一种残膜回收机防缠绕挑膜装置的制 一种秧草收获机用电力驱动行走机构

一种线性马达的测试方法、装置、电子设备及介质与流程

2022-06-01 17:51:35 来源:中国专利 TAG:


1.本公开涉及技术领域,尤其涉及一种线性马达的测试方法、装置、电子设备及介质。


背景技术:

2.随着科技的发展,手机等电子产品越来越智能化,为使用者带来了更好的使用体验。比如,电子产品中的触摸屏。使用者只需要触碰屏幕上的图符或者文字,即可实现对电子产品的操作,使人机交互更为直截了当。其中,触摸屏界面推动了触觉反馈技术在电子产品中的应用。
3.触觉反馈技术能通过作用力、振动等一系列动作为使用者再现触感,这一力学刺激可加强对于机械和设备的操控感。借助触觉反馈技术,电子产品制造商可以根据不同的应用场景,设置与众不同的个性化触觉反馈,从而在使用者发出不同指令时接收到不同的触觉体验,能够让使用者和电子产品产生更深入的交互。
4.其中,电子设备中的振动是一种表皮触觉反馈技术,可以通过振动告知用户其发出的指令已经被电子设备接收,同时还可以通过振动向用户发出提醒信息。比如,在电子产品内设置触控反馈,使用者打开目标应用程序的场景下,以振动作为触觉反馈,提醒使用者成功点选到目标应用程序。再比如,使用者处于游戏的场景下,为了增强游戏效果,可以定制独特的触觉反馈效果,以提升用户体验,直观无误地重建“机械”触感。
5.马达是实现触觉反馈技术的核心器件,马达的性能好坏直接影响着应用在电子产品中的触觉反馈技术效果。因此,如何对马达的性能进行全方位多角度测试,确保被使用的马达具有较高品质,是亟待解决的问题。


技术实现要素:

6.为克服相关技术中存在的问题,本公开提供一种线性马达的测试方法、装置、电子设备及介质。
7.根据本公开实施例的第一方面,提供一种线性马达的测试方法,所述测试方法包括:
8.基于接收到的操作指令,发送与所述操作指令对应的测试信号至所述线性马达;
9.获取所述线性马达基于所述测试信号产生的振动信息;其中,所述振动信息包括所述线性马达的相互垂直的多个方向的振动子信息;
10.对所述振动信息进行信号分析,确定振动波形;
11.根据所述振动波形和预存的振动设计参数,确定所述线性马达合格。
12.可选地,所述测试方法还包括:
13.获取所述线性马达基于所述测试信号产生的音频信息,其中,所述音频信息包括所述线性马达的相互垂直的多个方向的音频子信息。
14.对所述音频信息进行信号分析,确定音频频谱;
15.根据所述音频频谱和预存的音频设计参数,确定线性马达合格。
16.可选地,所述对所述音频信息进行信号分析,确定音频频谱,包括:
17.对所述音频信息在0至30khz展开,确定音频频谱。
18.可选地,所述基于接收到的操作指令,发送与所述操作指令对应的测试信号至所述线性马达,包括:
19.基于接收到的操作指令,发送扫频信号至所述线性马达。
20.可选地,所述基于接收到的操作指令,发送与所述操作指令对应的测试信号至所述线性马达,包括:
21.基于接收到的操作指令,发送正弦波信号至所述线性马达。
22.可选地,所述对所述振动信息进行信号分析,确定振动波形,包括:
23.采用经验模态分解方法对所述振动信息进行平稳化处理,确定振动波形。
24.可选地,所述振动信息包括长振动信息和/或短振动信息。
25.根据本公开实施例的第二方面,提供一种线性马达的测试装置,所述测试装置包括:
26.发送模块,用于基于接收到的操作指令,发送与所述操作指令对应的测试信号至所述线性马达;
27.获取模块,用于获取所述线性马达基于所述测试信号产生的振动信息;其中,所述振动信息包括所述线性马达的相互垂直的多个方向的振动子信息;
28.第一确定模块,用于对所述振动信息进行信号分析,确定振动波形;
29.第二确定模块,用于根据所述振动波形和预存的振动设计参数,确定所述线性马达合格。
30.可选地,所述测试装置还包括:
31.所述获取模块,还用于获取所述线性马达基于所述测试信号产生的音频信息,其中,所述音频信息包括所述线性马达的相互垂直的多个方向的音频子信息。
32.所述第一确定模块,还用于对所述音频信息进行信号分析,确定音频频谱;
33.所述第二确定模块,还用于根据所述音频频谱和预存的音频设计参数,确定线性马达合格。
34.可选地,所述第一确定模块具体用于:
35.对所述音频信息在0至30khz展开,确定音频频谱。
36.可选地,所述发送模块具体用于:
37.基于接收到的操作指令,发送扫频信号至所述线性马达。
38.可选地,所述发送模块具体用于:
39.基于接收到的操作指令,发送正弦波信号至所述线性马达。
40.可选地,所述第一确定模块具体用于:
41.采用经验模态分解方法对所述振动信息进行平稳化处理,确定振动波形。
42.可选地,所述振动信息包括长振动信息和/或短振动信息。
43.根据本公开实施例的第三方面,提供了一种电子设备,包括:
44.处理器,用于存储处理器的可执行指令的存储器;
45.其中,所述处理器被配置为执行如上所述的线性马达的测试方法。
46.根据本公开实施例的第四方面,提供了一种非临时性处理机可读存储介质,当所述存储介质中的指令由电子设备的处理器执行时,使得电子设备能够执行如上所述的线性马达的测试方法。
47.本公开的实施例提供的技术方案可以包括以下有益效果:通过获取线性马达多个方向的振动信息,并对其分析确定振动波形,进而根据振动波形和预存的振动设计参数,确定线性马达是否合格,从而及时对出现异常的线性马达进行分析和剔除,保证出厂的线性马达的性能良好,提升良品率。
48.应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本公开。
附图说明
49.此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本发明的实施例,并与说明书一起用于解释本发明的原理。
50.图1是根据一示例性实施例示出的线性马达的测试方法的流程图。
51.图2是根据一示例性实施例示出的线性马达的测试方法的流程图。
52.图3是根据一示例性实施例示出的线性马达的测试方法的流程图。
53.图4是根据一示例性实施例示出的线性马达的测试方法的流程图。
54.图5是根据一示例性实施例示出的线性马达的测试方法的流程图。
55.图6是根据一示例性实施例示出的线性马达的测试方法的流程图。
56.图7是根据一示例性实施例示出的线性马达的测试装置的框图。
57.图8是根据一示例性实施例示出的线性马达的测试系统的构架图。
58.图9是根据一示例性实施例示出的音频频谱图。
59.图10是根据一示例性实施例示出的振动信息的时域图。
60.图11是根据一示例性实施例示出的振动信息的时域图。
61.图12是根据一示例性实施例示出的振动信息的时域图。
62.图13是根据一示例性实施例示出的振动信息的时域图。
63.图14是根据一示例性实施例示出的振动信息由经验模态分解得到的若干个imf图。
64.图15是根据一示例性实施例示出的电子设备的框图。
具体实施方式
65.这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本发明相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本发明的一些方面相一致的装置和方法的例子。
66.相关技术中,应用在电子产品中的马达包括横向线性马达(x轴线性马达)和纵向线性马达(z轴线性马达)。
67.其中,纵向线性马达是垂直于电子产品的平面运动,受电子产品的厚度限制,留给纵向线性马达的可用空间很小,进而影响纵向线性马达的振动效果。而横向线性马达是平
行于电子产品的平面运动,不受电子产品厚度限制,振动初始的动力更为强劲,反应更快,具有更加出色的振动效果。因此,相较于纵向线性马达,横向线性马达更受各大电子产品制造商的喜爱。
68.横向线性马达主要应用在行业内的高端产品中,其结构精密,价格较贵。因此,线性马达在出厂前,需要进行测试,确认线性马达的品质,以保证良品投入市场。
69.相关技术中的测试方式,仅测试线性马达的沿运动方向上的其中一个面的振动信息。振动信息包括当前测试面的振动强度的最高值。但是,线性马达具有多个方向,不同方向上的面均具有各自的振动模态,仅采用单一指标去衡量线性马达的品质,并不能确认线性马达的品质。仅测量线性马达的单一方向的振动强度的最高值,无法获知线性马达在振动过程中,是否存在异常,致使测试结果不够准确。
70.为解决上述问题,本公开提出了一种线性马达的测试方法。测试方法包括,基于接收到的操作指令,发送与操作指令对应的测试信号至线性马达。获取线性马达基于测试信号产生的振动信息,其中,振动信息包括线性马达的相互垂直的多个方向的振动子信息。对振动信息进行信号分析,确定振动波形。根据振动波形和预存的振动设计参数,确定线性马达合格。使用本公开的方法能够测试线性马达多个方向的振动信息,并对其分析确定振动波形,进而根据振动波形和预存的振动设计参数,确定线性马达是否合格,从而及时对出现异常的线性马达进行分析和剔除,保证出厂的线性马达的性能良好,提升良品率。同时,通过测试后的线性马达性能优良,避免出现不良马达被应用在电子产品中,降低电子产品的使用寿命,增加维修成本等问题。
71.在一个示例性实施例中,本实施例提供了一种线性马达的测试方法,测试方法是在如图8所示的线性马达的测试系统下使用的,应用在电子设备中,电子设备比如可以是计算机等。
72.该测试系统包括线性马达1、振动传感器2、电子设备3以及工装(图中未示出),线性马达1设置在工装内,工装和电子设备3的处理器31电连接,电子设备3的处理器31控制工装旋转,使工装内的线性马达1的测试面与振动传感器2可以对应设置,以便于振动传感器2可以采集线性马达1的不同方向上的振动信息。其中,振动传感器2与电子设备3的处理器31可以进行通讯连接,以便于将采集的振动信息反馈给电子设备3的处理器31。
73.该测试系统还包括音频采集装置4,音频采集装置4与电子设备3的处理器31进行通信连接,以便于将采集到的音频信息反馈给电子设备3的处理器31。其中,为了进一步保证测试结果的准确度,本实施例中的方法在静音仓内(图中未示出)进行,比如将音频采集装置4、工装以及线性马达1置于静音仓内。静音仓可以将测试环境抑制在35dba以下,以降低环境对测试过程的干扰,保证测试结果的准确性。
74.在一个示例性实施例中,如图1所示,在本实施例中的测试方法包括:
75.s110、基于接收到的操作指令,发送与操作指令对应的测试信号至线性马达。
76.在该步骤中,操作指令比如是测试员触发的测试指令。测试员比如通过触控电子设备上的物理按键,或者,触摸电子设备上的虚拟按键,以启动测试程序,开始对线性马达进行测试。
77.其中,测试程序仅是示例性的用于解释本实施例,并不对本技术构成限制。开启线性马达的测试的方式还可以是通过第三方应用程序等,在此,并不做具体限定。
78.电子设备的处理器接收到测试员触发的测试指令,基于该指令,生成与之相匹配的测试信号,电子设备的处理器将该测试信号发送至线性马达的驱动芯片,线性马达的驱动芯片接收到测试信号,使线性马达运动并产生振动,线性马达产生的振动与其接收到的测试信号对应。其中,测试信号可以视为驱动信号,驱动信号比如可以是电压信号、电流信号等。
79.s120、获取线性马达基于测试信号产生的振动信息;其中,振动信息包括线性马达的相互垂直的多个方向的振动子信息。
80.在该步骤中,线性马达的驱动芯片在接收到电子设备的处理器所发送的测试信号后,线性马达基于测试信号开始运动。线性马达在运动过程中,线性马达会发生振动,电子设备的处理器获取线性马达在振动时的振动信息。
81.其中,振动信息包括线性马达的相互垂直的多个方向的振动子信息。线性马达比如是长方体结构,电子设备的处理器所获取的是线性马达的三个相互垂直的面的振动子信息,也可以是线性马达的两个相互垂直的面的振动子信息,亦或是,线性马达的六个相互垂直的面的振动子信息。通过采集不同方向的振动子信息,以提升测试结果的准确性。
82.在一个示例中,线性马达1的振动子信息比如可以通过振动传感器2进行采集,振动传感器2与电子设备3的处理器31建立数据传输,振动传感器2将采集到的线性马达1的振动子信息反馈给电子设备3的处理器31,电子设备3的处理器31对其进行存储。其中,振动传感器2能够检测的频率范围为10hz-20khz。
83.振动传感器2比如贴设在沿线性马达1的第一方向(参照图8所示的x轴方向)延伸的其中一个面的中轴线上,当然具体设置位置可以根据实际情况确定,只要能够保证采集到该面产生的振动信息即可。线性马达1的驱动芯片根据其接收到的测试信息驱动线性马达1运动,振动传感器2采集第一方向上的线性马达1的振动子信息,并将振动子信息反馈给电子设备3的处理器31,使电子设备3的处理器31可以对其进行存储和分析。其中,振动子信息比如可以是在预定时长内,线性马达1基于振动所产生的振动量的极值,或者,是在预定时长内,全部的振动信息。
84.当然,可以理解的是,振动传感器2在采集线性马达1沿第二方向(参照图8所示的y轴方向)的振动子信息时,振动传感器2是贴设在沿线性马达1的第二方向延伸的其中一个面上。振动传感器2在采集线性马达1沿第三方向(参照图8所示的z轴方向)的振动子信息时,振动传感器2是贴设在沿线性马达1的第三方向延伸的其中一个面上。振动传感器2采集线性马达1的第二方向和线性马达1的第三方向的振动子信息的方式与上述采集线性马达1的第一方向的方式相同,在此,不再重复赘述。
85.在本步骤中,线性马达的振动包括长振动模式和短振动模式。振动信息还包括长振动信息和短振动信息。
86.其中,线性马达的长振动模式比如是线性马达基于测试信号而产生的一种振动模式,测试信号比如可以是频率为170hz、强度为1.2v的电压信号,在此测试信号下产生的振动为长振动模式。其中,长振动模式下的振动信息即为长振动信息。
87.线性马达的短振动模式是线性马达的一种特殊振动模式,在预定时长内完成,预定时长比如是5ms-20ms。此时,驱动线性马达的测试信号为9v的电压信号,不存在频率概念。在该测试信号下产生的振动为短振动模式。其中,短振动模式下的振动信息即为短振动
信息。
88.通过模拟线性马达的长振动模式和短振动模式,分别采集振动马达的相互垂直的各个面的振动子信息,采集多种模式的测试结果,保证测试结果的多样性以及准确性。
89.s130、对振动信息进行信号分析,确定振动波形。
90.在步骤s130中,电子设备的处理器比如可以利用经验模态分解的方法,对存储后的振动信息加以分析。电子设备的处理器将分析结果以曲线图的方式表示出来,记录预定时间步长与线性马达振动所产生的振动量的极值之间的对应关系,进而确定如图10所示的振动波形图。
91.s140、根据振动波形和预存的振动设计参数,确定线性马达合格。
92.在步骤s140中,电子设备的处理器将线性马达的振动波形和预存的线性马达的振动设计参数进行比对,进而确定线性马达的品质是否合格。
93.其中,电子设备的处理器若判定出线性马达的振动波形与其预存的振动设计参数之间的误差在阈值范围内,则表示线性马达的运转性能良好,可以投入市场使用。或者,电子设备的处理器若判定出线性马达的振动波形与其预存的振动设计参数之间的误差在阈值范围外,则表示线性马达的运转存在异常。维修人员需要对存在异常的线性马达进行调试或者维修,直至线性马达的运转正常,才可被投入市场。
94.本实施例中的方法,通过采集线性马达的相互垂直的多个方向的振动子信息,并分别对每个方向的振动子信息进行信号分析,以确定每个方向上的振动波形。将振动波形与线性马达的设计参数进行比对,以确定线性马达是否合格。整个测试简单,准确度高,保证只有性能良好的线性马达才能出厂并投放在市场内。
95.同时,通过对线性马达进行测试,可以确定出设计出的马达在使用过程中的运行情况,进而为后续研发提供数据支持,以开发出性能更优的线性马达。
96.在一个示例性实施例中,如图2所示,在本实施例中的测试方法包括:
97.s210、基于接收到的操作指令,发送与操作指令对应的测试信号至线性马达。
98.本步骤中的发送测试信号的方法与上述实施例中的步骤s110所涉及到的方法完全相同,在此不再赘述。
99.s220、获取线性马达基于测试信号产生的音频信息,其中,音频信息包括线性马达的相互垂直的多个方向的音频子信息。
100.在该步骤中,线性马达的驱动芯片在接收到电子设备的处理器所发送的测试信号后,线性马达基于测试信号开始运动。线性马达在运动过程中,线性马达会发生振动。基于线性马达的振动,进而产生音频信息,电子设备的处理器获取线性马达在振动时所产生的音频信息。
101.其中,音频信息包括线性马达的相互垂直的多个方向的音频子信息。线性马达比如是长方体结构,电子设备的处理器所获取的是线性马达的三个相互垂直的面的音频子信息,也可以是线性马达的两个相互垂直的面的音频子信息,亦或是,线性马达的六个相互垂直的面的音频子信息。通过采集不同方向的音频子信息,对线性马达进行全面测试,以提升测试结果的准确度。
102.在一个示例中,线性马达1的音频子信息比如可以通过音频采集装置4进行采集(参照图8所示)。音频采集装置4与电子设备3的处理器31建立数据传输,音频采集装置4将
采集到的线性马达1的音频子信息反馈给电子设备3的处理器31,电子设备3的处理器31对其进行存储。其中,音频采集装置4比如可以是麦克风,麦克风可以采集的频率带宽为50hz-30khz。
103.音频采集装置4与线性马达1的测试面对应设置,音频采集装置4与固定线性马达1的工装之间具有预定距离。其中,预定距离比如是0.75cm-2cm,以便于音频采集装置4准确采集线性马达1的音频子信息。当然,预定距离不限于上述数值,预定距离具体以实际情况确定,只要能够保证采集到该面产生的音频信息即可。线性马达1的驱动芯片根据其接收到的测试信息驱动线性马达1运动,音频采集装置4采集线性马达1的测试面的音频子信息,并将音频子信息反馈给电子设备3的处理器31,使电子设备3的处理器31可以对其进行存储和分析。其中,音频子信息比如可以是在不同频率强度内,线性马达1振动时所产生的噪音响度。
104.s230、对音频信息进行信号分析,确定音频频谱。
105.在步骤s230中,电子设备的处理器比如可以利用傅里叶变换的方法,对存储后的音频信息加以分析。电子设备的处理器将分析结果以曲线图的方式表示出来,记录不同频率强度与线性马达振动所产生的噪音响度之间的对应关系,进而确定如图9所示的音频频谱图。
106.s240、根据音频频谱和预存的音频设计参数,确定线性马达合格。
107.在步骤s240中,电子设备的处理器将线性马达振动所产生的音频频谱和预存的线性马达的设计参数进行比对,进而确定线性马达的品质是否合格。
108.其中,电子设备的处理器若判定出线性马达的音频频谱与其预存的音频设计参数之间的误差在阈值范围内,则表示线性马达的噪音响度良好,可以投入市场使用。或者,电子设备的处理器若判定出线性马达的音频频谱与其预存的音频设计参数之间的误差在阈值范围外,则表示线性马达的噪音响度存在异常。维修人员需要对存在异常的线性马达进行调试或者维修,直至线性马达的噪音响度控制在设计范围内,才可被投入市场。
109.本实施例中的方法,通过采集线性马达的相互垂直的多个方向的音频子信息,并分别对每个方向的音频子信息进行信号分析,以确定每个方向上的音频频谱。将不同频率强度下线性马达的噪音响度与线性马达的设计参数进行比对,以确定线性马达的噪音响度是否符合标准。对线性马达全方位的测试,保证线性马达的测试结果的准确性。
110.在此,需要说明的是,对于上述两个实施例可以同时进行,即同时实施步骤s110至步骤s140,以及步骤s210至步骤240,以同时对线性马达在振动过程中产生的物理振动和音频进行采集和分析,提高测试速度,提升测试全面性。
111.在一个示例性实施例中,如图3所示,在本实施例中的测试方法包括:
112.s310、基于接收到的操作指令,发送与操作指令对应的测试信号至线性马达。
113.s320、获取线性马达基于测试信号产生的音频信息,其中,音频信息包括线性马达的相互垂直的多个方向的音频子信息。
114.s330、对音频信息在0至30khz展开,确定音频频谱。
115.在该步骤中,将振动信息利用傅里叶变换的方法转换成音频信息,确定如图9所示的音频频谱图。
116.其中,如图9所示的音频频谱图,可以看出,线性马达在处于2khz以上振动频率强
度时,其噪音响度相较于初始振动频率强度的噪音响度,至少下降了80dba,噪音响度小于45dba。
117.s340、根据音频频谱和预存的音频设计参数,确定线性马达合格。
118.本实施例中的方法,线性马达的不同方向存在不同的振动模态,通过采集线性马达在振动时的不同方向的音频子信息,以确定音频频谱。若音频频谱发生异常,则表示线性马达出现异物不良的问题等,便于维修人员及时处理。
119.在一个示例性实施例中,如图4所示,在本实施例中的测试方法包括:
120.s410、基于接收到的操作指令,发送扫频信号至线性马达。
121.在该步骤中,操作指令比如是测试员触发的测试指令,以开始对线性马达进行测试。电子设备的处理器接收到测试员触发的测试指令,基于该指令,生成与之相匹配的测试信号。测试信号比如是扫频信号,电子设备的处理器以额定电压值驱动线性马达运动,并发送扫频信号至线性马达的驱动芯片,以确定线性马达的实际运行参数。
122.线性马达在生产时,每个线性马达的设计参数与实际参数会存在生产误差。其中,参数比如是谐振频率。若线性马达不能以实际谐振频率运行,线性马达的振动效果无法发挥到最大,影响测试结果的准确度。因此,在测试线性马达是否合格之前,还需要确定线性马达实际的谐振频率,并以该实际的谐振频率去驱动线性马达振动,保证线性马达的测试结果的准确性。
123.在该步骤中,电子设备的处理器以额定电压值驱动马达运动后,电子设备的处理器以扫射的方式发送扫频信号,扫频信号比如是80hz-200hz之间的频率。频率由低到高连续变化,以确定线性马达的实际的谐振频率。
124.在一个示例中,电子设备的处理器以80hz为起点,发送不同频率的扫频信号至线性马达。不同频率的扫频信号比如是每200ms在80hz的基础上增加1hz,直至达到200hz。在发送扫频信号过程中,同时采集线性马达在不同频率下的振动量。选取振动量最大的频率点为该线性马达实际的谐振频率f0,并以f0运行,使线性马达的振动效果发挥至极致状态。
125.s420、获取线性马达基于测试信号产生的振动信息;其中,振动信息包括线性马达的相互垂直的多个方向的振动子信息。
126.s430、对振动信息进行信号分析,确定振动波形。
127.s440、根据振动波形和预存的振动设计参数,确定线性马达合格。
128.本实施例中的方法,确定线性马达的实际的设计参数,并以实际的设计参数为依据,驱动线性马达,保证线性马达运行时的振动效果,提升了测试结果的准确度。
129.在一个示例性实施例中,如图5所示,在本实施例中的测试方法包括:
130.s510、基于接收到的操作指令,发送正弦波信号至线性马达。
131.在该步骤中,操作指令比如是测试员触发的测试指令,启动对线性马达的测试程序。电子设备的处理器接收到测试员触发的测试指令,基于该指令,生成与之相匹配的测试信号。测试信号比如是正弦波信号,电子设备的处理器以额定电压值驱动线性马达运行,并发送正弦波信号至线性马达的芯片,以确定线性马达的振动状态。
132.受线性马达本身所存在的特性所致,线性马达在生产时,不同的线性马达存在不同的参数,参数比如是谐振频率。
133.在该步骤中,电子设备的处理器以实际的谐振频率驱动线性马达振动,并赋值为
该线性马达额定电压值,可以获得更准确的测试结果。其中,实际的谐振频率即可视为一个正弦波信号。通过发送正弦波信号,可以更加准确的测试线性马达的品质,避免存有瑕疵的线性马达被投入市场。
134.s520、获取线性马达基于测试信号产生的振动信息;其中,振动信息包括线性马达的相互垂直的多个方向的振动子信息。
135.s530、对振动信息进行信号分析,确定振动波形。
136.s540、根据振动波形和预存的振动设计参数,确定线性马达合格。
137.本实施例中的方法,以线性马达实际的谐振频率为一个正弦波信号,发送给线性马达,可以更加准确的测试线性马达的品质,避免存有瑕疵的线性马达被投入市场。
138.在一个示例性实施例中,如图6所示,在本实施例中的测试方法包括:
139.s610、基于接收到的操作指令,发送与操作指令对应的测试信号至线性马达。
140.s620、获取线性马达基于测试信号产生的振动信息;其中,振动信息包括线性马达的相互垂直的多个方向的振动子信息;
141.s630、采用经验模态分解方法对振动信息进行平稳化处理,确定振动波形。
142.在该步骤中,电子设备的处理器对存储后的振动信息进行平稳化处理,以确定线性马达振动过程中的振动波形。
143.在一个示例中,振动传感器对应贴设于线性马达的测试面,采集线性马达的振动信息,采集到的初始振动信息视为线性马达的原始信号,根据原始信号的极值点,分别绘制出如图10所示的上、下包络线。其中,极值点包括线性马达的振动量的最大值和最小值,最大值之间的连续曲线为上包络线,最小值之间的连续曲线为下包络线。
144.利用经验模态分解(empirical mode decomposition,简称emd),求出上包络线和下包络线的均值,画出如图11所示的均值包络线。通过原始信号与均值包络线的均值,以得到如图12所示的线性马达的中间信号时域图。
145.振动传感器采集到的振动波形是由多个模态的叠加而成,利用emd将采集到的原始信号进行分解至有限个本征模函数(intrinsic mode function,简称imf),以得到有效的imf分量,提高emd的分析效果。
146.对中间信号进行判定:若中间信号满足imf,则该中间信号为imf的一个分量。若不满足imf,则以该中间信号作为原始信号,如图13所示新的原始信号的时域图,再次进行分解,直至得到有效的imf的分量。
147.当获取到第一个有效的imf分量后,用原始信号减去imf1,作为新的原始信号,继续进行分析,以得到imf2,依次类推,完成emd的分解,得出如图14所示的通过emd分解得到的若干个imf图。
148.s640、根据振动波形和预存的振动设计参数,确定线性马达合格。
149.在步骤s640中,电子设备将振动波形的各模态频率与线性马达的预存的设计频率进行比对,以确定线性马达是否合格。
150.在一个示例中,线性马达的振动波形的各模态频率小于四倍的线性马达的预存的设计频率,则表明线性马达的整体性能良好。
151.线性马达的第二方向上的测试面的最强振动模态频率与线性马达的设计频率之间存在差值,则表明线性马达为不合格产品。
152.线性马达的第一方向上的测试面的最强振动模态频率,以及线性马达的第三方向上的测试面的最强振动模态频率与二倍的线性马达的设计频率出现差值,则表明线性马达为不合格产品。
153.在此,需要说明的是,上述关于振动波形和预存的振动设计参数的比对仅为示例性说明,用于解释本实施例,并不对本技术构成限制。
154.本实施例中的方法,利用经验模态分解完成对线性马达的振动信息的分析,综合评断线性马达的测试结果,提升线性马达整体的测试结果的准确度。
155.在一个示例性实施例中,如图7所示,本实施例中的测试装置包括:
156.发送模块110、获取模块120、第一确定模块130以及第二确定模块140。本实施例中的装置用于实现如图11所示的线性马达的测试方法。
157.在本实施例中,发送模块110,用于基于接收到的操作指令,发送与操作指令对应的测试信号至线性马达。获取模块120,用于获取线性马达基于测试信号产生的振动信息;其中,振动信息包括线性马达的相互垂直的多个方向的振动子信息。第一确定模块130,用于对振动信息进行信号分析,确定振动波形。第二确定模块140,用于根据振动波形和预存的振动设计参数,确定线性马达合格。
158.在一个示例性实施例中,如图7所示,本实施例中的测试装置包括:
159.发送模块110、获取模块120、第一确定模块130以及第二确定模块140。本实施例中的装置用于实现如图11所示的线性马达的测试方法。
160.在本实施例中,获取模块120还用于,获取线性马达基于测试信号产生的音频信息,其中,音频信息包括线性马达的相互垂直的多个方向的音频子信息。第一确定模块130还用于,对音频信息进行信号分析,确定音频频谱。第二确定模块140还用于,根据音频频谱和预存的音频设计参数,确定线性马达合格。
161.在一个示例性实施例中,如图7所示,本实施例中的测试装置包括:
162.发送模块110、获取模块120、第一确定模块130以及第二确定模块140。本实施例中的装置用于实现如图11所示的线性马达的测试方法。
163.在本实施例中,第一确定模块130具体还用于,对音频信息在0至30khz展开,确定音频频谱。
164.在一个示例性实施例中,如图7所示,本实施例中的测试装置包括:
165.发送模块110、获取模块120、第一确定模块130以及第二确定模块140。本实施例中的装置用于实现如图11所示的线性马达的测试方法。
166.在本实施例中,发送模块110具体还用于,基于接收到的操作指令,发送扫频信号至线性马达。
167.在一个示例性实施例中,如图7所示,本实施例中的测试装置包括:
168.发送模块110、获取模块120、第一确定模块130以及第二确定模块140。本实施例中的装置用于实现如图11所示的线性马达的测试方法。
169.在本实施例中,发送模块110具体还用于,基于接收到的操作指令,发送正弦波信号至线性马达。
170.在一个示例性实施例中,如图7所示,本实施例中的测试装置包括:
171.发送模块110、获取模块120、第一确定模块130以及第二确定模块140。本实施例中
的装置用于实现如图11所示的线性马达的测试方法。
172.在本实施例中,第一确定模块130具体还用于,采用经验模态分解方法对振动信息进行平稳化处理,确定振动波形。
173.如图15所示是一种电子设备的框图。本公开还提供了一种电子设备,包括处理器,用于存储处理器的可执行指令的存储器。其中,处理器被配置为执行如图1至图6所示的线性马达的测试方法。
174.电子设备300可以包括以下一个或多个组件:处理组件302,存储器304,电力组件306,多媒体组件308,音频组件310,输入/输出(i/o)的接口312,传感器组件314,以及通信组件316。
175.处理组件302通常控制电子设备300的整体操作,诸如与显示,电话呼叫,数据通信,相机操作和记录操作相关联的操作。处理组件302可以包括一个或多个处理器320来执行指令,以完成上述的方法的全部或部分步骤。此外,处理组件302可以包括一个或多个模块,便于处理组件302和其他组件之间的交互。例如,处理组件302可以包括多媒体模块,以方便多媒体组件308和处理组件302之间的交互。
176.存储器304被配置为存储各种类型的数据以支持在电子设备300的操作。这些数据的示例包括用于在电子设备300上操作的任何应用程序或方法的指令,联系人数据,电话簿数据,消息,图片,视频等。存储器304可以由任何类型的易失性或非易失性存储设备或者它们的组合实现,如静态随机存取存储器(sram),电可擦除可编程只读存储器(eeprom),可擦除可编程只读存储器(eprom),可编程只读存储器(prom),只读存储器(rom),磁存储器,快闪存储器,磁盘或光盘。
177.电力组件306为电子设备300的各种组件提供电力。电力组件306可以包括电源管理系统,一个或多个电源,及其他与为设备300生成、管理和分配电力相关联的组件。
178.多媒体组件308包括在电子设备300和用户之间的提供一个输出接口的屏幕。在一些实施例中,屏幕可以包括液晶显示器(lcd)和触摸面板(tp)。如果屏幕包括触摸面板,屏幕可以被实现为触摸屏,以接收来自用户的输入信号。触摸面板包括一个或多个触摸传感器以感测触摸、滑动和触摸面板上的手势。触摸传感器可以不仅感测触摸或滑动动作的边界,而且还检测与触摸或滑动操作相关的持续时间和压力。在一些实施例中,多媒体组件308包括一个前置摄像头和/或后置摄像头。当电子设备300处于操作模式,如拍摄模式或视频模式时,前置摄像头和/或后置摄像头可以接收外部的多媒体数据。每个前置摄像头和后置摄像头可以是一个固定的光学透镜系统或具有焦距和光学变焦能力。
179.音频组件310被配置为输出和/或输入音频信号。例如,音频组件310包括一个麦克风(mic),当电子设备300处于操作模式,如呼叫模式、记录模式和语音识别模式时,麦克风被配置为接收外部音频信号。所接收的音频信号可以被进一步存储在存储器304或经由通信组件316发送。在一些实施例中,音频组件310还包括一个扬声器,用于输出音频信号。
180.i/o接口312为处理组件302和外围接口模块之间提供接口,上述外围接口模块可以是键盘,点击轮,按钮等。这些按钮可包括但不限于:主页按钮、音量按钮、启动按钮和锁定按钮。
181.传感器组件314包括一个或多个传感器,用于为电子设备300提供各个方面的状态评估。例如,传感器组件314可以检测到电子设备300的打开/关闭状态,组件的相对定位,例
如组件为电子设备300的显示器和小键盘,传感器组件314还可以检测电子设备300或电子设备300一个组件的位置改变,用户与电子设备300接触的存在或不存在,电子设备300方位或加速/减速和设备300的温度变化。传感器组件314可以包括接近传感器,被配置用来在没有任何的物理接触时检测附近物体的存在。传感器组件314还可以包括光传感器,如cmos或ccd图像传感器,用于在成像应用中使用。在一些实施例中,该传感器组件314还可以包括加速度传感器,陀螺仪传感器,磁传感器,压力传感器或温度传感器。
182.通信组件316被配置为便于电子设备300和其他设备之间有线或无线方式的通信。电子设备300可以接入基于通信标准的无线网络,如wifi,2g或3g,或它们的组合。在一个示例性实施例中,通信组件316经由广播信道接收来自外部广播管理系统的广播信号或广播相关信息。在一个示例性实施例中,通信组件316还包括近场通信(nfc)模块,以促进短程通信。例如,在nfc模块可基于射频识别(rfid)技术,红外数据协会(irda)技术,超宽带(uwb)技术,蓝牙(bt)技术和其他技术来实现。
183.在示例性实施例中,电子设备300可以被一个或多个应用专用集成电路(asic)、数字信号处理器(dsp)、数字信号处理设备(dspd)、可编程逻辑器件(pld)、现场可编程门阵列(fpga)、控制器、微控制器、微处理器或其他电子元件实现,用于执行上述方法。
184.本公开一个示例性实施例中提供的一种非临时性处理机可读存储介质,例如包括指令的存储器304,上述指令可由电子设备300的处理器320执行以完成上述方法。例如,处理机可读存储介质可以是rom、随机存取存储器(ram)、cd-rom、磁带、软盘和光数据存储设备等。当存储介质中的指令由电子设备的处理器执行时,使得电子设备能够执行上述图1至图6所示的方法。
185.本领域技术人员在考虑说明书及实践这里公开的发明后,将容易想到本发明的其它实施方案。本技术旨在涵盖本发明的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本发明的一般性原理并包括本公开未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本发明的真正范围和精神由下面的权利要求指出。
186.应当理解的是,本发明并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。本发明的范围仅由所附的权利要求来限制。
再多了解一些

本文用于企业家、创业者技术爱好者查询,结果仅供参考。

发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表

相关文献