一种残膜回收机防缠绕挑膜装置的制 一种秧草收获机用电力驱动行走机构

一种双膛石灰窑悬挂缸温度监测方法、系统及存储介质与流程

2022-05-08 05:55:02 来源:中国专利 TAG:

一种双膛石灰窑悬挂缸温度监测方法、系统及存储介质
1.1在技术领域
2.本发明涉及双膛石灰窑悬挂缸的温度监测技术领域,特别地,涉及一种双膛石灰窑悬挂缸温度监测方法、系统及存储介质。
2

背景技术:

3.双膛石灰窑是目前最先进的石灰生产装备之一,广泛的应用于工业石灰和建筑石灰的生产。它主要由相互镜像的两个竖式窑膛组成,生产过程中,向一侧窑膛内供应煤粉和助燃风,形成高温环境,使窑膛内石灰石高温分解,称为煅烧膛;向另一侧窑膛内装填常温物料,同时将燃烧膛形成的高温烟气从底部引入,从顶部排出,达到预热物料的作用,称该侧窑膛为蓄热膛。经过一个周期后(约14min),两个窑膛相互交换角色,实现石灰的连续生产。由于其采用双膛煅烧-周期换向的工艺,煅烧生成的高温烟气和成品冷却形成的高温废气用于预热物料后再排出窑膛,排烟温度通常可以降低至120℃左右,因此具有很高的热量利用率。
4.现有技术中,燃烧膛和蓄热膛之间设置有悬挂缸式的环形通道,将两个相互平行的窑膛的气道相互连通,使高温烟气可以顺畅的从一个膛流入另一个膛。悬挂缸式的环形通由内外两层钢壳环绕而成,在钢壳外砌筑或浇筑有耐火和隔热材料。在两层钢壳内则形成一个环形的空腔,由于耐火材料外的工况温度高达1100℃,为了避免钢材在高温下强度变低,通常需要向环形空腔强制通风降温,以保证钢壳温度不至于过高。生产过程中,钢壳外的隔热材料由于磨损或开裂,都会导致钢壳局部温度超限,造成结构失效和破坏。因此,对悬挂缸外壳的温度监测和预警,就显得非常重要。
5.目前,主要采用在局部位置设置热电偶温度计的方法进行监测,用若干局部点的温度代替整体悬挂缸的温度,当测温点发生温度超温时发出预警,但是在测温点之外的位置出现局部超温时,无法有效预警,导致无法有效捕捉局部超温影响悬挂缸运行寿命的技术问题。
3

技术实现要素:

6.本发明提供的双膛石灰窑悬挂缸温度监测方法,解决了现有的悬挂缸温度监测时无法有效捕捉局部超温的技术问题。
7.为实现上述目的,本发明采用的技术方案如下:
8.一种双膛石灰窑悬挂缸温度监测方法,悬挂缸的气流冷却流道内设有多个测温点,相邻的两个测温点之间的流线长度相同,定义i为测温点编号,i∈[0,n],沿气流冷却流道内的气流方向依次对测温点进行编号,0表示首个测温点的编号,n表示最后一个测温点的编号;定义n 1个测温点将气流冷却流道划分成n个测温区间j,j=i 1,j∈[1,n],j是测温区间编号,测温点i和测温点i 1之间的测温区间编号为j,包括如下步骤:s1,获取悬挂缸的气流冷却流道内的各个测温点i的风温ti;s2,根据各个测温点的风温ti计算得到悬挂缸的预估平均壁面温度t
′w;s3,采用公式aj=ln(t
′w‑ꢀ
t
i 1
)-ln(t

w-ti),计算测温区间j的对
数温升aj;根据对数温升aj对应的对数温升曲线,确定在对数温升曲线上偏离大于预设阈值的对数温升aj为异常温升,获取异常温升对应的测温区间为超温区域。
[0009]
进一步地,步骤s2中,采用公式计算得到悬挂缸的预估平均壁面温度t
′w,其中,t
′w表示预估平均壁面温度,t0表示气流冷却流道的进气入口处的测温点的风温,tn表示气流冷却流道的排气出口处的测温点的风温,h为冷却气流与壁面之间的传热系数,a为总传热面积,m是冷却气流的风流量,c
p
是风比热。
[0010]
进一步地,步骤s3具体包括:s31,采用公式aj=ln(t

w-t
i 1
)-ln(t

w-ti),计算测温区间j的对数温升aj;s32,对对数温升aj的数列进行线性拟合得到第一拟合线性线,y1=c1·
x1 b1;s33,获取各个对数温升aj在第一拟合线性线上对应的拟合投影距离dj;s34,根据拟合投影距离dj获取平均投影值d

; s35,采用预设公式从各个对数温升aj中获取满足预设公式对应的对数温升aj为异常温升,其中,第一阈值k1的范围值为1.5至3;s36,确定异常温升对应的区域为超温区域。
[0011]
进一步地,还包括步骤:s41,从各个对数温升aj中剔除所有的异常温升后重新进行线性拟合得到第二拟合线性线,y2=c2·
x2 b2;s5,采用公式计算得到每一个异常温升对应的局部温度t
wc
(i 1)。
[0012]
进一步地,在步骤s41之后还包括:s42,判断预估平均壁面温度t
′w和实际平均壁面温度tw的误差是否在预设误差值范围内;若预估平均壁面温度 t
′w和实际平均壁面温度tw的误差在预设误差值范围内,则进入步骤s5。
[0013]
进一步地,步骤s42具体包括:s421,获取第二拟合线性线的斜率以及相对控制误差水平参数k2的相关关系;s422,若|c2|≤k2,则确定预估平均壁面温度t
′w和实际平均壁面温度tw之间的误差在预设误差值范围内,并进入步骤s5;s423,若|c2|>k2,则确定预估平均壁面温度t
′w和实际平均壁面温度tw之间的误差不在预设误差值范围内,采用公式之间的误差不在预设误差值范围内,采用公式计算得到温度修正值δt,其中,m为剔除超温区域后排在末位测温区间的编号,am为测温区间m的对数温升,f为剔除超温区域后排在首位测温区间的编号,af为测温区间f的对数温升,tm为编号为m的测温点的风温,t
m-1
为编号为m-1的测温点的风温,tf为编号为f的测温点的风温,t
f-1
为编号为f-1的测温点的风温;采用公式t
″w=δt t
′w计算得到修正壁面温度t
″w,将修正壁面温度t
″w代替预估平均壁面温度t
′w,并进入步骤s3。
[0014]
本发明还提供一种双膛石灰窑悬挂缸温度监测系统,包括温度传感器和具有气流冷却流道的悬挂缸,温度传感器与测温点一一对应布设,温度传感器用于监测对应的测温点的温度,多个温度传感器沿气流冷却流道的延伸方向间隔布设,相邻两个温度传感器之间的流线长度相同,还包括计算器装置,计算器装置包括存储器、处理器、以及存储在存储器中并可在处理器上运行的计算机程序,处理器执行计算机程序时实现上述的双膛石灰窑悬挂缸温度监测方法。
[0015]
进一步地,气流冷却流道采用螺旋冷却通道,螺旋冷却通道包括螺旋旋入通道和
螺旋旋出通道,螺旋旋入通道的顶部设有进气入口,螺旋旋出通道的顶部设有出气出口,螺旋旋入通道和螺旋旋出通道从悬挂缸的底部相互连通。
[0016]
进一步地,气流冷却流道采用环形冷却通道,环形冷却通道包括环形输入通道和环形输出通道,环形输入通道的顶部设有进气入口,环形输出通道的顶部设有出气出口,环形输入通道和环形输出通道从悬挂缸的底部相互连通。
[0017]
本发明还提供一种存储介质,存储介质存储有计算机程序,计算机程序被处理器执行时实现上述的双膛石灰窑悬挂缸温度监测方法的步骤。
[0018]
本发明具有以下有益效果:
[0019]
本发明的双膛石灰窑悬挂缸温度监测方法,通过获取各个测温点i的风温ti,通过各个测温点i的风温ti预估壁面平均温度t
′w,通过公式获取测温区间j的对数温升aj;最后根据对数温升aj和对数温升曲线的相对关系,寻找对数温升曲线上偏离大于预设阈值对数温升aj确定局部超温区域;本发明采用基于风流(冷却气流)与壁面的传热规律,推导和设计了采用监测点测量温度,推算悬挂缸整体温度,利用均值排查法和对数温升的变化使异常温升发生显性变化,确定局部超温区域,能精确的测量悬挂缸平均温度,并捕捉到悬挂缸局部的温度超温,对悬挂缸局部超温的捕捉和监测更加灵敏,可以为生产现场提供及时的预警,从而有效延长悬挂缸运行寿命。
[0020]
除了上面所描述的目的、特征和优点之外,本发明还有其它的目的、特征和优点。下面将参照图,对本发明作进一步详细的说明。
4附图说明
[0021]
构成本技术的一部分的附图用来提供对本发明的进一步理解,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:
[0022]
图1是本发明一个实施例中的双膛石灰窑悬挂缸温度监测方法流程图;
[0023]
图2是本发明一个实施例中的步骤s3的流程示意图;
[0024]
图3是本发明另一个实施例中的双膛石灰窑悬挂缸温度监测方法流程图;
[0025]
图4是本发明一个实施例中的步骤s42的流程图;
[0026]
图5是本发明中的双膛石灰窑用悬挂缸的结构示意图之一;
[0027]
图6是本发明中的双膛石灰窑用悬挂缸的结构示意图之二;
[0028]
图7是本发明中的一个具体的监测实例的原理示意图之一;
[0029]
图8是本发明中的一个具体的监测实例的原理示意图之二
[0030]
图9是本发明中的一个具体的监测实例的原理示意图之三。
[0031]
图例说明:
[0032]
100、悬挂缸;10、外侧壳体;20、内侧壳体;30、环形气流通道;31、进气通道;32、排气通道;40、中间隔板;50、螺旋旋入螺旋片;60、螺旋旋出螺旋片;70、温度传感器;80、进气管道;90、排气管道。
5具体实施方式
[0033]
以应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
[0034]
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明的一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
[0035]
需要说明,本发明实施例中所有方向性指示(诸如上、下、左、右、前、后
……
)仅用于解释在某一特定姿态(如附图所示)下各部件之间的相对位置关系、运动情况等,如果该特定姿态发生改变时,则该方向性指示也相应地随之改变。
[0036]
另外,在本发明中涉及“第一”、“第二”等的描述仅用于描述目的,而不能理解为指示或暗示其相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。另外,各个实施例之间的技术方案可以相互结合,但是必须是以本领域普通技术人员能够实现为基础,当技术方案的结合出现相互矛盾或无法实现时应当认为这种技术方案的结合不存在,也不在本发明要求的保护范围之内。
[0037]
如图1、图2、图3和图4所示,本发明提供的一种双膛石灰窑悬挂缸温度监测方法,悬挂缸的气流冷却流道内设有多个测温点,相邻的两个测温点之间的流线长度相同,定义i为测温点编号,i∈[0,n],沿气流冷却流道内的气流方向依次对测温点进行编号,0表示首个测温点的编号,n表示最后一个测温点的编号;定义n 1个测温点将气流冷却流道划分成n个测温区间j,j=i 1,j∈[1,n],j是测温区间编号,测温点i和测温点i 1 之间的测温区间编号为j,包括如下步骤:s1,获取悬挂缸的气流冷却流道内的各个测温点i的风温ti;s2,根据各个测温点的风温ti计算得到悬挂缸的预估平均壁面温度t
′w;s3,采用公式
[0038]aj
=ln(t

w-t
i 1
)-ln(t

w-ti)
ꢀꢀꢀꢀ
(2)
[0039]
即a
i 1
=ln(t

w-t
i 1
)-ln(t

w-ti)
[0040]
计算测温区间j的对数温升aj;根据对数温升aj对应的对数温升曲线,确定在对数温升曲线上偏离大于预设阈值的对数温升aj为异常温升,获取异常温升对应的测温区间为超温区域。具体地,测温区间j表示从测温点i到测温点i 1之间的区域,例如编号为5的测温区间,表示从编号为4的测温点到编号为5的测温点之间的区域。
[0041]
本发明提供的本发明的双膛石灰窑悬挂缸温度监测方法,通过获取各个测温点i的风温ti,通过各个测温点i的风温ti预估壁面平均温度t
′w,通过公式获取测温区间j的对数温升aj;最后根据对数温升aj和对数温升曲线的相对关系,寻找对数温升曲线上偏离大于预设阈值对数温升aj确定局部超温区域;本发明采用基于风流(冷却气流)与壁面的传热规律,推导和设计了采用监测点测量温度,推算悬挂缸整体温度,利用均值排查法和对数温升的变化使异常温升发生显性变化,确定局部超温区域,能精确的测量悬挂缸平均温度,并捕捉到悬挂缸局部的温度超温,对悬挂缸局部超温的捕捉和监测更加灵敏,可以为生产现场提供及时的预警,从而有效延长悬挂缸运行寿命。
[0042]
可以理解地,本发明中,共设置n 1个温度传感器,多个温度传感器沿气流冷却流道内的气流方向排布,用自然数i依次对各测温点进行编号, i∈[0,n],ti表示编号为i的温度传感器获得的温度值。显然,t0为编号为0 的温度传感器测得的温度,也即气流冷却流道的进气入口处的测温点的风温, tn为编号为n的温度传感器测得的温度,也即气流冷却流道的排气出口处的测温点的风温。进一步地,步骤s2中,采用公式
[0043][0044]
计算得到悬挂缸的预估平均壁面温度t
′w,其中,t
′w表示预估平均壁面温度,t0表示气流冷却流道的进气入口处的测温点的风温,tn表示气流冷却流道的排气出口处的测温点的风温,h为冷却气流与壁面之间的传热系数,a 为总传热面积,m是冷却气流的风流量,c
p
是风比热。
[0045]
可以理解地,i表示为测温点(温度检测器)的编号,ti表示为测温点对应的风温,j(j=i 1)表示测温点i和测温点i 1之间的测温区间编号,aj(即 a
i 1
)表示编号为j的测温区间的对数温升,也即编号为i的测温点至编号为 i 1的测温点之间的对数温升。具体实施时,若对数温升a5较理论的对数温升曲线(拟合曲线y1=c1·
x1 b1)明显偏高,则表明标号5的测温区间为超温区域。
[0046]
可以理解地,可以通过对所述对数温升aj的数列进行线性拟合得到第一拟合线性线(即对数温升曲线),y1=c1·
x1 b1。
[0047]
请参考图2,进一步地,步骤s3具体包括:s31,采用公式aj=ln(t

w-t
i 1
)
‑ꢀ
ln(t

w-ti),计算测温区间j的对数温升aj;s32,对每个对数温升aj的数列行线性拟合得到第一拟合线性线,
[0048]
y1=c1·
x1 b1ꢀꢀꢀꢀ
(3)
[0049]
s33,获取各个对数温升aj在第一拟合线性线上对应的拟合投影距离di;
[0050]
s34,根据拟合投影距离di获取平均投影值d

;s35,采用预设公式
[0051][0052]
从各个对数温升aj中获取满足预设公式对应的对数温升aj为异常温升,异常温升对应的测温区间为超温区间,其中,第一阈值k1的范围值为1.5 至3;s36,确定异常温升对应的区域为超温区域。可以理解地,k1是设定的大于1的排查阈值,k1取值越大,敏感度越小,但误判几率也越小;k1取值越小,敏感度越大,但误判几率也更大,本发明中根据现场实际试取获得k1的范围值为1.5~3。在具体实施时,若di值满足则表明编号为i的测温点至编号为i 1的测温点之间存在局部超温。
[0053]
可以理解地,y1是指测温区间的对数温升,x1是从测温区间的起点至测温区间的末端点的流线长度,c1是直线斜率,b1是直线截距。
[0054]
可以理解地,本发明中还可以通过相邻两个对数温升aj的连线的斜率确定异常温升,若邻两个对数温升aj的斜率的绝对值大于预设斜率值,则确定对应的处于后方的对数温升aj为异常温升。
[0055]
请参考图3,进一步地,s41,还包括步骤:s41,从各个对数温升aj中剔除所有的异常温升后重新进行线性拟合得到第二拟合线性线,
[0056]
y2=c2·
x2 b2ꢀꢀꢀꢀ
(6)
[0057]
s5,采用公式计算得到每一个异常温升对应的局部温度t
wc
(i 1)。通过采用上述方式,可以准确地计算局部异常温升对应的超温温度,便于维护提高
悬挂缸的运行寿命。
[0058]
进一步地,在步骤s41之后还包括:s42,判断预估平均壁面温度t
′w和实际平均壁面温度tw的误差是否在预设误差值范围内;若预估平均壁面温度 t
′w和实际平均壁面温度tw的误差在预设误差值范围内,则进入步骤s5。
[0059]
进一步地,若预估平均壁面温度t
′w和实际平均壁面温度tw的误差不在预设误差值范围内,修正并更新预估平均壁面温度t
′w后进入步骤s3。
[0060]
请参考图4,进一步地,步骤s42具体包括:s421,获取第二拟合线性线的斜率以及相对控制误差水平参数k2的相关关系;s422,若|c2|≤k2,则确定预估平均壁面温度t
′w和实际平均壁面温度tw之间的误差在预设误差值范围内,并进入步骤s5;s423,若
[0061]
|c2|>k2ꢀꢀꢀꢀ
(7)
[0062]
则确定预估平均壁面温度t
′w和实际平均壁面温度tw之间的误差不在预设误差值范围内,采用公式计算得到温度修正值δt,其其中,m为剔除超温区域后排在末位测温区间的编号,am为测温区间m的对数温升,f为剔除超温区域后排在首位测温区间的编号,af为测温区间f的对数温升,tm为编号为m的测温点的风温,t
m-1
为编号为m-1的测温点的风温,tf为编号为f的测温点的风温,t
f-1
为编号为f-1的测温点的风温;采用公式t
″w=δt t
′w计算得到修正壁面温度t
″w,将修正壁面温度 t
′w代替预估平均壁面温度t
′w并进入步骤s3;采用公式t
″w=δt t
′w计算得到修正壁面温度t
″w,将修正壁面温度t
″w代替预估平均壁面温度t
′w,并进入步骤 s3。可以理解地,若原有测温区间的编号为测温区间1,测温区间2,测温区间3,测温区间4,测温区间5;若剔除超温区间1,超温区间3后,f=2。
[0063]
可以理解地,修正壁面温度t
′w的具体操作过程如下:剔除局部异常温升后,重新对aj的数列进行线性拟合,得到第二拟合线性线,y2=c2·
x2 b2;判断c2值大小确定t
′w误差是否在可接受范围:如果:|c2|>k2,表明误差过大,按下以下公式修正预估平均壁面温度t
′w:
[0064][0065]
t
″w=δt t
′wꢀꢀꢀ
(9)
[0066]
用t
″w代替t
′w进入步骤s3;如果
[0067]
|c2|≤k2ꢀꢀꢀꢀꢀ
(10)
[0068]
表明误差在可接受范围,则跳转到步骤s5。其中,k2是控制误差水平的设置参数,值越小,误差越小,但迭代和计算时间会增大;反之亦然。m 是剔除异常温升后的的总数。步骤s5计算局部超温值t
wc
(i 1),
[0069][0070]
其中,i 1是对应超温区域的下标。
[0071]
进一步地,采用公式h
·c·
dx
·
(t
w-t
x
)=m
·cp
·
dt
x
推导得出推导得出其中,c为冷却气流
的接触边界长度,dx为积分步长(单个测温区间的流线长度),c
×
dx=a,为接触面积。
[0072]
进一步地,采用公式
[0073][0074]
计算得到平均投影值d


[0075]
可以理解地,在另一个实施例中,首先,获得各个测温点的风温ti,包括风温t0、t1、t2、t3、t4、

、t7、t8、t9、

、tn,包括测温区间j1至jn,其次,预估平均壁面温度t
′w;接着,获取对数温升aj,包括a1、a2、a3、a4、

a7、 a8、a9、
…an
;根据对数温升和对数温升曲线,寻找出异常温升a4、a8;修正预估平均壁面温度,并进入步骤s3;重新获取比例温升aj,其中a4、a8不再计算。
[0076]
请参考图5和图6,本发明还提供一种双膛石灰窑悬挂缸温度监测系统,包括温度传感器和具有气流冷却流道的悬挂缸,温度传感器与测温点一一对应布设,温度传感器用于监测对应的测温点的温度,多个温度传感器沿气流冷却流道的延伸方向间隔布设,相邻两个温度传感器之间的流线长度相同,还包括计算器装置,计算器装置包括存储器、处理器、以及存储在存储器中并可在处理器上运行的计算机程序,处理器执行计算机程序时实现上述的双膛石灰窑悬挂缸温度监测方法。
[0077]
进一步地,气流冷却流道采用螺旋冷却通道,螺旋冷却通道包括螺旋旋入通道和螺旋旋出通道,螺旋旋入通道的顶部设有进气入口,螺旋旋出通道的顶部设有出气出口,螺旋旋入通道和螺旋旋出通道从悬挂缸的底部相互连通。
[0078]
进一步地,气流冷却流道采用环形冷却通道,环形冷却通道包括环形输入通道和环形输出通道,环形输入通道的顶部设有进气入口,环形输出通道的顶部设有出气出口,环形输入通道和环形输出通道从悬挂缸的底部相互连通。
[0079]
请再次参考图4和图5,可选地,双膛石灰窑悬挂缸温度监测系统具体结构如下:包括具有环形气流通道的悬挂缸100,悬挂缸100包括外侧壳体 10和内侧壳体20,外侧壳体10环绕内侧壳体20设置进而形成环形气流通道30,还包括中间隔板40、螺旋旋入螺旋片50以及螺旋旋出螺旋片60,中间隔板40设于外侧壳体10和内侧壳体20之间用于将环形气流通道30 分隔形成进气通道31和排气通道32,螺旋旋入螺旋片50设于进气通道31 内用于使进气通道31形成螺旋旋入通道,螺旋旋出螺旋片60设于排气通道 32内用于使排气通道32形成螺旋旋出通道,螺旋旋入通道的进气端设有进气入口,螺旋旋出通道的排气端设有排气出口,螺旋旋入通道的排气端与螺旋旋出通道的进气端相互连通组合构成螺旋冷却通道。
[0080]
可以理解地,本发明中,外侧壳体10和内侧壳体20均采用钢制结构,中间隔板40、螺旋旋入螺旋片50以及螺旋旋出螺旋片60可采用钢制结构;螺旋旋入螺旋片50沿周向绕悬挂缸100布设且沿轴向向悬挂缸100的底部延伸以将冷却气流引入,螺旋旋出螺旋片60沿周向绕悬挂缸100布设且沿轴向向悬挂缸100的顶部延伸以将冷却气流引出。
[0081]
可选地,螺旋旋入螺旋片50环绕内侧壳体20旋入设于中间隔板40和内侧壳体20之间,以使进气通道31形成螺旋旋入通道,螺旋旋出螺旋片 60环绕中间隔板40旋出设于中间隔板40和外侧壳体10之间,以使排气通道32形成螺旋旋出通道。可以理解地,由于悬挂缸100的内侧温度高于外侧温度,为了便于降低内侧壳体20的温度,将螺旋旋入通道靠近内侧壳体 20设置。
[0082]
可选地,,螺旋旋入螺旋片50环绕内侧壳体20旋入设于中间隔板40 和内侧壳体20之间,以使进气通道31形成螺旋旋入通道,螺旋旋出螺旋片 60环绕中间隔板40旋出设于中间隔板40和外侧壳体10之间,以使排气通道32形成螺旋旋出通道。
[0083]
可选地,进气入口设于悬挂缸100的顶部,排气出口设于悬挂缸100 的顶部,螺旋旋入螺旋片50的底部设有第一通气孔,螺旋旋出螺旋片60 的底部设有第二通气孔,通过设置第一通气孔和第二通气孔以使螺旋旋入通道和螺旋旋出通道从悬挂缸100的底部连通,进而使螺旋旋入通道和螺旋旋出通道组合构成螺旋冷却通道。
[0084]
可选地,还包括设于悬挂缸100外并与进气入口连通的进气管道80,以及设于悬挂缸100外并与排气出口连通的排气管道90。进而便于通过进气管道80将冷却气流从悬挂缸100上方引入螺旋旋入通道内,将冷却后的冷却气流从悬挂缸100上方引出。
[0085]
可选地,为了便于检测螺旋冷却通道的温度,避免局部超温,螺旋冷却通道内均设有温度传感器70。可选地,温度传感器70采用热电偶。
[0086]
可选地,温度传感器70沿气流方向等流线长度间隔排布。
[0087]
可以理解地,在进行冷却时,从螺旋旋入通道的进气端送入冷却气流,冷却气流流经螺旋旋入通道,对螺旋旋入通道一侧的壳体进行冷却;之后冷却气流继续流动从螺旋旋入通道的排气端进入螺旋旋出通道的进气端,冷却气流流经螺旋旋出通道对螺旋旋出通道一侧的壳体进行冷却,最终从螺旋旋出通道的排气出口流出;本发明的双膛石灰窑用环冷悬挂缸,由于冷却风流道设置成贴合壁体设置的螺旋形,冷却气流流线方向的变化更加缓慢平和,避免了现有技术中的垂直或尖锐的流道折角,因此冷却气流的流动更加顺畅,冷却气流进出环形气流通道的压降相对现有技术有显著下降,同时,由于设计了螺旋气流通道避免了流道中的小夹角,整个流道中几乎不存在流场死区,可以有效的避免流场死区导致的局部超温,冷却气流在冷却的过程中流动阻力更小,冷却效果好。
[0088]
通过研究发现,现有技术悬挂缸温度监测是在悬挂缸缸体局部位置,设置若干热电偶温度计,通过直接捕捉测量点的温度异常,进行监测和预警,该方法只能捕捉到测量点位置及其附近的温度超限或是整体温度超限,对于离测量点一定距离位置处的温度变化敏感性不够,当测温点附近以外的区域出现局部超温时,测温点处的温度往往无明显变化,因此无法对测温点意外区域的局部超温做出准确监测和及时预警;本发明中,采用基于均值排查的悬挂缸温度监测方法,通过计算测温间对数温升进行线性变化,有效捕捉局部超温,改善测温系统对局部超温的敏感性,为生产现场提供及时的预警,有效延长悬挂缸运行寿命。
[0089]
本发明还提供一种存储介质,存储介质存储有计算机程序,计算机程序被处理器执行时实现上述的双膛石灰窑悬挂缸温度监测方法的步骤。
[0090]
本发明的温度监测方法的理论基础如下:
[0091]
首先,研究发现壁温与风温之间的函数关系:石灰窑运行时,物料温度一般维持在1100℃,物料温度通过耐火层和隔热层,传导到悬挂缸钢壳上的温度一般在500℃以下,由于环形通道处的物料温度场比较均匀,因此可以近视的认为,在没有局部破坏的时候,悬挂缸外壳各处温度基本均匀,用 t
′w表示。而流体流经恒温壁面的换热过程可以由下式描述:
[0092]h·c·
dx
·
(t
w-t
x
)=m
·cp
·
dt
x

[0093]
即:
[0094][0095]
对上式两边积分后,有:
[0096][0097]
式中,h为气体与壁面之间传热系数,在悬挂缸外壳各处基本相等;c 为气体与外壳的接触边界长度,δx为积分步长(单个测温区间的流线长度), c
×
δx=a为接触面积;m是风流量;cp是风比热。通过上式可以推导出悬挂缸平均壁温公式:
[0098][0099]
式中,t0和tn分别是入口风温和出口风温,a是总传热面积,即悬挂缸外壳面积。
[0100]
接着,研究局部超温对风温的影响关系定义监测点对数温升aj(即a
i 1
),
[0101]ai 1
=ln(t

w-t
i 1
)-ln(t

w-ti)
[0102]
当测量点间间距δx相等时,显然:
[0103][0104]
即,在非异常温升各处,对数温升aj(即a
i 1
)为常数,而在异常温升处,对数温升aj会有明显差异。因此,可以通过对aj进行线性拟合,获得第一拟合线性线,y1=c1·
x1 b1,明显偏离第一拟合线性线的点,即为异常温升。
[0105]
可以按如下的均值排查方法判断某点是否为明显偏离的点:计算对数温升aj与第一拟合线性线的投影距离di,然后计算di的平均值d

,由于异常温升个数一般较测温点的个数少很多,因此平均值d

会更加接近正常点与第一拟合线性线的投影距离,而异常温升di值则远大于平均值d

,因此可以用下式排查异常温升:
[0106][0107]
其次,预估平均壁面温度t
′w的修正方法:由于存在局部超温,或是对壁面换热系数h的估计误差,采用式(1)计算预估平均壁面温度t
′w时,会产生预估误差δt。实际平均壁面温度tw和式(1)中预估平均壁面温度t
′w之间的误差δt=t

w-tw。则采用预估平均壁面温度t
′w计算对数温升aj(即a
i 1
):
[0108]ai 1
=ln(tw δt-t
i 1
)-ln(tw δt-ti)
[0109]
采用实际平均壁面温度tw计算的对数温升a’j

[0110][0111]
由于预估平均壁面温度的误差,导致的对数温升误差δaj:
[0112][0113]
实际过程中,δt一般不超过
±
50℃,而壁面温度一般比风温高出300℃以上,以保证较好的换热效果,因此,一般不超过
±
0.2,即在这一范围内,可近
似的认为:
[0114][0115][0116]
进一步:
[0117][0118]
由于:
[0119][0120]
也即:如果预估壁面温度=实际壁面温度,则第二拟合线性线的斜率c2=0;反之,预估壁面温度与实际壁面温度偏离越大,则斜率c2偏离0值也越大。因此,可以用直线y2=c2·
x2 b2的斜c2的大小衡量壁面温度的预估精度。
[0121]
因此有:
[0122]
δa
m-δaf=a
m-af[0123]
进一步:
[0124][0125]
因此有:
[0126][0127]
由于实际平均壁面温度tw未知,且t
′w=tw δt,δt相较tw和t
′w相差很小,用预估壁温代替真实的平均壁温,可以得到如下的壁面温度误差计算式:
[0128][0129]
m为剔除异常温升后的温升数列中的最后一个对数温升对应的编号,am为剔除异常温升后的对数温升数列中的最后一个对数温升点所对应的对数温升,tm为am对应的测温区间的末端风温,f为剔除超温温升后的温升数列中的一个对数温升对应的编号,af为剔除异常温升后的第一个测温区间对应的对数温升,tf为af对应的测温区间的末端风温。
[0130]
温度修正方程:
[0131]
t
″w=t
′w δt
ꢀꢀꢀꢀ
(9)
[0132]
再次,研究局部超温值t
wc
(i 1)的计算方法:
[0133]
由下式
[0134][0135]
推得:
[0136]
[0137]
其中,const=b2。
[0138]
对恒定壁温的传热过程有:
[0139][0140]
对局部超温附近的两测量点应用上述公式,有:
[0141][0142]
即:
[0143][0144]
监测点设置的足够密,则有
[0145]
|t
wc-ti|>>|t
i-t
i 1
|
[0146]
于是有:
[0147][0148]
因此有:
[0149][0150]
请参考图7、图8和图9,以一个具体的监测实例进行说明:在本实例中,壁面实际平均温度为600℃,冷流体入口温度25℃,冷流体出口温度 250℃,共设置有21个测温点,其中,在编号4~5、8~9、12~13、16~17号测温点之间,存在局部高温,值为650℃。用式(1)预估的平均温差为50℃。则,测量获得的各点温度实际值,采用预估平均温度计算的对数温升值分别如下。图7分别给出了测量获得的各点温度实际值,和采用预估平均温度 (650℃)计算的对数温升值对应的曲线。从图上可以看到,局部异常温升在测量温度曲线上并不能很明显的体现出异常,但是在对数温升曲线上,可以很明显的看到,在异常温升,曲线的值相对于其他正常值偏差非常大。异常温升对数温升值明显更加远离线性拟合曲线,因此可以较容易的采用均值排查的方法找到。
[0151]
以上仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。
再多了解一些

本文用于企业家、创业者技术爱好者查询,结果仅供参考。

发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表

相关文献