一种残膜回收机防缠绕挑膜装置的制 一种秧草收获机用电力驱动行走机构

用于控制信息物理系统中的通信可用性的方法与流程

2022-06-01 19:02:52 来源:中国专利 TAG:


1.各种示例实施例涉及计算机网络,并且更具体地涉及用于控制信息物理系统(cps)中的通信的方法。


背景技术:

2.当前针对5g新无线电超可靠低延迟通信(5g nr urllc)、并且特别是针对工厂自动化用例的标准和产品开发需要在0.5-2毫秒的有限时间预算内提供10-5
至10-9
的通信服务可用性。此外,诸如运动控制等工业自动化用例可能要求通信服务的确定性可用性高达9位数,即,10-9
,以用于周期性业务模式。


技术实现要素:

3.示例实施例提供了一种方法,该方法包括:确定信息物理系统中的数据的通信可能不满足可用性准则,该数据的通信使用信息物理系统中用于通信的资源原始调度,确定资源紧急调度,以用于支持系统中符合可用性准则的另外的数据的通信,在数据的通信不满足可用性准则的情况下,使用资源紧急调度以用于系统中的另外的数据的通信。
4.根据另外的示例实施例,提供了一种用于信息物理系统的控制器。该控制器包括被配置为执行以下操作的部件:确定信息物理系统中的数据的通信可能不满足可用性准则,该数据的通信使用信息物理系统中用于通信的资源原始调度,确定资源紧急调度,以用于支持系统中符合可用性准则的另外的数据的通信,在数据的通信不满足可用性准则的情况下,使用资源紧急调度以用于系统中的另外的数据的通信。
5.根据另外的示例实施例,一种计算机程序包括存储在其上的指令,该指令用于执行至少以下操作:确定信息物理系统中的数据的通信可能不满足可用性准则,该数据的通信使用信息物理系统中用于通信的资源原始调度,确定资源紧急调度,以用于支持系统中符合可用性准则的另外的数据的通信,在数据的通信不满足可用性准则的情况下,使用资源紧急调度以用于系统中的另外的数据的通信。
6.根据另外的示例实施例,一种基站包括根据示例实施例的控制器。
7.根据另外的示例实施例,一种系统包括多个根据示例实施例的基站。
附图说明
8.包括附图以提供对示例的进一步理解,并且附图被并入本说明书并且构成本说明书的一部分。在附图中:
9.图1描绘了信息物理系统的图;
10.图2是根据本主题的示例的用于控制信息物理系统中的通信的方法的流程图;
11.图3是根据本主题的示例的用于控制信息物理系统中的通信的方法的流程图;
12.图4a是根据本主题的示例的信息物理系统的框图;
13.图4b是根据本主题的示例的信息物理系统的框图;
14.图5是示出根据本主题的示例的装置的示例的框图。
15.图6描绘了可以应用本主题的访问架构的示例。
具体实施方式
16.在以下描述中,出于解释而非限制的目的,阐述了诸如特定架构、接口、技术等的具体细节,以便提供对示例的透彻理解。然而,对于本领域技术人员来说很清楚的是,所公开的主题可以在背离这些具体细节的其他说明性示例中实践。在一些情况下,省略了对众所周知的设备和/或方法的详细描述,以免不必要的细节混淆本描述。
17.本主题可以实现可靠的无线电接入以及网络无线电资源的智能、敏捷和高效规划,从而为信息物理系统(例如,无线运动控制应用)提供高可用性。例如,当信息物理应用丢失通信并且进入生存时间时,网络和资源规划可以确保在生存时间到期时通信服务可用并且成功。生存时间是指例如控制应用可以容忍的时间段。例如,生存时间可以是消耗通信服务的应用可以在没有预期消息的情况下继续的时间。这可以满足严格的通信服务可用性值,即,通信服务在一个生存时间不可用之后必须以几乎100%的保证重新建立。
18.本主题可以是可扩展的并且提供高效的性能,因为可能不需要过度供应来覆盖所谓的“最坏情况”。例如,本主题可以增加信息物理系统的可用性,而不必过度供应物理和基础设施资源来保证一定的分组解码成功率。例如,本主题可以防止增加空间天线的数目、增加带宽以获取频率分集、或者部署具有多个接入点的基于云无线电接入网(c-ran)的架构以增加空间分集。因此,本主题可以节省诸如时间、频率、设备到设备(d2d)链路、多个天线等资源,这提高了效率,但降低了对信息物理系统中的负载增加的敏感性。本主题可以可靠地用于低负载情况以及高负载情况。
19.例如,可用性准则可以要求从系统中的一个设备到另一设备的数据通信在预定义最大时间段内执行和/或数据不被损害或损坏。
20.信息物理系统的设备可以被配置为执行分布式自动化应用的相应功能(例如,用于工厂自动化)。这些设备可以被配置为根据其相应功能来发送和接收消息。数据包括一个或多个消息。设备中的每个设备可能期望在某个时间点接收消息。但是,设备可能无法及时接收消息,这可能会导致违反可用性准则。使用资源紧急调度用于系统中的另外的数据的通信可以使得最终用户能够以透明方式继续执行应用,例如,最终用户可能没有意识到可用性准则没有得到满足。
21.数据的通信可以包括由一个或多个源设备向相应的一个或多个目标设备提交数据。如果数据受损和/或没有在一个或多个目标设备处被接收到和/或在目标设备处延迟被接收到,则数据的通信可能不满足可用性准则。
22.控制器可以是装置。根据示例,如果系统的设备启动由设备处的消息接收失败引起的生存时间计数器,则不满足可用性准则。
23.根据一个示例,控制器被配置为在恢复时间段内使用资源紧急调度并且在恢复时间段之后切换到系统的资源原始调度。
24.信息物理系统可以具有一组资源,该组资源启用系统的设备之间的数据通信。系统的该组资源用于确定资源紧急调度和资源原始调度。例如,在多个基站的情况下,该组资源可以是基站的共享资源和/或包括控制器的基站的资源。该组资源还可以包括基础设施
资源,例如一组中继节点、分布式或并置的多个天线形式的空间分集。
25.例如,数据可以包括由系统的至少一个源设备发送或预期将由其发送到系统的相应至少一个目标设备的至少一个消息。例如,确定数据的通信不满足可用性准则包括:由控制器标识数据的通信中涉及的至少一个目标设备以及根据可用性准则为至少一个目标设备发起紧急传输阶段以传输下一消息。资源紧急调度可以在紧急传输阶段使用(例如,作为紧急阶段操作)。紧急传输阶段可以持续恢复时间段。
26.资源时间表可以例如定义哪些设备(例如,根据优先级方案)应当被给予资源和/或应当给予多少资源来在系统中发送或接收数据。资源例如可以包括调制、信道编码和传输方案、数据通信速率、射频、专用和按需中继设备、协作基站等。
27.资源原始调度可以为系统的设备的数据通信提供资源,以遵循预定义优先级,例如,这可以定义系统的原始状态。资源紧急调度可以使用不同的优先级,其中切换包括在紧急传输阶段结束的情况下将资源紧急调度的优先级恢复到原始状态。
28.将紧急传输阶段限制在该示例中定义的恢复时间段可以支持对系统中的资源调度的高效控制。
29.根据一个示例,恢复时间段是去往或来自数据的通信中涉及的设备(目标设备)的两次连续数据传输之间的时间差。在一个示例中,恢复时间段可以是来自目标设备的应用数据的两次连续传输之间的时间差。这两个传输的数据可以被控制器接收或拦截。例如,应用数据的两次传输可以经由到第三代合作伙伴计划(3gpp)系统(例如,到3gpp系统的基站)的服务接口来执行。
30.如果数据的通信中涉及多于一个目标设备,例如,两个目标设备预期接收消息但尚未接收到消息,则恢复时间段可以是来自两个目标设备中的每个的两次连续数据传输之间的最大时间差。
31.该示例可以启用用于切换到资源原始调度的准确并且可靠的条件。
32.根据一个示例,该部件被配置为通过确定在指定时间内在数据的通信中涉及的设备(目标设备)处未接收到数据来确定数据的通信不满足可用性准则。
33.例如,目标设备和控制器中的每个可以被配置为:从预期在目标设备处接收到消息、但在该时间点尚未接收到该消息的时间点,启动生存时间计数器。生存时间计数器的启动是违反可用性准则的指示。本主题可以保证在信息物理应用的生存时间之后立即进行数据通信。这可以通过网络级别的紧急计划和立即行动来实现,以在应用的生存时间到期时保证成功的通信。
34.根据一个示例,该部件被配置为通过确定数据的通信中涉及的设备已经启动生存时间计数器来确定数据的通信不满足可用性准则。
35.根据一个示例,数据是去往系统的设备的下行链路数据或来自该设备的上行链路数据,或者是等时业务事务数据。
36.根据一个示例,该部件被配置为通过从系统的设备接收指示数据检测失败的否定确认(nack)反馈来确定数据的通信不满足可用性准则。
37.根据一个示例,该部件被配置为通过未能解码数据来确定数据的通信不满足可用性准则。
38.根据一个示例,该部件被配置为通过丢失对在数据的通信中涉及的通信信道的访
问来确定数据的通信不满足可用性准则。
39.根据一个示例,该部件被配置为通过以下方式确定资源紧急调度:标识可以重新分配给数据的通信中所涉及的设备的一组时频资源,和/或标识服务于该设备的基站的一组一个或多个相邻基站,该一组一个或多个相邻基站可以通过多节点传输或接收来增强通信服务;和/或标识系统的具有到基站的强链路的一组一个或多个中继设备,该组一个或多个中继设备可以以协作方式充当基站与设备之间的中继;和/或标识可以由基站与基站之间的信令触发的无干扰资源。所标识的可调度资源可以用于确定资源紧急调度。
40.中继设备可以用于另外的数据到目标设备的通信。强链路是能够根据预定义数据通信质量约束进行数据通信的链路,例如,数据通信质量约束可以要求数据通信的速率高于速率阈值。
41.在一个示例中,所标识的一组相邻基站每个可以包括根据本主题的控制器。在确定数据的通信可能不满足可用性准则时,控制器可以相应地通知该组相邻基站的控制器,使得该组相邻基站可以用作协作的传输器或中继器,以在紧急阶段用于另外的数据到目标设备的通信。
42.在一个示例中,为尚未启动生存时间计数器的设备而调度的资源可以被重新分配给数据的通信中所涉及的设备。
43.根据一个示例,该部件被配置为通过以下中的至少一项来使用资源紧急调度以用于系统中的另外的数据的通信:在无干扰资源上调度数据的通信中所涉及的设备,以及使用系统的中继设备用于到设备的另外的数据的通信。
44.根据一个示例,数据的通信作为分布式自动化应用的一部分被执行。分布式自动化应用支持工厂自动化或过程自动化。
45.根据一个示例,多个基站共享资源,其中系统的第一控制器被配置为通过使用共享资源和/或基站的启用数据通信的资源来执行资源紧急调度的确定。
46.这些示例可以使得每个控制器能够确定数据的通信不满足由包括该控制器的基站所覆盖的小区内的可用性准则。控制器可以为其自己的小区触发紧急阶段操作。资源紧急调度可以在所有或一组控制器之间共享和协调。
47.根据一个示例,系统的控制器被配置为通知系统的一个或多个其他控制器,从而通过其他被通知的控制器的基站来执行到设备的另外的数据的通信。
48.处于紧急传输阶段的控制器可以向其他控制器通知紧急阶段。被通知的控制器还可以接收需要在紧急传输阶段传输给目标设备的分组;以允许它们在紧急阶段通过帮助控制器来操作。
49.图1描绘了示例通信系统100。通信系统100可以例如是信息物理系统。信息物理系统可以例如实现分布式自动化应用,例如信息物理应用。分布式自动化应用可以例如支持工厂自动化,例如用于运动控制或移动机器人。在另一示例中,分布式自动化应用可以支持过程自动化,例如用于过程监测。
50.通信系统100包括控制器101。控制器101可以被配置为访问设备103a-103n的数据,该数据通过例如诸如5g网络等无线电接入网来传送。在一个示例中,该数据可以通过网络连接来传送,该网络连接包括无线局域网(wlan)连接、wan(广域网)连接、lan(局域网)连接或其组合。
51.设备103a-103n中的每个设备可以被配置为执行分布式自动化应用的分布式自动化功能。设备103a-n可以例如包括传感器、测量设备、驱动器、开关、i/o设备、编码器、用户设备(ue)等。这些功能可以有助于物理对象的控制。
52.例如,设备103a-103n中的每个设备可以被配置为通过诸如5g网络等网络与通信系统的其他设备进行数据通信。例如,通信系统100的设备103a-103n的通信可以通过网络的基站(bs)来执行。基站可以是服务于设备103a-n的服务bs。服务bs例如可以是远程无线电头端或5g节点b(gnb),具体取决于部署。在一个示例中,控制器101可以被配置为远程连接到服务bs。在另一示例中,控制器101可以是服务bs的一部分。例如,控制器101可以配备有单个或多个bs,例如在中央ran架构中。服务bs可以被配置为向每个设备103a-n递送下行链路(dl)消息。传送可以在有限时间t内执行。控制器101可以被配置为在例如1ms的一小部分的有限持续时间内侦听设备103a-n的上行链路(ul)消息。
53.例如,通信系统100可以处于“可用”状态,只要传输分组的可用性准则满足。如果在一个或多个目标设备103a-103n处接收的一个或多个分组受损和/或不及时,则通信系统100可能不可用。例如,设备103a-n中的每个设备可以被配置为从设备期望接收到消息的时刻启动生存时间计数器。
54.例如,可用性准则可能要求在预定义时间内接收到预期消息。例如,预定义时间可以至少是端到端延迟、抖动和生存时间的总和。端到端延迟是指将给定信息从源传输到目的地所花费的时间,该时间是在通信接口处测量的,从源传输该信息的时刻到该信息在目的地处被成功接收的时刻。
55.通信系统100可以被配置为根据能够满足可用性准则的资源的原始或初始调度来传送数据。然而,在某些情况下,通信系统100可能不满足可用性准则。
56.通信系统100的可靠性可以定义为成功递送(在两个方向上)消息的百分比。通信系统100可以被配置为使用多种技术进行数据传输,以便在例如用于工业自动化的有限时间预算内满足对可靠性的严格要求。例如,为了保证在典型的信噪比(snr)范围内的成功传输,可以使用多于几个数量级的分集。此外,设备103a-103n中的一些可以部署在大型机器后面,以阻挡来自大量接入点位置的信号。例如,由于时间限制和对高度可靠的反馈信令的需要,通信系统100可能不使用自动重复请求(arq)类型的重传方法。
57.通信系统100可以覆盖一个或多个小区。小区中的每个小区可以例如由通信系统100的相应基站服务。
58.图2是用于控制信息物理系统(例如,100)中的通信的方法的流程图。
59.在步骤201中,控制器101可以确定信息物理系统100中的数据通信可能不满足可用性准则。数据可以是一个或多个消息。例如,一个或多个消息中的每个消息可以由相应源设备103a-103n发送到通信系统100的目标设备103a-103n,例如,根据分布式自动化应用。因此,目标设备可能正在等待该消息。为了简化描述,可以认为数据的通信中涉及仅一个目标设备,但本主题不限于一个目标设备。
60.在第一示例中,控制器101可以确定信息物理系统100不满足可用性准则。这可以例如由控制器101通过标识或预测目标设备103a-103n的生存时间计数器的启动来执行。例如,该标识可以针对给定消息传递方向(例如,根据ul或dl进行通信的设备)或基于循环时间(例如,具有等时业务事务的设备)来执行。生存时间计数器从目标设备等待接收消息的
时刻开始;尽管生存时间计数器的启动的标识可以发生在计数器启动之前或之后。
61.目标设备的生存时间的启动的标识例如可以包括检测以下事件或故障指示符中的至少一项。
[0062]-从目标设备接收的nack反馈,该nack反馈声明早期通信尝试的检测失败。
[0063]-控制器未能解码来自目标设备103a-103n的消息(数据或控制)。这可能是由深度衰减/阻塞或强烈的瞬时干扰引起的。
[0064]-对通信信道的接入可能丢失,例如,在服务bs的信道占用时间到期的免许可频带信道中,并且用于重新获取信道接入的先听后说(lbt)尝试失败。这可以通过确定向目标设备发送数据的源设备在向目标设备发送数据之前或之后立即丢失对信道的接入来执行。在这种情况下,紧急传输阶段可以延长多个传输间隔,例如,直到服务bs重新获取信道接入。
[0065]
在第二示例中,控制器101可以确定信息物理系统100预期不满足(将不满足)可用性准则,例如,确定预期故障。为此,可以基于例如到目标设备的数据通信涉及的链路的信道状态信息(csi)预测来预期目标设备103a-103n的生存时间。在这种情况下,生存时间尚未启动,然而,由于预期失败,控制器101将为即将到来的消息的成功通信做好准备。
[0066]
例如,如果数据的通信中涉及多于一个目标设备,例如多于一个目标设备尚未接收到其预期消息,则可以为多于一个目标设备中的每个目标设备检测故障指示符的至少一部分。
[0067]
响应于确定信息物理系统100中的数据通信可能不满足可用性准则,控制器101可以在步骤203中确定系统100的资源紧急调度,以用于支持系统中符合可用性准则的另外的数据的通信(例如,可能不需要过度供应)。资源紧急调度的确定可以支持用于紧急传输阶段的准备和信令。
[0068]
资源紧急调度的确定可以包括标识通信系统100的可以用于资源紧急调度的可调度资源。所标识的可调度资源例如可以包括以下中的至少一项:
[0069]-可以重新分配给目标设备的一组时频资源。这些资源可以是动态或半静态地可标识的,并且可以在小区之间共享或者是特定于小区的,
[0070]-服务bs的一组相邻bs(例如,远程无线电头端或gnb,具体取决于部署),其可以通过多节点传输/接收(例如,协作多点(comp))增强通信服务,
[0071]-系统100的一组中继设备,其具有到服务bs的强链路并且可以以协作方式充当服务bs与目标设备之间的中继。这些中继资源可以是半静态调度的,并且目标设备可以使用这些资源用于dl传输的接收或ul消息的传输,以及
[0072]-可以通过bs之间的信令触发的无干扰资源。例如,在紧急情况下,可以为所有节点规定一组资源。在无干扰资源上调度的非紧急消息的传输可以在紧急传输阶段被丢弃,同时,目标设备可以自动知道在哪里寻找其超出生存时间的消息。
[0073]
使用所标识的可调度资源,可以定义资源紧急调度。在一个示例中,该调度可能需要较低传输速率(例如,低调制编码方案(mcs))。当服务bs有空闲资源要分配给目标设备时,这可能很有用。替代地,可以定义紧急调度,使得为系统100中的其余设备而调度的资源可以被重新分配给目标设备。例如,服务bs可以根据紧急调度取消向具有到服务bs的可靠链路的给定设备的计划传输,并且将该给定设备的资源分配给目标设备。给定设备将在消息的下一次传输中经历生存时间,但是由于到服务bs的良好信道质量,通信可用性可以很
容易恢复。
[0074]
在另一示例中,资源紧急调度可能需要在无干扰资源上调度目标设备。
[0075]
在另一示例中,资源紧急调度可能需要服务bs触发多节点传输/接收。服务bs可以根据紧急调度向协作bs通知在其上调度到目标设备的协作传输的prb/微时隙(mini-slot)的集合。
[0076]
在另一示例中,资源紧急调度可能还需要协作中继操作。中继操作可以由服务bs触发。在这种情况下,在分配给目标设备之前部署预定义协作过程(例如,寻址一组中继设备的组无线电网络临时标识符(rnti))。
[0077]
在数据的通信不满足可用性准则的情况下,可以在步骤205中使用或应用资源紧急调度以用于系统100中的另外的数据的通信。步骤205可以在紧急传输阶段执行。例如,步骤205可以仅在恢复时间段期间执行。在恢复时间段之后,控制器101可以切换到系统100中用于通信的资源原始调度。恢复时间段可以例如是来自不满足可用性准则的数据的通信中涉及的设备的两次连续(成功)数据传输之间的时间差。
[0078]
例如,另外的数据的通信包括在紧急阶段到目标设备和系统的其他设备的数据的通信。
[0079]
图3是用于控制信息物理系统(例如,100)中的通信的方法的流程图。该方法可以支持被标识为(或预期)处于生存时间中的通信链路的信令和调度。
[0080]
在步骤301中,可以监测多个故障指示器。故障指示符可以例如包括通信系统100中的ack/nack反馈或通信系统100中的信道占用。这可以使得能够确定或标识(查询步骤303)通信系统100的任何ue是否处于生存时间中。
[0081]
如果在生存时间内标识出至少一个ue,则可以声明紧急传输阶段,并且可以启动生存时间计数器。生存时间计数器可以在紧急传输阶段启动时启动,但它从预期在目标设备处接收到分组的时间开始计数。网络可以标识处于这种情况的ue,并且针对下一消息为ue发起紧急传输阶段。例如,紧急传输阶段可以例如由调度程序发起,并且通过mac层的观察失败来触发。
[0082]
可以在步骤307中执行紧急传输阶段的操作,使得在紧急传输阶段,不处于生存时间状态的用户/小区的资源可以被重新划分优先级,以保证到所标识的ue的下一次传输的确定性成功。例如,为不在生存时间内的(可能是信息物理的)ue而调度的资源可以被重新分配给所标识的ue,和/或相邻小区bs可以与所标识的ue的服务bs协作,例如,以comp传输方式,以保证下一消息去往/来自所标识的ue的成功传输。一旦紧急传输阶段结束(例如,在一个成功的传输间隔之后)并且所标识的ue的生存时间情况得到解决,则资源调度的优先级和小区bs协作就可以恢复到原始状态。
[0083]
如果在生存时间中没有标识出通信系统100的ue,则可以确定(查询步骤309)信息物理应用是否继续。如果信息物理应用继续,则可以重复步骤301-309,否则该方法可以结束。
[0084]
图4a是根据本主题的示例的信息物理系统400的框图。
[0085]
信息物理系统400包括多个小区407a-407d(或用户集群),其中每个小区包括服务于多个设备的基站。图4a进一步示出了使用总带宽409的到信息物理系统400的每个小区的示例带宽分配。
[0086]
例如,小区407a包括基站401和被标识为处于生存时间的目标设备403。如图4a所示,通过链路405从目标设备403到bs 401的数据通信受损。目标设备403由基站401标识。这可能导致bs 401触发紧急传输阶段。
[0087]
图4b示出了在所触发的紧急传输阶段如何使用资源紧急调度。根据该时间表,去往/来自具有低优先级的ue的传输被丢弃,并且相邻小区bs和中继ue协作以保证与ue 403的可靠通信,如图4b中通过将ue 403链接到相邻基站和中继ue的附加箭头所示。
[0088]
此外,可以在小区407a-407d与ue 403之间重新分配总带宽409,使得紧急资源411可以被分配给与ue 403的通信。在小区407a-407d之间重新分配带宽可以通过对ue 403划分优先级来使用。例如,分配给所有小区407a-d的带宽411的部分被分配给ue 403。这可以在紧急传输阶段被bs 401触发时根据预先指定的分配计划来实现。ue 403生存的传输/中继在指定资源之上执行。
[0089]
图5是示出根据本主题的示例的装置(例如,101)的示例的框图。
[0090]
在图5中,示出了说明装置570的配置的电路框图,装置570被配置为实现本主题的至少一部分。需要注意,图5所示的装置570可以包括除了下面描述的那些之外的几个另外的元件或功能,为了简单起见,这里省略了它们,因为它们对于理解不是必需的。此外,该装置还可以是具有类似功能的另一设备,诸如芯片组、芯片、模块等,其也可以是装置的一部分或作为单独的元件附接到该装置等。装置570可以包括处理功能或处理器571,诸如中央处理单元(cpu)等,处理功能或处理器571执行由与流控制机制相关的程序等给出的指令。处理器571可以包括专用于如下所述的特定处理的一个或多个处理部分,或者该处理可以在单个处理器中运行。例如,用于执行这种特定处理的部分也可以作为离散元件或在一个或多个另外进的处理器或处理部分中提供,诸如在一个物理处理器(如cpu)或若干物理实体中。附图标记572表示连接到处理器571的收发器或输入/输出(i/o)单元(接口)。i/o单元572可以用于与一个或多个其他网络元件、实体、终端等进行通信。i/o单元572可以是包括针对若干网络元件的通信设备的组合单元,或者可以包括具有用于不同网络元件的多个不同接口的分布式结构。附图标记573表示例如可用于存储要由处理器571执行的数据和程序和/或作为处理器571的工作存储装置的存储器。
[0091]
处理器571被配置为执行与上述主题相关的处理。特别地,装置570可以被配置为执行结合图2和图3所述的方法的至少一部分。
[0092]
处理器571被配置为确定信息物理系统(例如,100)中的数据通信可能不满足可用性准则,确定资源紧急调度,以用于支持系统中符合可用性准则的另外的数据的通信,并且在数据的通信不满足可用性准则的情况下,使用资源紧急调度以用于系统中的另外的数据的通信。
[0093]
图6描绘了可以应用本主题的接入架构的示例,即,基于高级长期演进(高级lte,lte-a)或新无线电(nr,5g)的无线电接入架构,而不将实施例限于这样的架构。对于本领域技术人员来说很清楚的是,通过适当调节参数和过程,本实施例也可以应用于具有合适部件的其他通信网络。适合系统的其他选项的一些示例是通用移动电信系统(umts)无线电接入网(utran或e-utran)、长期演进(lte,与e-utra相同)、无线局域网(wlan或wifi)、全球微波接入互操作性(wimax)、个人通信服务(pcs)、宽带码分多址(wcdma)、使用超宽带(uwb)技术的系统、传感器网络、移动自组织网络(manet)和互联网协
议多媒体子系统(ims)或其任何组合。
[0094]
图6描绘了简化系统架构的示例,其仅示出了一些元件和功能实体,它们都是逻辑单元,其实现可以与所示出的不同。图6所示的连接是逻辑连接;实际的物理连接可以不同。对于本领域技术人员来说很清楚的是,该系统通常还包括除了图6所示的功能和结构之外的其他功能和结构。
[0095]
然而,实施例不限于作为示例而给出的系统,而是本领域技术人员可以将解决方案应用于设置有必要特性的其他通信系统。
[0096]
图6的示例示出了示例性无线电接入网的一部分。
[0097]
图6示出了用户设备600和602,用户设备600和602被配置为在小区中的一个或多个通信信道上与提供小区的接入节点(诸如(e/g)nodeb)604进行无线连接。从用户设备到(e/g)nodeb的物理链路称为上行链路或反向链路,而从(e/g)nodeb到用户设备的物理链路称为下行链路或前向链路。应当理解,(e/g)节点b或其功能可以通过使用适合这种用途的任何节点、主机、服务器或接入点(ap)等实体来实现。
[0098]
通信系统通常包括多于一个(e/g)nodeb,在这种情况下,(e/g)nodeb也可以被配置为通过为该目的而设计的有线或无线链路彼此通信。这些链路可以用于信令目的。(e/g)nodeb是被配置为控制它所耦合到的通信系统的无线电资源的计算设备。nodeb也可以被称为基站、接入点、或任何其他类型的接口设备,包括能够在无线环境中操作的中继站。(e/g)nodeb包括或耦合到收发器。从(e/g)nodeb的收发器,提供有到天线单元的连接,该天线单元建立到用户设备的双向无线电链路。天线单元可以包括多个天线或天线元件。(e/g)nodeb进一步连接到核心网610(cn或下一代核心ngc)。取决于系统,cn侧的对方可以是服务网关(s-gw,路由和转发用户数据分组)、用于提供用户设备(ue)到外部分组数据网络的连接的分组数据网络网关(p-gw)、或移动性管理实体(mme)等。
[0099]
用户设备(user device)(也称为ue、用户装备(user equipment)、用户终端、终端设备等)示出了一种类型的设备,空中接口上的资源被分配和指派给该设备,并且因此本文中描述的用户设备的任何特征可以是用对应装置实现,诸如中继节点。这样的中继节点的一个示例是面向基站的第3层中继(自回程中继)。
[0100]
用户设备通常是指便携式计算设备,包括使用或不使用订户标识模块(sim)进行操作的无线移动通信设备,包括但不限于以下类型的设备:移动台(移动电话)、智能手机、个人数字助理(pda)、手机、使用无线调制解调器的设备(警报或测量设备等)、膝上型电脑和/或触摸屏计算机、平板电脑、游戏机、笔记本和多媒体设备。应当理解,用户设备也可以是几乎排他的仅上行链路设备,其中的一个示例是将图像或视频剪辑加载到网络的相机或摄像机。用户设备也可以是具有在物联网(iot)网络中操作的能力的设备,在物联网(iot)网络中,对象被提供有通过网络传输数据的能力,而无需人与人或人与计算机交互。用户设备还可以利用云。在一些应用中,用户设备可以包括带有无线电部件的小型便携式设备(诸如手表、耳机或眼镜),并且计算在云中执行。用户设备(或在一些实施例中为第3层中继节点)被配置为执行一个或多个用户设备功能。用户设备(user device)也可以称为订户单元、移动台、远程终端、接入终端、用户终端或用户装备(user equipment)(ue),仅举几个名称或装置。
[0101]
本文中描述的各种技术也可以应用于cps(例如,控制物理实体的协作计算元件的
系统)。cps可以支持嵌入在不同位置的物理对象中的大量互连ict设备(传感器、执行器、处理器微控制器等)的实现和利用。移动信息物理系统(其中所讨论的物理系统具有固有移动性)是信息物理系统的一个子类别。移动物理系统的示例包括由人类或动物运输的移动机器人和电子器件。
[0102]
此外,虽然装置已经被描绘为单个实体,但可以实现不同单元、处理器和/或存储器单元(未全部在图6中示出)。
[0103]
5g支持使用多输入多输出(mimo)天线、比lte更多的基站或节点(所谓的小小区概念),包括与小型基站协作操作并且采用各种无线电技术的宏站点,具体取决于服务需求、用例和/或可用频谱。5g移动通信支持广泛的用例和相关应用,包括视频流、增强现实、不同的数据共享方式和各种形式的机器类型应用(诸如(大规模)机器类型通信(mmtc),包括车辆安全、不同的传感器和实时控制)。预计5g将具有多个无线电接口,即,低于6ghz、厘米波(cmwave)和毫米波(mmwave),并且还可以与现有的传统无线电接入技术(诸如lte)集成。至少在早期阶段,可以将与lte的集成实现为一个系统,其中由lte提供宏覆盖并且5g无线电接口接入通过聚合到lte而来自小小区。换言之,5g计划同时支持rat间可操作性(诸如lte-5g)和ri间可操作性(无线接口间可操作性,诸如6ghz以下至cmwave、6ghz以下至cmwave至mmwave)。5g网络中考虑使用的概念中的一个是网络切片,其中可以在同一基础架构内创建多个独立并且专用的虚拟子网(网络实例)以运行对延迟、可靠性、吞吐量和移动性有不同要求的服务。
[0104]
lte网络中的当前架构完全分布在无线电中,并且完全集中在核心网中。5g中的低延迟应用和服务需要使内容靠近无线电,从而导致本地爆发和多接入边缘计算(mec)。5g使得分析和知识生成能够在数据源处进行。这种方法需要利用可能不会持续连接到网络的资源,诸如笔记本电脑、智能手机、平板电脑和传感器。mec为应用和服务托管提供分布式计算环境。它还能够在靠近蜂窝订户的地方存储和处理内容,以加快响应时间。边缘计算涵盖了广泛的技术,诸如无线传感器网络、移动数据采集、移动签名分析、协作分布式对等自组织网络和处理(其也可分类为本地云/雾计算和网格/网络计算、露计算、移动边缘计算)、薄云(cloudlet)、分布式数据存储和检索、自主自愈网络、远程云服务、增强和虚拟现实、数据高速缓存、物联网(大规模连接和/或延迟关键)、关键通信(自动驾驶汽车、交通安全、实时分析、时间关键控制、医疗保健应用)。
[0105]
通信系统还能够与诸如公共交换电话网络或互联网612等其他网络通信,或者利用由它们提供的服务。通信网络也可以能够支持云服务的使用,例如核心网操作的至少一部分可以作为云服务来执行(这在图6中由“云”614描绘)。通信系统还可以包括为不同运营商的网络提供用于例如在频谱共享中进行协作的设施的中央控制实体等。
[0106]
边缘云可以通过利用网络功能虚拟化(nfv)和软件定义网络(sdn)被引入无线电接入网(ran)。使用边缘云可以表示接入节点操作需要至少部分在操作耦合到远程无线电头端或包括无线电部件的基站的服务器、主机或节点中执行。节点操作也可以分布在多个服务器、节点或主机之间。云ran架构的应用使得ran实时功能能够在ran侧(在分布式单元du 604中)执行并且非实时功能能够以集中方式(在集中单元cu 608中)执行。
[0107]
还应当理解,核心网操作与基站操作之间的工作分配可以与lte不同,甚至不存在。可能要使用的某种其他技术进步是大数据和全ip,大数据和全ip可以改变网络的构建
和管理方式。5g(或新无线电nr)网络旨在支持多个层次结构,其中mec服务器可以放置在核心与基站或nodeb(gnb)之间。应当理解,mec也可以应用于4g网络。
[0108]
5g还可以利用卫星通信来增强或补充5g服务的覆盖范围,例如通过提供回程。可能的用例是为机器对机器(m2m)或物联网(iot)设备或车辆乘客提供服务连续性,或者确保关键通信以及未来铁路/海事/航空通信的服务可用性。卫星通信可以利用对地静止地球轨道(geo)卫星系统,也可以利用近地轨道(leo)卫星系统,特别是巨型星座(其中部署有数百个(纳米)卫星的系统)。巨型星座中的每个卫星606可以覆盖创建地面小区的若干支持卫星的网络实体。地面小区可以通过地面中继节点604或由位于地面或卫星中的gnb创建。
[0109]
对于本领域技术人员来说很清楚的是,所描绘的系统只是无线电接入系统的一部分的示例,并且在实践中,该系统可以包括多个(e/g)nodeb,用户设备可以能够接入多个无线电小区,并且该系统还可以包括其他装置,诸如物理层中继节点或其他网络元件等。(e/g)nodeb中的至少一个可以是家庭(e/g)节点b。另外,在无线电通信系统的地理区域中,可以提供多个不同种类的无线电小区以及多个无线电小区。无线电小区可以是宏小区(或伞状小区),宏小区(或伞状小区)是通常具有高达数十公里的直径的大型小区,或者无线电小区可以是较小小区,诸如微小区、毫微微小区或微微小区。图6的(e/g)nodeb可以提供这些小区中的任何种类的小区。蜂窝无线电系统可以实现为包括若干种类的小区的多层网络。通常,在多层网络中,一个接入节点提供一种或多种小区,因此需要多个(e/g)nodeb来提供这样的网络结构。
[0110]
为了满足对改进通信系统的部署和性能的需要,引入“即插即用”(e/g)nodeb的概念。通常,除了家庭(e/g)nodeb(h(e/g)nodebs)之外,能够使用“即插即用”(e/g)nodeb的网络还包括家庭节点b网关或hnb-gw(图6中未示出)。通常安装在运营商的网络内的hnb网关(hnb-gw)可以将来自大量hnb的业务聚合回核心网。
再多了解一些

本文用于企业家、创业者技术爱好者查询,结果仅供参考。

发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表

相关文献