一种残膜回收机防缠绕挑膜装置的制 一种秧草收获机用电力驱动行走机构

一种具有光源监控功能的量子随机数发生器及方法

2022-05-08 04:35:02 来源:中国专利 TAG:


1.本发明涉及不可信光源的量子随机数系统,尤其是一种具有光源监控功能的量子随机数发生器及方法。


背景技术:

2.随机数在现代科学和商业领域发挥着至关重要的作用,例如密码学、算法和仿真,所以如何生成高速率、高性能的随机数成为至关重要的科学问题。目前利用计算机产生的随机数,一般都是使用确定性过程。然而,原则上这类随机数是可预测的,被称为伪随机数。作为一种理想的替代方法,量子随机数发生器(qrng)在过去的几年中引起了广泛的关注,因为它利用了量子力学的基本不确定性,可以产生不可预测的真随机数。根据设备是否受信,我们将量子随机数发生器分为三类,即设备受信量子随机数发生器、设备无关量子随机数发生器和(di-qrng)半设备无关量子随机数发生器(sdi-qrng)。其中设备受信量子随机数发生器假设光源、探测器等完全符合设定的物理模型且不被窃听者控制。在这种条件下,通过设计合适的方案可产生高速可用的量子随机数,该类量子随机数发生器技术发展比较成熟,目前逐渐走向商业化。然而,在实际中对设备的完美假设并不一定满足,攻击者可能会利用这些安全漏洞进而操控量子随机数发生器设备,导致所生成的量子随机数存在安全隐患。设备无关量子随机数发生器假设设备时不受信的,主要基于量子力学中的贝尔不等式违背原理来产生随机数,有很高的安全性,但受到现有技术水平的限制,随机数生成速率较低,实用性不高。作为一种折中方案,半设备无关量子随机数发生器仅对设备做一些简单的假设,可以大幅度提升量子随机数的产生速率,并且相比于设备受信量子随机数发生器具有更高的安全性。
3.现有协议中大部分都假设光源可信,即发送端光源的光子数分布是确定且已知的。在实际的qrng系统中,可信光源不一定存在,即窃听方可能会操纵改变光源的光子数分布,并且存在一定的光强波动,导致产生的随机数最小熵降低。在这样的安全隐患下,系统的安全性必定会受到影响,所以我们需要对光源进行监控。


技术实现要素:

4.本发明目的在于提出一种具有光源监控功能的量子随机数发生器及方法,应用于不可信光源的量子随机数系统中,不需要调节本地端探测器的探测效率,同时避免了光强波动带来的最小熵降低等问题。
5.本发明的一种具有光源监控功能的量子随机数发生器,包括态制备部分、分束器、监控端和测量端;所述监控端包括衰减器和单光子探测器d1;
6.光源发出的光脉冲通过态制备部分和分束器后得到闲置光和信号光,闲置光到达监控端,信号光到达测量端;
7.所述态制备部分包括光强调制和第一偏振控制器,光强调制和第一偏振控制器连接。
8.所述测量端包括第二偏振控制器、偏振分束器pbs、单光子探测器d2和单光子探测器d3;测量端的根据现场可编程门阵列开发板(fpga)的随机输入y∈{0,1}选择基矢对量子态ρ
x
进行不同的投影测量,第二偏振控制器与偏振分束器pbs连接,第二偏振控制器用于调节偏振,偏振分束器pbs用于将偏振光分成两束,一束到达单光子探测器d2,另一束到达单光子探测器d3,由fpga记录单光子探测器d2和单光子探测器d3的输出结果b∈{0,1}。
9.在监控端,调解衰减器voa不同的衰减系数,由单光子探测器d1进行探测,估计信号光中的光子数分布,根据单光子探测器d1的响应得到不同的计数事件,通过不同的计数事件对信号光中零光子、单光子、双光子概率的上下界进行估计,结合测量端测量后观测概率的总增益q
λ
(λ=μ,ν,ο),以及探测器d2和d3的暗计数率,得到单光子条件下的观测概率来构建维度目击值矩阵,进而算出可提取随机数的最小熵,再计算出随机数。
10.本发明的一种具有光源监控功能的量子随机数发生方法,所述方法基于本发明的量子随机数发生器,包括如下步骤:
11.步骤1,发送端首先将光源随机调制到三种不同强度λ∈{μ,ν,ο},分别对应于信号态、诱骗态和真空态,同时fpga随机选择输入x∈{0,1,2,3}随机制备量子态ρ
x
,然后经过调制的光脉冲分束后得到的信号光和闲置光;
12.步骤2,闲置光首先经过衰减器,调节衰减器不同的衰减系数,再由单光子探测器d1进行探测,最后根据单光子探测器d1的响应得到不同的计数事件;通过不同的计数事件对信号光中零光子、单光子、双光子概率的上下界进行估计,得到单光子条件下的观测概率来构建维度目击值矩阵,进而算出可提取随机数的最小熵;具体包括如下:
13.步骤2.1,闲置光首先经过衰减器,调节衰减器不同的衰减系数,再由单光子探测器d1进行探测,最后根据单光子探测器d1的响应得到不同的计数事件;表示为探测器端不响应的概率p
μ
(ηi),其中ηi(i=0,1,2)表示衰减器的衰减系数;
[0014][0015][0016][0017]
在上式中,表示平均光强为μ时光源中n光子数的分布概率,服从泊松分布,y0表示单光子探测器d1的暗计数率;
[0018]
步骤2.2,通过不同的计数事件对信号光中零光子、单光子、双光子的概率上下界进行估计,得到单光子条件下的观测概率来构建维度目击值矩阵;
[0019]
零光子的概率上下界分别为:
[0020][0021]
对单光子的概率上下界表示为:
[0022]
[0023][0024]
双光子的概率上下界表示为:
[0025][0026]
根据零光子、单光子、双光子的概率上下界估计结果得到在单光子条件下的观测概率的上下界:
[0027][0028]
上式中q
λ
(λ=μ,ν,ο)表示强度为λ时信号光经过测量后观测概率的总增益,μ对应信号态,ν对应诱骗态,ο对应真空态,d表示探测器d2或d3的暗计数率,探测器d2和d3的暗计数率相同,qi(b|x,y)表示传输i个光子时,alice输入x、bob输入y、得到测量结果b的概率,q
λ
与qi(b|x,y)的关系为:
[0029]
根据在单光子条件下的观测概率来构建维度目击值矩阵:
[0030][0031]
维度目击值w的下界利用q1(b|x,y)的上下界通过线性规划的方法求解;再根据在单光子条件下的维度目击值的下界得到最大猜测概率的计算公式:
[0032][0033]
步骤2.3,根据在单光子条件下的最大猜测概率得到最小熵的计算公式:
[0034]hmin
=-log
2 p
guess
.
ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ
(17)
[0035]
步骤3,根据最小熵计算得到量子随机数发生器的随机性,根据随机性大小提取最终的随机数。
[0036]
进一步的,当发送量子态ρ
x
态的光子数分布不再服从确知的泊松分布,其平均光强μ存在波动且变化规律服从高斯分布,那么平均光强分布表示为:
[0037][0038]
其中,μ0,σ
μ
分别表示μ的平均值与标准差;μ属于一个置信区间μ∈[μ
l
,μu],置信水平为设ε=1-10-10
,用σ=σ
μ
/μ0衡量光强波动的程度,探测器端d1不响应的概率表示为:
[0039][0040]
将公式(19)代入到零光子、单光子、双光子的概率上下界公式(4)、(5)、(10)、(11)、(12)中,得到在光强波动的情况下的最小熵。
[0041]
本发明的有益效果如下:
[0042]
本发明该可应用于不可信光源的量子随机数系统中,不需要调节本地端探测器的探测效率,同时避免了光强波动带来的最小熵降低等问题;经过强度调制和分束的脉冲得到的闲置光根据探测器的响应情况可以得到三种不同的计数事件,通过使用三种不同的计数事件对信号光的参数进行估计,得到在不可信光源情况下的最小熵,数值仿真表明,不存在光强波动的主动式光源监控方案的性能与理想光源下的初始方案的效果几乎一致,并且在存在光强波动的情况下,主动式光源监控方案的性能要优于初始自检测方案。
附图说明
[0043]
图1是本发明方案的原理图。
[0044]
图2是本发明方案在不存在光强波动情况下与初始方案最小熵的对比图。
[0045]
图3是本发明方案在不同光强波动情况下与初始方案最小熵的对比图。
具体实施方式
[0046]
下面将结合本发明实施例中的附图,对本发明实施例中的计数方案进行清楚、完整地描述。显然,所描述的实施例仅仅是本发明一部分的实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获取的所有其他实施例,都属于本发明保护的范围。
[0047]
参照图1,本发明提出了一种具有光源监控功能的量子随机数发生器,适用于量子随机数系统中,该传输系统中包括alice、bob两个用户,alice作为发送端,bob作为接收端。
[0048]
本发明的一种具有光源监控功能的量子随机数发生方法,包括如下步骤:
[0049]
步骤1,alice选择发送的脉冲首先经过态制备部分后再通过bs分束为闲置光和信号光,信号光发送给bob进行测量生成随机数,闲置光在本地的监控端进行探测。
[0050]
步骤2,在监控端中闲置光首先通过衰减器voa,调节衰减器voa不同的衰减系数,之后使用本地端单光子探测器d1进行探测,根据探测器d1的响应情况,得到不同的计数事件,表示为探测器端不响应的概率p
μ
(ηi),其中ηi(i=0,1,2)表示衰减器的衰减系数,分别对应于:
[0051]
p
μ
(η0):衰减系数为η0时,探测器d1不响应的概率;
[0052]
p
μ
(η1):衰减系数为η1时,探测器d1不响应的概率;
[0053]
p
μ
(η2):衰减系数为η2时,探测器d1不响应的概率。
[0054]
在三种不同的衰减系数下,光子数分布与探测器端不响应的概率p
μ
(ηi)的关系为:
[0055][0056][0057][0058]
在上式中,表示平均光强为μ时光源中n光子数的分布概率,服从泊松分布,y0表示探测器d1的暗计数率,。
[0059]
对零光子、单光子、双光子的概率上下界进行估计,在本发明的协议中,衰减器voa的三个衰减系数η0,η1,η2满足η0》η1》η2且η1(2-η2)》1。
[0060]
本发明选择η0=1,对应于光强为0,即衰减器完全挡住光的情况,根据公式(1)可以直接得出零光子概率的上下界:
[0061][0062]
对于衰减系数为η1,η2时,将公式(2)和公式(3)结合消除参数得到单光子概率的下界:
[0063][0064]
对于公式(2)和公式(3)变形得到下面不等式:
[0065][0066][0067][0068][0069]
根据公式(6)和公式(9),消除参数得到单光子概率的上界:
[0070][0071]
将公式(10)带入公式(6)得到双光子概率的下界:
[0072][0073]
将公式(5)带入公式(7)得到双光子概率的上界:
[0074][0075]
进一步的,利用零光子、单光子、双光子概率的上下界计算传输单个光子下的观测概率的上下界的公式为:
[0076][0077]
其中q
λ
(λ=μ,ν,ο)表示强度为λ时信号光经过测量后观测概率的总增益,μ对应信号态,ν对应诱骗态,ο对应真空态,d表示探测器d2或d3的暗计数率,探测器d2和d3的暗计数率相等,qi(b|x,y)表示传输i个光子时,alice输入x、bob输入y、得到测量结果b的概率,q
λ
与qi(b|x,y)的关系为:
[0078][0079]
其中pr(b|x,y)为理想单光子在alice输入x、bob输入y、得到测量结果为b的投影概率,η为信号光经过的信道透过率。
[0080]
根据估计出的单光子条件下的观测概率构建维度目击值矩阵:
[0081][0082]
维度目击值w的下界可以利用q1(b|x,y)的上下界通过线性规划的方法求解。根据在单光子条件下的维度目击值下界得到最大猜测概率的计算公式:
[0083][0084]
综上,可提取的最小熵的计算公式为:
[0085]hmin
=-log
2 p
guess
.
ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ
(17)
[0086]
在考虑光强波动的情况下,定义衡量光强波动的参数。假设发送量子态ρ
x
的光子数分布不再服从确知的泊松分布,其平均光强μ存在波动且变化规律服从高斯分布,那么平均光强分布可以表示为:
[0087][0088]
其中,μ0,σ
μ
分别表示μ的平均值与标准差。μ属于一个置信区间μ∈[μ
l
,μu],置信水
平为设ε=1-10-10
。在本发明中,用σ=σ
μ
/μ0衡量光强波动的程度。在光源监控模型中,探测器端不响应的概率可以表示为:
[0089][0090]
将公式(19)代入到零光子、单光子、双光子的概率上下界公式(4)、(5)、(10)、(11)、(12)中,最后可得到在考虑光强波动的情况下本发明方案的最小熵。
[0091]
为了更好阐述本发明的目的,技术方案以及本发明的优点,主要在以下部分结合具体实施例,参照说明,对本发明做进一步的详细说明。
[0092]
附图1是本发明随机数发生器主动式光源监控的原理图。本发明基于自检测协议,发送端是alice,接收端是bob,发送端脉冲通过态制备部分和分束器后得到闲置光和信号光,闲置光发送到本地端的主动式光源监控端,用于估计信号光中的光子数分布,从而对信号光中零光子、单光子、双光子的概率上下界进行估计,得到单光子条件下的观测概率,再构建维度目击值矩阵,进而算出可提取随机数的最小熵;计算最终的随机数。
[0093]
所述主动式光源监控端包括衰减器(variable optical attenuator,voa)和单光子探测器d1(single photon detector,spd);通过调解voa不同的衰减系数计算光子概率情况从而达到监控不可信光源的目的。本发明方案所选用的三个衰减系数分别为η0=1,η1=0.95,η2=0.9。通过主动式光源监控端获取随机数的方法,不需要调节本地端探测器的探测效率,同时避免了光强波动带来的最小熵降低等问题。
[0094]
也可通过测量端获取随机数,信号光发送到测量端,测量端随机选择基矢y∈{0,1}对量子态ρ
x
进行不同的投影测量,并记录输出结果b∈{0,1};再通过三强度诱骗态方法估计单光子贡献的上下界,最后计算出最小熵来得到量子随机数发生器的随机性,最后根据随机性大小来提取最终的随机数。但通过测量端获取随机数会受到光强波动的影响。
[0095]
附图2是本发明方案在理想光强波动σ=0(即不存在光强波动)时与初始方案最小熵的对比图,初始方案来自文献[practical decoy-state quantum random number generator with weak coherent sources[j].quantum inf process 19,396(2020)],初始方案是通过测量端获取的随机数。为了公平的对比,仿真时参数统一,三个探测器的暗计数率均选为3
×
10-6
。从附图2可以看出,本文申请方案(实线)和在理想光源下的初始方案(点线)在性能方面相似,这说明了本文的方案在解决不可信光源问题上具有一定的价值。
[0096]
附图3是本发明方案在不同光强波动情况(σ=2%和σ=5%)下与初始方案最小熵的对比图。从附图3中可以看到在光强波动系数σ=2%和σ=5%时,初始方案的最小熵受到的影响很大。对比初始方案,本发明的性能更加优越:在σ=2%时本方案的最小熵达到了0.1519,而初始方案的最小熵只能达到0.0187;在σ=5%时本方案的最小熵可以达到0.1519,而初始方案的最小熵只能达到0.0015。而且对比于不存在光强波动的情况下,本发明方案几乎不受影响。
[0097]
综上,以量子随机数产生过程为例进行介绍,利用主动式光源监控方法对光源进行监控,得到了在不可信光源下的安全最小熵;一方面,在与初始方案的对比下,能够通过仿真验证本发明的优越性;另一方面,在本发明方案中只需要调节主动式光源监控端中器
件的参数,不需要调节本地端探测器的探测效率,同时避免了光强波动带来的最小熵降低等问题,提高了本发明方案的安全性。
[0098]
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明技术原理的前提下,还可以做出若干改进和变形,这些改进和变形也应视为本发明的保护范。
再多了解一些

本文用于企业家、创业者技术爱好者查询,结果仅供参考。

发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表

相关文献