一种残膜回收机防缠绕挑膜装置的制 一种秧草收获机用电力驱动行走机构

岩体稳定性极限分析方法与流程

2022-03-30 10:21:28 来源:中国专利 TAG:


1.本发明涉及岩土工程稳定性分析领域,尤其是涉及岩体稳定性极限分析方法。


背景技术:

2.岩体工程稳定性分析在水利水电、公路与轨道交通、工业与民用建筑、地质矿产开发及生态环境治理等工程中广泛存在。岩体稳定性分析主要包括三类问题:岩质边坡稳定性分析、地下洞室围岩稳定性分析和岩石基础承载力分析;所采用的稳定性分析方法主要有极限平衡法、滑移线法、有限元法和极限分析法等。
3.极限平衡法是目前岩体工程稳定性分析中应用最为广泛的一种方法,它以经典的莫尔-库仑屈服准则为基础,首先假定一个发生剪切破坏的滑裂面,将破坏区域划分成若干刚性体,通过刚性体的静力平衡方程,求得系统的安全系数或外荷载。在通常情况下,计算模型是静不定的,求解时通过引入静力假定,使模型变得静定可解。极限平衡法概念清晰、计算简单,在多数情况下能给出合理的结果,在工程实践中应用广泛。但有关滑裂面的假定和求解时引入的静力假定,使该方法理论上的严密性受到较大损害。
4.滑移线法基于静力平衡方程、屈服条件和应力边界条件,通过求解塑性区的应力与位移速度分布得到相应的极限荷载。滑移线法理论基础严密,在不考虑变形、应变软化或应变硬化的情况下,对某些具有特定边界条件并服从特定屈服准则的稳定性问题,滑移线法可以获得理论上的闭合解,这些闭合解为开发新的理论体系严密、适用性强的稳定性分析方法提供了极为重要的验证手段,具有十分重要的理论意义。但由于实际问题中边界条件的复杂性等其他原因,滑移线法在工程实践中难以直接应用。
5.有限元法把连续体划分成有限个单元,把单元的节点作为离散点,基于平衡方程和本构关系进行求解和分析。有限元法物理概念清晰,理论体系严密,能够成功地适应材料的非均匀、非线性、复杂的几何形状以及复杂的边界条件等,应用十分广泛。进行岩体稳定性分析时,有限元法不需要事先假定滑裂面的形状或位置,且能够提供应力与变形的全部信息,有其自身的理论优势;但实际岩体由于受到构造因素的影响,本构关系最难以弄清,有限元法需要在最不易弄清的本构关系的基础上进行求解和稳定性分析,使得有限元法在岩体稳定性分析中的应用受到了很大限制。
6.极限分析法基于塑性力学中的上、下限定理,将极限分析与有限单元法相结合,在单元的边界面上引入应力间断或速度间断假定,将稳定性分析问题转化为约束条件下的最优化问题,得到了较为满意的结果。但极限分析法在求解时引入的应力间断或速度间断的假定,使该方法在理论上的严密性受到一定程度的损害。
7.因此,设计一种不需要引入最危险滑裂面假定、不需要引入应力-应变关系、不需要引入应力间断或速度间断假定、且理论基础严密、适用性强的新的岩体稳定性分析方法,对岩质边坡稳定性分析、地下洞室围岩稳定性分析和岩石基础稳定性分析等有着重要意义。


技术实现要素:

8.本发明目的在于提供一种岩体稳定性极限分析方法。
9.为实现上述目的,本发明采取下述技术方案:本发明所述一种岩体稳定性极限分析方法,包括以下步骤:s1,通过地质勘察,收集目标区域内不同性质岩体、构造面、软弱层的分布范围;s2,测定不同性质所述岩体、所述构造面、所述软弱层的物理力学参数;s3,根据不同性质岩体、构造面、软弱层的分布范围,进行单元划分;s4,以所有节点的应力分量为自变量,构建单元静力平衡约束方程、节点应力已知边界条件约束方程和节点应力屈服准则约束方程;s5,求解同时满足所述单元静力平衡约束方程、所述节点应力已知边界条件约束方程和所述节点应力屈服准则约束方程的可行解;s6,分析岩体的稳定性;如果至少存在一个可行解,判定岩体为稳定;如果不存在可行解,判定岩体为不稳定。
10.进一步地,s2步中,所述岩体物理力学参数包括天然容重、干容重、饱和容重、含水率、抗拉强度、抗压强度、内摩擦角、粘滞系数;所述构造面的物理力学参数包括内摩擦角、粘滞系数;所述软弱层的物理力学参数包括天然容重、干容重、饱和容重、含水率、内摩擦角、粘滞系数。
11.进一步地,s3步中,所述单元划分中的单元采用四边形单元。
12.进一步地,所述单元静力平衡约束方程为:其中,i代表第i个单元,取值范围为所有单元;代表第i个单元周边节点的正应力分量在x方向对该单元的合力;代表第i个单元周边节点的切应力分量在x方向对该单元的合力;代表第i个单元在x方向的体力;代表第i个单元周边节点的正应力分量在y方向对该单元的合力;代表第i个单元周边节点的切应力分量在y方向对该单元的合力;代表第i个单元在y方向的体力。
13.进一步地,所述节点应力已知边界条件约束方程为:其中,j代表第j个节点,取值范围为应力已知边界范围内的节点;代表第j个节点x方向的正应力;代表第j个节点y方向的正应力;代表第j个节点的切应力;代
表第j个节点在边界方向的正应力;代表第j个节点在边界方向的切应力;、、,为计算参量。
14.进一步地,所述节点应力屈服准则约束方程为:其中,k代表第k个节点,取值范围为所有节点;代表第k个节点x方向的正应力;代表第k个节点y方向的正应力;代表第k个节点的切应力;,代表内摩擦角;代表粘滞力;,为计算参量。
15.进一步地,在三维岩体稳定性分析中,所述单元采用六面体单元进行划分,并依据所述单元静力平衡约束方程、所述节点应力已知边界条件约束方程和所述节点应力屈服准则约束方程的建立思路,建立三维的单元静力平衡约束方程、节点应力已知边界条件约束方程和节点应力屈服准则约束方程,求解所述约束方程的可行解,分析岩体的稳定性。
16.本发明优点在于提供了一种不需要引入最危险滑裂面假定、不需要引入应力-应变关系、不需要引入应力间断或速度间断假定、且理论基础严密、适用性强的岩体稳定性分析数值方法,稳定性分析结论与工程实践也更为符合,具有较好的工程实用价值。
附图说明
17.图1是本发明所述实施例1中混凝土重力坝与岩石基础示意图。
18.图2是本发明所述方法的流程图。
19.图3是本发明所述实施例1中单元划分示意图。
20.图4是本发明所述方法中单元节点编号、坐标及应力示意图。
21.图5是本发明所述方法的节点应力已知边界条件示意图。
22.图6是本发明所述实施例2中条形均布荷载作用下的地基承载力示意图。
具体实施方式
23.下面将对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明的一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
24.实施例1:如图1所示,混凝土重力坝4坐落在岩石基础上,混凝土重力坝4在坝底段6岩体1上表面作用有的滑动力,分析岩石基础的抗滑稳定性问题,说明本发明所述岩体稳定性极限分析方法,其流程如图2所示。
25.s1,通过地质勘察,收集目标区域内不同性质岩体、构造面、软弱层的分布范围;s2,测定不同性质岩体、构造面、软弱层的物理力学参数;其中,岩体的物理力学参数包括天然容重、干容重、饱和容重、含水率、抗拉强度、抗压强度、内摩擦角、粘滞系数;
构造面的物理力学参数包括内摩擦角、粘滞系数;软弱层的物理力学参数包括天然容重、干容重、饱和容重、含水率、内摩擦角、粘滞系数。
26.在本实施例中,通过地质勘察查明混凝土重力坝4岩石基础有两层不同性质的岩体,岩体1和岩体2,岩体1与岩体2交界面处有软弱层3,岩体1、岩体2与软弱层3均呈水平分布;岩体1竖向厚度16.5m,饱和容重25300n/m3,粘滞力1.20mpa,内摩擦角47.73
°
;岩体2饱和容重25600n/m3,粘滞力1.50mpa,内摩擦角50.19
°
;软弱层3的粘滞力0.21mpa,内摩擦角34.99度。
27.s3,根据不同性质岩体、构造面、软弱层的分布范围,进行单元划分;如图3所示,本实施例仅进行二维分析,采用四边形单元进行单元划分,在三维分析中可以采用六面体单元进行单元划分。本实施例岩石基础稳定性分析范围取水平长度660m,其中坝前段5长度165m,坝基段6长度165m,坝后段7长度330m;取岩石基础竖向厚度198m,其中包括岩体1竖向厚度16.5m和岩体2竖向厚度为181.5m。
28.混凝土重力坝4高度为226m,取坝前水深220m,坝后水深11m,混凝土容重24000n/m3,水体容重9810n/m3。
29.采用四边形单元进行单元划分。水平长度范围内共划分120个单元,121个节点,单元水平长度 ;竖向厚度范围内共划分33个单元,34个节点,单元竖向高度。模型共有3960个单元,4114个节点。节点按照从上到下,从左到右依次编号。
30.s4,以所有单元节点的应力分量为自变量,构建约束方程;对本实施例,自变量为:公式(1)其中,代表第个节点,取值范围为所有节点,即;分别代表第i个节点x方向的正应力、y方向的正应力和第i个节点的切应力;共有4114*3=12342个自变量。
31.约束方程包括单元静力平衡约束方程、节点应力已知边界条件约束方程和节点应力屈服准则约束方程。
32.其中单元静力平衡约束方程为:公式(2)其中,i代表第i个单元,取值范围为所有单元;代表第i个单元周边节点的正应力分量在x方向对该单元的合力;代表第i个单元周边节点的切应力分量在x方向对该单元的合力;代表第i个单元在x方向的体力;代表第i个单元周边节点的正应力分量在
y方向对该单元的合力;代表第i个单元周边节点的切应力分量在y方向对该单元的合力;代表第i个单元在y方向的体力。
33.根据本发明所述的单元静力平衡约束方程,设本实施例第个单元的节点按逆时针方向编号依次为;如图4所示,相应节点坐标为,,和;相应节点在x方向、y方向的正应力,以及相应节点的切应力记为、、、和,其中i的取值范围为所有单元。
34.设相邻节点之间的正应力和切应力在单元的边界上均按直线变化,则可得到,第个单元节点在x方向的正应力、、和,第i个单元周边节点的正应力分量在x方向对该单元的合力为:公式(3);第 个单元节点的切应力、、和,第i个单元周边节点的切应力分量在x方向对该单元的合力为:公式(4);取单元的厚度为单位厚度,设单元在x方向上的单位体力为,在y方向上的单位体力为;第个单元的面积为;第i个单元在x方向的体力为:公式(5)在本实施例中,第个单元在x方向上的体力为0;第个单元节点在y方向的正应力、、和,第i个单元周边节点的正应力分量在y方向对该单元的合力为:公式(6)第个单元节点在y方向的切应力、、和,第i个单元周边节点的切应力分量在y方向对该单元的合力为:
公式(7)第i个单元在y方向的体力为:公式(8)其中,为单元水平长度,为单元竖向高度;将公式(3)、公式(4)、公式5)、公式6)、公式(7)和公式(8),以及单元水平长度 和单元竖向高度为代入单元静力平衡约束方程,即公式(2),可得到本实施例的第个单元在x方向和y方向力的单元静力平衡约束方程为:公式(9);其中,的取值范围为所有单元,即。
35.如图5所示,所述节点应力已知边界条件约束方程为其中,j代表第j个节点,取值范围为应力已知边界范围内的节点;代表第j个节点x方向的正应力;代表第j个节点y方向的正应力;代表第j个节点的切应力;代表第j个节点在边界方向的正应力;代表第j个节点在边界方向的切应力;,为计算参量。
36.在本实施例中,节点应力已知边界条件包括坝前段5岩体1上表面的正应力和切应力,坝底段6岩体1上表面的正应力与滑动力,及坝后段7岩体1上表面的正应力和切应力。
37.坝前段5岩体1上表面正应力和切应力由坝前水体产生,根据本发明方法所述的节点应力已知边界条件约束方程,可以计算其节点应力已知边界条件为公式(10)其中, 表第j个节点,取值范围为坝前段5岩体1上表面的节点;根据本实施例对
节点的编号,j的具体取值为:。
38.坝底段6岩体1上表面正应力与滑动力,其节点应力已知边界条件为公式(11)其中, 表第j个节点,取值范围为坝底段6岩体1上表面的节点;根据本实施例对节点的编号,j的具体取值为:。
39.坝后段7岩体1上表面正应力和切应力由坝后水体产生,其节点应力已知边界条件为公式(12)其中, 表第j个节点,取值范围为坝后段7岩体1上表面的节点;根据本实施例对节点的编号,j的具体取值为:。
40.上述的公式(10)、公式(11)和公式(12)即为本实施例的节点应力已知边界条件约束方程。
41.所述节点应力屈服准则约束方程,是根据勘察和试验得到的不同性质岩体、构造面及软弱层的物理力学参数,依据相应的岩体强度理论,建立以应力形式表达的节点应力屈服准则约束方程。
42.以二维问题、莫尔-库仑屈服准则为例,节点所对应的节点应力分量为、和,该点在方向、上的正应力和切应力分别为和,则有:公式(13)公式(14)由勘察及试验测定出的岩体内摩擦角为,并记,其节点应力在任一方向上的正应力和切应力均应满足莫尔-库仑准则,则可得到:
公式(15)其中,c代表岩体的粘滞力;同时,公式(15)等价于公式(16)若记:公式(17)公式(18)公式(16)等价于公式(17)和公式(18)的交集;将公式(13)、公式(14)代入公式(17),则可得到:公式(19)将、代入公式(19)中,进一步可得到:将公式(13)、公式(14)代入公式(18),则可得到:公式(21)将、代入公式(18)中,进一步可得到:综合公式(20)与公式(22),可得到公式(23)即本发明方法所述的节点应力屈服准则约束方程。其中,k代表第k个节点,取值范围为所有节点;代表第k个节点x方向的正应力;代表第k个节点y方向的正应力;代表第k个节点的切应力;,代表内摩擦角;代表粘滞力;,为计算参量。
43.对本实施例,应用本发明方法所述的节点应力屈服准则约束方程,即有
公式(24)根据勘察和试验,对本实施例岩体1有;;k的取值范围为:k的取值范围为:的取值范围为:;对软弱层3有:;;k的取值范围为:;的取值范围为:;对岩体2有:;;k的取值范围为:。
44.上述公式(9)、公式(10)、公式(11)、公式(12)和公式(24)即为本实施例的约束方程,至此完成了本实施例约束方程的构建。
45.s5,求解同时满足所述单元静力平衡约束方程、所述节点应力已知边界条件约束方程和所述节点应力屈服准则约束方程的可行解;s6,分析岩体的稳定性;如果至少存在一个可行解,判定岩体为稳定;如果不存在可行解,判定岩体为不稳定。
46.在本实施例中,通过计算机对约束方程求解可得到,在混凝土重力坝4坝底段6岩体1上表面作用有滑动力的情况下,不存在可行解,可判定该岩体为不稳定。
47.进一步计算可发现,如果要使得约束方程至少存在一个可行解,则岩体1上表面作用的滑动力应不大于。
48.进一步地,针对本实施例,假定岩体1与岩体2间无软弱层3,在岩体1上表面作用有滑动力的情况下,通过计算机对约束方程求解发现,约束方程存在可行
解,可判定该岩体为稳定。
49.进一步计算可发现,在假定岩体1与岩体2间无软弱层3的情况下,在岩体1上表面作用的滑动力不大于情况下,约束方程存在可行解;在岩体1上表面作用的滑动力大于情况下,约束方程不存在可行解。
50.对比上述四种求解结果可以看出,由于受到岩体1与岩体2间软弱层3的影响,岩石基础可提供的最大抗滑力由下降至,下降了22.6%,软弱层3的存在使得岩石基础的抗滑稳定性不能满足工程要求。
51.实施例2本实施例以条形均布荷载作用下的地基承载力问题为例,说明本发明所述岩体稳定性极限分析方法的有效性。
52.如图6所示,在基础9的顶部20m范围内作用有条形均布荷载8,基础9的粘滞力c为200kpa,内摩擦角为零,体力为零。下面采用本发明所述方法来求解基础9的地基承载力,即条形均布荷载8的最大值。
53.s1,收集目标区域内不同性质岩体、构造面、软弱层的分布范围;对本实施例,基础9为均质岩体,在基础范围内不存在不同性质岩体、不存在构造面、不存在软弱层;s2,获得不同性质岩体、构造面、软弱层的物理力学参数;基础9岩体的粘滞力c为200kpa,内摩擦角φ为零,岩体容重为零;s3,进行单元划分;基础9的水平总长度为60m,其中条形均布荷载8左、右各20m,基础9竖向厚度为30m,采用四边形单元进行单元划分。水平长度范围内共划分48个单元,49个节点,单元水平长度dx=1.25m;竖向厚度范围内共划分24个单元,25个节点,单元竖向高度为dy=1.25m。模型共划分为1152个单元,1225个节点。节点按照从上到下,从左到右依次编号。
54.s4,以所有节点的应力分量为自变量,构建约束方程;对本实施例,自变量为:公式(25)其中,代表第个节点,取值范围为所有节点,即;分别代表第i个节点x方向的正应力、y方向的正应力和第i个节点的切应力;共有1225*3=3675个自变量。
55.约束方程包括单元静力平衡约束方程、节点应力已知边界条件约束方程和节点应力屈服准则约束方程。
56.单元静力平衡约束方程构建如下:对本实施例,单元水平长度,单元竖向高度,单元在x方向和y方向力的体力均为零。采用本发明前
述方法,可得到单元静力平衡约束方程为:公式(26);其中,的取值范围为所有单元,即。
57.节点应力已知边界条件约束方程构建如下:在本实施例中,节点应力已知边界条件包括荷载8左侧基础9上表面的正应力和切应力,荷载8底部基础9上表面的正应力和切应力,荷载8右侧基础9上表面的正应力和切应力。
58.荷载8左侧基础9上表面的节点,其节点应力已知边界条件为公式(27)其中,表第个节点,取值范围为荷载8左侧基础9上表面的的节点;根据本实施例对节点的编号,的具体取值为:。
59.荷载8底部基础9上表面的节点,其节点应力已知边界条件为公式(28)其中,表第个节点,取值范围为荷载8底部基础9上表面的的节点;为设定的地基承载力;根据本实施例对节点的编号,的具体取值为:。
60.荷载8右侧基础9上表面的节点,其节点应力已知边界条件为公式(29)
其中,表第个节点,取值范围为荷载8右侧基础9上表面的节点;根据本实施例对节点的编号,j的具体取值为:。
61.上述的公式(27)、公式(28)和公式(29)即为本实施例的基点应力已知边界条件约束方程。
62.节点应力屈服准则约束方程构建如下:对本实施例,基础9岩体的粘滞力c为200kpa,内摩擦角φ为零,,体力为零,其节点应力屈服准则约束方程为公式(30)k的取值范围为:。
63.上述公式(26)、公式(27)、公式(28)、公式(29)和公式(30)即为本实施例的约束方程,至此完成了本实施例约束方程的构建。
64.s5,求解同时满足所述单元静力平衡约束方程、所述节点应力已知边界条件约束方程和所述节点应力屈服准则约束方程的可行解;s6,分析岩体的稳定性;通过计算机,对本实施例约束方程进行计算求解可得到,在条形均布荷载8不大于1023.4 kpa的情况下,约束方程存在可行解,可判定该岩体为稳定;在条形均布荷载8大于1023.4 kpa的情况下,约束方程不存在可行解,可判定该岩体为不稳定。
65.根据上述计算结果,可得到基础9的地基承载力为1023.4kpa。同时,根据塑性力学理论,基础9的地基承载力理论解为,即为1028.3kpa。用本发明所述的方法所得到的解与理论解的相对误差为0.48%,精度较高,能够很好地满足工程实践需要。
66.实施例3在三维岩体稳定性分析中,所述单元采用六面体单元进行划分,并依据所述单元静力平衡约束方程、所述节点应力已知边界条件约束方程和所述节点应力屈服准则约束方程的建立思路,建立三维的单元静力平衡约束方程、节点应力已知边界条件约束方程和节点应力屈服准则约束方程,求解所述约束方程的可行解,分析岩体的稳定性;如果至少存在一个可行解,判定岩体为稳定;如果可行解不存在,判定岩体为不稳定。
67.综上,本技术所提供的岩体稳定性极限分析方法,提供了一种不需要引入最危险滑裂面假定、不需要引入应力-应变关系、不需要引入应力间断或速度间断假定、且理论基础严密、适用性强的岩体稳定性分析数值方法,稳定性分析结论与工程实践也更为符合,具有较好的工程实用价值。
再多了解一些

本文用于企业家、创业者技术爱好者查询,结果仅供参考。

发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表

相关文献