解一些

本文用于企业家、创业者技术爱好者查询,结果仅供参考。

发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表

相关文献