一种残膜回收机防缠绕挑膜装置的制 一种秧草收获机用电力驱动行走机构

红外图像传感器的制作方法

2022-06-01 09:37:48 来源:中国专利 TAG:

红外图像传感器
1.本技术是申请号为“201780076168.2”,申请日为“2017年12月5日”,题目为“红外图像传感器”的中国专利申请的分案申请。
2.本专利申请要求法国专利申请fr16/62079的优先权权益,该专利申请通过引用结合在此。
技术领域
3.本公开涉及红外成像领域,并且更具体地涉及红外图像传感器。


背景技术:

4.红外成像装置,例如一般情况下的红外相机,用于形成与来自观察场景的红外通量(即场景元件的温度)相关的图像。对于热成像应用,应提供对这些温度的估计。该相机特别包括适配的聚焦光学系统和放置在光学系统焦点处的红外图像传感器。
5.图1a示出了这种红外图像传感器1。传感器1包括以阵列布置并且能够在室温下操作的像素3的组件。像素阵列3耦合到读出集成电路5(roic),其被提供以产生与到达每个像素的辐射通量相关的电子信号s。该装置包括处理单元7(p),其能够处理信号s并从中推断出场景元件的温度t的估计。处理单元7包括计算设备和存储器,并且优选地布置在传感器1的紧邻处。该单元也可以是远程计算机。
6.图1b是沿图1a中所示的平面b-b的传感器1的像素3的示例的截面图。传感器1是测热辐射型的,能够在室温下操作。像素3在覆盖有金属反射器12的基板10上方包括由臂16悬挂的平面测热辐射膜14。臂16具有高热阻,其对于所有传感器像素,在膜14和基板10之间是均匀的。测热辐射膜在本实例中包括吸收金属层20和测量层22。层20和22中的每一个布置在介电支撑件和分离层23之间。测量层22由其电阻根据温度变化的材料制成,并在其端部处设有触点c1和c2。形成膜14的层的堆叠的厚度通常处于100nm的量级,或者可以更大,例如,高达1μm的量级。
7.场景的每个元件根据与被考虑元件的发射率加权的黑体辐射的普朗克定律相对应的发射光谱来发射红外辐射。在聚焦平面水平处接收到的辐射的波长基本上在7至14μm的范围内。在一般情况下,热观察系统确实被设计成提供7至14μm之间的最大灵敏度和在该范围之外的可忽略的灵敏度,其对应于室温下黑体的最大发射范围。这种辐射被与场景元件相对的像素的膜吸收。为了实现这一点,在每个像素3中,测热辐射膜和反射器之间的距离d基本上为2.5μm,即,相关波长范围的中心波长的大约四分之一。由于臂16的热阻,吸收的辐射引起膜的加热与接收到的辐射的功率成比例。因此,膜温度是场景元件温度的函数。根据其确定膜温度的信号s由读出信号5基于触点c1和c2之间的层22的电阻的测量值而产生。
8.膜温度取决于场景元件的温度和该元件的发射率两者。为了确定场景元件的温度t,处理单元7应该考虑该元件的发射率e。换句话说,例如,根据发射表面的材料或纹理,发射率值的不准确性(其可能从场景的一个元件到另一个元件显着地变化)影响所确定的温
度的值。这导致如此确定的温度的准确性不足。此外,将场景元件的发射率提供给处理单元引起了各种实际使用和实现问题。


技术实现要素:

9.实施例提供了一种红外图像传感器,其克服了全部或部分的上述缺点。
10.因此,实施例提供了一种红外图像传感器,包括在支撑件上的多个第一像素和多个第二像素,用于检测由场景元件发射的红外辐射,每个像素包括悬挂在覆盖支撑件的反射器上方的测热辐射膜,每个第一像素的反射器覆盖有第一介电层,并且每个第二像素的反射器覆盖有其光学特性不同于第一介电层的第二介电层。
11.根据实施例,光学特性差异来自以下列表中的至少一个特征:第一和第二介电层具有不同的厚度;第一和第二介电层由具有不同折射率的材料制成;第一层具有网状图案,并且第二层是连续的;以及第一层和第二层在第一层和第二层中具有不同的网状图案。
12.根据实施例,第一层的网状图案在第一层的整个厚度上延伸。
13.根据实施例,传感器包括第一像素中的一个和第二像素中的一个的像素对的阵列。
14.根据实施例,所有所述像素的测热辐射膜在结构上相同,并且所有像素的反射器在结构上相同。
15.根据实施例,第一和第二像素以棋盘布局布置。
16.根据实施例,传感器用于检测波长小于25μm的辐射。
17.根据实施例,传感器用于检测具有位于波长范围内的波长的辐射,膜和所述介电层之间的每个像素中的距离等于位于所述范围的中心部分中的波长的四分之一。
18.根据实施例,所述范围在7和14μm之间延伸,并且所述距离在2到3μm的范围内。
19.根据实施例,对于第一介电层,厚度与折射率的乘积等于第一波长的四分之一,并且对于第二介电层,厚度与折射率的乘积等于第二波长的四分之一,第一和第二波长位于所述范围内并且彼此不同。
20.根据实施例,第一和第二介电层由相同的材料制成并且具有相同的厚度,将测热辐射膜与介电层分开的距离在第一和第二像素中是相同的。
21.根据实施例,每个第一介电层具有网状图案,其由在平行于层平面的方向上具有小于所述范围的最小波长的三分之一的尺寸的元件形成。
22.根据实施例,第一和第二介电层由非晶硅制成。
23.根据实施例,传感器包括用于读出表示第一和第二相邻像素的测热辐射膜的温度的第一值的电路。
24.根据实施例,传感器包括处理单元,该处理单元能够基于第一值确定场景元件的温度或发射率。
25.根据实施例,处理单元能够实现以下步骤:a)定义一对初始估计温度和发射率值;b)计算第二值,所述第二值表示在场景元件的温度和发射率是温度和发射率的估计的值的情况下所述相邻像素的测热辐射膜根据理论模型将具有的温度;c)计算第一值和相应的第二值之间的差异;d)基于所述差异产生新的估计温度和发射率值;e)基于新的估计值重复步骤b)、c)和d)以减小所述差异。
26.根据实施例,传感器还包括多个第三像素,用于检测由外部场景发射的红外辐射,每个第三像素包括悬挂在覆盖支撑件的反射器上方的测热辐射膜,其中反射器没有覆盖介电层。
27.另一个实施例提供了一种像素,该像素包括悬挂在覆盖支撑件的反射器上方的测热辐射膜,该反射器覆盖有具有网状图案的介电层。
28.另一个实施例提供了如上所述的像素阵列,其所述网状图案是相同的。
附图说明
29.结合附图在特定实施例的下面的非限制性描述中将详细讨论前述和其他特征和优点,其中:
30.图1a示意性地示出了红外图像传感器;
31.图1b是图1a的传感器的像素的简化截面图;
32.图2a示意性地示出了红外图像传感器的实施例;
33.图2b是图2a的两个像素的简化截面图;
34.图3示出了根据辐射波长的各种类型像素的红外辐射吸收曲线;
35.图4示出了获得温度值的方法;
36.图5a是红外图像传感器的实施例的两个像素的简化截面图;和
37.图5b是图5a的像素的简化截面图。
具体实施方式
38.在各个附图中,相同的元件用相同的附图标记表示,并且进一步各个附图未按比例绘制。为清楚起见,仅示出了并且详细描述了对理解所描述的实施例有用的那些步骤和元件。特别是,没有详细示出膜支撑臂。
39.在以下描述中,当参考限定相对位置的术语时,例如术语“顶部”、“上部”、“下部”等,或者对于限定取向的术语,例如术语“横向”,参考关于有关图纸附图中有关元件的取向。术语“基本上”在本文中用于表示所讨论的值的
±
10%,优选地
±
5%的公差。
40.在以下描述中,术语“折射率”表示具有可忽略的虚部的折射率的实部。
41.图2a示出了红外图像传感器30的实施例。传感器30包括分别为第一类型和第二类型的像素对32、34的阵列。一对像素32和34是并列的,阵列的像素32和34例如以棋盘布局布置。传感器30包括耦合到像素32和34的读出电路36(roic)。提供读出电路36以产生表示测热辐射膜的温度并由处理单元38(p)处理的信号s。提供处理单元38以确定实现方法的场景的元件的温度t,其示例将在下文中结合图4进行描述。此外,可以提供处理单元38以确定场景元件的发射率e。
42.图2b是沿着图2a的平面b-b的相邻像素32和34的截面图。
43.像素32和34中的每一个包括图1b的像素3的元件。作为示例,这些元件在结构上对于两种像素类型是相同的,即,这些材料由根据基本相同尺寸的相同配置布置的相同材料制成。因此,像素32和34中的每一个包括测热辐射膜14,其包括例如由氮化钛制成的吸收层20,以及例如由非晶硅制成的测量层22,每个层20、22布置在例如由氮化硅或氮化物或氧化物制成的介电层23之间。每个像素32的测量层22设有触点c11和c12,并且每个像素34的测
量层22设有触点c21和c22。每个像素的测热辐射膜14由臂16悬挂在覆盖支撑件10(例如半导体基板)的金属反射器12上方。
44.作为示例,读出电路36形成在衬底10的内部和顶部,并且每个像素通过位于臂16中的电连接耦合到读出电路36。作为示例,像素以10至40μm的范围内的间距横向重复,该间距基本上对应于像素的横向尺寸。
45.与图1a和1b的像素3不同,像素32和34中的每一个包括分别为40和42的布置在反射器12上的介电层。像素32和34的介质层40和42的光学特性不同。在所示的示例中,介电层40和42具有相同的厚度,但是由具有不同折射率的材料制成。这些层也可以由相同的材料制成并具有不同的厚度。作为示例,层40和42的材料可以是硅,例如,非晶硅、锗、或者可以包含硅和锗两者。
46.传感器30例如用于检测波长小于25μm,例如,小于20μm,并且频率大于12thz,例如,大于15thz的红外辐射。
47.作为示例,传感器30用于检测位于从7延伸到14μm的范围内的红外辐射。在像素32和34中的每一个中,将测热辐射膜14的下表面与介电层的上表面分开分别为d1和d2的距离等于位于该范围的中心部分的波长的四分之一,对于例如从7延伸到14μm的范围,这对应于例如在2到3μm的范围内的距离d1和d2。因此,距离d1和d2可以是不同的,并且每个距离在2和3μm之间。作为示例,距离d1和d2基本上相等,例如,为2.5μm,即,然后与图1b的像素3中的将测热辐射膜与反射器分开的距离d相同。
48.像素32和34中的不同介电层40、42的存在为像素提供了不同的吸收特性。
49.图3示出了根据辐射的波长λ,由图1b的像素3的膜14和图2b的像素32和34的膜14吸收红外辐射的光谱的示例。曲线50、52和54分别对应于像素3、32和34,并且已经通过数字模拟获得。
50.在图3的示例中,选择介电层40和42的厚度和折射率,使得对于分别接近12.5μm(曲线52)和8.5μm(曲线54)的波长,破坏性干涉出现在膜14的水平处。这种特定的干涉条件强烈地降低了膜对这种波长的吸收,在所示的例子中吸收接近于零。在该示例中,一方面,像素32的介电层40具有1μm的厚度以及接近于非晶硅的折射率的3.5的折射率,并且另一方面,像素34的介电层42具有1μm的厚度以及2.15的折射率。在每个像素32、34中,获得具有接近于等于介电层(分别为40、42)的折射率乘以该层厚度的乘积的四倍的值的波长的辐射的吸收的减少。该值对于像素32和34是不同的,并且在7到14μm的范围内。因此,像素32和34的吸收特性在该范围内是不同的。因此,介电层40和42的厚度可以在0.5至3μm的范围内,并且折射率在1.5至4的范围内。
51.当图1b的像素3从场景元件接收波长在7到14μm范围内的辐射时,像素3的膜14的温度由一般辐射产生,这是因为辐射被吸收超过所有相关波长的50%。相反,当像素32和34接收到辐射时,像素32的膜14的温度主要来自波长小于约11μm的辐射部分,并且像素34的膜14的温度主要来自于波长大于约11μm的辐射部分。
52.对于接收红外辐射的两个相邻像素32和34,读出电路36通过测量分别在触点c11和c12以及触点c21和c22之间的测量层22的电阻来确定表示两个像素的测热辐射膜的相应温度的信号的两个值v1和v2。在接收的辐射源自相同的场景元件或源自具有不可分辨的发射率和温度的场景元件的情况下,两个值v1和v2使处理单元38能够同时确定场景元件的温
度和发射率,这是由于像素32和34的不同吸收特性,将在下文中在示例的上下文中看到。
53.因此,在实践中一般情况下,在场景元件的发射率值未被准确知道的情况下,可以通过使用像素32和34而不是使用图1b的像素3来更精确地确定场景元件的温度。
54.此外,传感器类型的传感器30能够在不事先知道场景元件的发射率的情况下确定场景元件的温度,这对于图1的传感器类型的传感器1是不可能的。
55.此外,用户不需要手动提供发射率值来确定场景元件的温度。因此温度测量特别方便。
56.此外,对于包括具有不同发射率的元件的场景,图1b和图1a中类型的传感器的用户实际上不能提供每个场景元件的发射率。然后,用户被引导提供不适合于每个场景元件的共同发射率值,这使得所确定的温度不准确。相反,在传感器类型的传感器3中,在没有用户的人工干预的情况下为每个场景元件获得不同的发射率值,并且由此确定的温度特别准确。
57.图4示出了由处理单元38实现的方法的示例,该方法从表示相邻像素32和34的测热辐射膜的温度值的两个测量值v1和v2获得场景元件的温度tm。
58.该方法包括重复迭代的示例。每次迭代将一对估计的发射率和温度值ee和te作为起始点,并确定一对新的估计值,这些估计值将用作下一次迭代的起始点。在第一次迭代中,估计值ee和te是先前已经选择的相应初始值ei和ti,例如,分别为具有0和1之间的任何发射率的值ei和具有接近室温的温度的温度值ti。
59.每次迭代包括建模步骤62(计算),其确定理论值v1
th
和v2
th
。考虑到像素32的吸收特性(由图3的曲线52示意),根据由估计的发射率ee加权的普朗克定律,理论值v1
th
对应于如果场景元件处于估计温度te时将获得的膜温度值。这里认为发射率ee与波长无关。考虑到像素34的吸收特性(由图3的曲线54示意),类似地确定理论值v2
th
。为了确定理论值v1
th
和v2
th
,可以进一步考虑位于场景元件和像素之间的元素(例如,大气)的吸收,或者可以考虑传输窗口。这样的窗口当前布置在像素阵列或视网膜上方,以将视网膜与大气隔离。这种窗口的透射光谱是已知的,因此可以容易地被考虑以确定理论值。
60.在步骤64_1和64_2处,将测量值v1和v2与理论值v1
th
和v2
th
进行比较,其提供差值v1-v1
th
和v2-v2
th
。差值用作步骤66(err)以确定误差值χ2。例如,误差值χ2是差值的平方和,例如,以下形式的加权和:
61.χ2=(1/σ12)*(v1-v1
th
)2 (1/σ22)*(v2-v2
th
)2,
62.σ1和σ2分别表示表示膜温度的值v1和v2的不确定性。然后,每次迭代包括步骤68(min),其提供新的估计值ee和te,以减少迭代后的迭代的误差值χ2。作为示例,步骤68是通过基于变量的连续估计(例如,梯度、共轭梯度、单形等方法)对该值的连续估计,根据两个变量最小化值的算法的步骤。当χ2的值最小时,该方法停止。然后,场景元件的温度的测量值tm是在最后一次迭代时估计的值te。此外,最后一次迭代时的发射率的估计值ee对应于场景元件的发射率的测量值em。
63.图5a是两个相邻像素32和34的替代实施例的截面图,其中像素32的介电层40和像素34的介电层42由相同材料制成并具有相同厚度。图5b是沿着图5a的平面b-b的层42的顶部截面图。
64.层42在其整个厚度上被规则分布的开口70中断。开口70的横向尺寸可以小于所接
收的红外辐射的波长,例如,小于所接收的辐射的波长范围的最小波长的三分之一。作为示例,由开口绘制的网状阵列的间距为1至3μm的量级。尽管所示的开口具有圆形形状,但是可以使用任何其他适合的形状。作为变型,相邻的开口可以联接,并且层42由规则布置的分开的焊盘的组件形成。因此,层42具有由层42的材料(例如,开口或焊盘)的缺失或存在限定的元件的网状图案,其在平行于层平面的方向上重复。层42的折射率n
eff
可以通过层42的材料的折射率ns与层42的填充率f的乘积粗略估计。例如,根据m.e.motamedi等人的文章“antireflection surfaces in silicon using binary optics technology”(1992年在applied optics 31(22)出版)中描述的以下等式,可以计算层42的折射率的更准确的估计:
[0065][0066]
因此,层42的折射率小于层40的折射率。此外,在图5a所示的示例中,如果从由层42中的开口形成的图案开始,图案旋转四分之一圈,获得初始图案,换句话说,图案具有四重对称性。因此,层42的折射率不依赖于红外辐射的偏振。作为变型,由开口或焊盘绘制的网状图案可以具有更高的折叠对称性,例如,六边形网状的六重对称性。
[0067]
已经描述了特定实施例。本领域技术人员将想到各种变化和修改。特别地,尽管已经描述了使误差值χ2最小化的特定方法,但是可以使用能够使该值最小化的任何其他方法。作为示例,在具有表示测热辐射膜温度值的测量值v1和v2之后,可以针对场景元件的一组预定对的估计温度和发射率值te和ee计算误差值χ2。确定的温度和发射率值对应于值χ2最小的预定义对的值。作为另一示例,可以从先前根据一组测热辐射膜温度值v1、v2确定的一组温度值中选择对应于该误差值的最小值的场景元件温度。然后将先前确定的值存储在处理单元38中。
[0068]
此外,尽管在上述方法中,特定误差值χ2被最小化以获得温度值tm,但是可以最小化表示在一方面的两个相邻像素的膜温度的测量值和另一方面的通过建模获得的相应理论值之间的差异的任何误差值。
[0069]
此外,尽管在上述方法中,以特定方式确定温度值,但是可以使用能够基于与场景元件相对的不同类型的两个像素的两个测热辐射膜的温度值来确定场景元件的温度的任何其他方法。像素的吸收特性也可以通过数学表达式建模,使得能够根据膜的那些明确地表达场景元件的温度。
[0070]
此外,在上文中已经描述了在该发射率不依赖于波长的假设中能够获得场景元件的温度和发射率值的方法的示例。作为变型,其可以基于场景元件的先前已知的温度值来确定两个发射率值,每个发射率值对应于由像素类型32和34中的一个吸收的波长范围。为此目的,其可以例如实现上述方法,其中考虑到像素32的吸收特性,根据在像素32的波长范围内的第一估计发射率值加权的普朗克定律,理论值v1
th
对应于如果场景元件处于先前已知温度将获得的膜温度值,对于第二估计发射率值类似地确定理论值v2
th

[0071]
尽管在上述方法示例中,仅使用表示仅两个相邻像素的测热辐射膜的温度的值v1和v2来确定场景元件的温度,但是值v1和v2中的每一个可以用表示与相同场景元件相对的相同类型的两个或更多个像素的膜温度值的组合替换。
[0072]
尽管在上述实施例中,提供了读出电路来测量测热辐射膜的温度,但是可以提供
读出电路以测量表示测热辐射膜的温度的任何值,例如电阻值。
[0073]
尽管在本文描述的实施例中,两种不同类型的像素以棋盘布局布置,但是像素可以以使得一种类型的每个像素能够接近另一种类型的像素的任何其他方式布置。例如,每种类型的像素的交替行或列中的布局产生相同的优点。根据另一特定实施例,一种类型的像素比另一类型的像素更多,即,更密集地布置,像素的比例例如分别为75%和25%。尽管所描述的实施例包括特定的测热辐射膜,但是可以使用任何其他适应的测热辐射膜,例如,具有不同数量的介电层的测热辐射膜,或者其中测量层已经被温度测量(例如,由热膨胀引起的变形和/或应力的测量)的其他结构替换的膜。
[0074]
此外,尽管所描述的实施例包括特定类型的反射器,但是可以使用任何其他反射器,其使得测热辐射膜能够吸收由场景元件发射的大多数相关波长超过50%的辐射。
[0075]
所描述的具体实施例包括具有网状图案的介电层42和连续的介电层40,即,在每个介电层中,该层的材料存在于整个测热辐射膜上方。各种变型都是可能的。可以为介电层40和介电层42中的每一个提供具有其元件(例如,开口或焊盘)的网状阵列,其横向重复并且具有小于接收的辐射的波长的横向尺寸,例如,小于有关辐射范围的最小波长的三分之一。在由相同材料制成并具有相同厚度的介电层40和42的示例中,重要的是,层40和42的图案是不同的。
[0076]
尽管在所描述的实施例中,仅考虑位于7和14μm之间的波长范围,但是优选地在另一波长范围内操作,例如并且通常通过定位该范围,即,滤光窗口的透射光谱,该透射光谱根据具体的目标应用,在待观察场景的平均温度下,根据黑体的发射规律,在发射最大值周围。在本领域技术人员的能力范围内,相应地调整每个窗口的透射光谱,以及在膜和反射器之间的空间中在尺寸方面调整所描述的像素(距离d、厚度和/或介电层的折射率),特别是根据所描述的关系,以产生处于这样选择的所述光谱中的不同波长的选择性干涉。
[0077]
此外,尽管所描述的传感器实施例用于检测位于在7和14μm之间延伸的范围内的红外辐射,但是其他实施例可以用于检测位于在8和12.5μm之间延伸的范围内的红外辐射。为此目的,传感器可以布置在透射窗口下方,该透射窗口用于将由传感器接收的辐射限制在8和12.5μm之间的范围内。然后选择介电层40和42的厚度和折射率,使得对于分别接近8.5μm和12μm的波长,破坏性干涉出现在膜14的水平处。作为示例,介电层40具有基本上等于0.9μm的厚度和基本上等于3.5的折射率。作为示例,介电层42具有基本上等于0.9μm的厚度和基本上等于2的折射率。该装置的其他尺寸例如与图2a和图2b的装置中的相应尺寸相同。获得的传感器具有排除波长大于12.5μm的辐射(其被大气吸收)的优点,并且传感器的温度或辐射率测量因此独立于大气质量和传感器与场景元件之间的距离。这种传感器的温度和发射率测量因此特别准确。
[0078]
所描述的实施例包括仅两种不同类型的像素,其吸收位于两个不同范围内的超过50%的辐射,在所描述的示例中,两个范围在大于3μm的宽度上延伸。包括多于两种像素类型的其他不同实施例是可能的。作为示例,提供每种类型的像素,使得其吸收在不同于其他像素类型的波长范围的波长范围内的超过50%的辐射。不同类型像素的波长范围的程度可以基本相同。这样的波长范围可以覆盖所考虑的辐射的波长范围的程度。然后,根据不同类型像素的测热辐射膜的两个以上温度值确定场景元件的温度。这使得能够更精确地确定场景元件的温度和发射率,并且更精确地确定具有根据波长变化的发射率的场景元件的温
度。
[0079]
作为示例,图2b中类型的像素对32和34规则地分散在像素或视网膜的组件中,包括图1b中类型的像素3。处理单元38从像素3产生第一热图像。处理单元38将包含从像素对确定的温度和发射率信息的第二图像叠加到第一图像。由于每个像素3的横向尺寸小于一对像素的横向尺寸,所以第一图像可以具有高分辨率。所获得的图像包含特别准确的温度信息并且具有高分辨率。
再多了解一些

本文用于企业家、创业者技术爱好者查询,结果仅供参考。

发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表

相关文献